/* * AF_INET/AF_INET6 SOCK_STREAM protocol layer (tcp) * * Copyright 2000-2013 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int tcp_bind_listener(struct listener *listener, char *errmsg, int errlen); static int tcp_suspend_receiver(struct receiver *rx); static int tcp_resume_receiver(struct receiver *rx); static void tcp_enable_listener(struct listener *listener); static void tcp_disable_listener(struct listener *listener); /* Note: must not be declared as its list will be overwritten */ struct protocol proto_tcpv4 = { .name = "tcpv4", /* connection layer */ .xprt_type = PROTO_TYPE_STREAM, .listen = tcp_bind_listener, .enable = tcp_enable_listener, .disable = tcp_disable_listener, .add = default_add_listener, .unbind = default_unbind_listener, .suspend = default_suspend_listener, .resume = default_resume_listener, .accept_conn = sock_accept_conn, .ctrl_init = sock_conn_ctrl_init, .ctrl_close = sock_conn_ctrl_close, .connect = tcp_connect_server, .drain = sock_drain, .check_events = sock_check_events, .ignore_events = sock_ignore_events, /* binding layer */ .rx_suspend = tcp_suspend_receiver, .rx_resume = tcp_resume_receiver, /* address family */ .fam = &proto_fam_inet4, /* socket layer */ .proto_type = PROTO_TYPE_STREAM, .sock_type = SOCK_STREAM, .sock_prot = IPPROTO_TCP, .rx_enable = sock_enable, .rx_disable = sock_disable, .rx_unbind = sock_unbind, .rx_listening = sock_accepting_conn, .default_iocb = sock_accept_iocb, .receivers = LIST_HEAD_INIT(proto_tcpv4.receivers), .nb_receivers = 0, #ifdef SO_REUSEPORT .flags = PROTO_F_REUSEPORT_SUPPORTED, #endif }; INITCALL1(STG_REGISTER, protocol_register, &proto_tcpv4); /* Note: must not be declared as its list will be overwritten */ struct protocol proto_tcpv6 = { .name = "tcpv6", /* connection layer */ .xprt_type = PROTO_TYPE_STREAM, .listen = tcp_bind_listener, .enable = tcp_enable_listener, .disable = tcp_disable_listener, .add = default_add_listener, .unbind = default_unbind_listener, .suspend = default_suspend_listener, .resume = default_resume_listener, .accept_conn = sock_accept_conn, .ctrl_init = sock_conn_ctrl_init, .ctrl_close = sock_conn_ctrl_close, .connect = tcp_connect_server, .drain = sock_drain, .check_events = sock_check_events, .ignore_events = sock_ignore_events, /* binding layer */ .rx_suspend = tcp_suspend_receiver, .rx_resume = tcp_resume_receiver, /* address family */ .fam = &proto_fam_inet6, /* socket layer */ .proto_type = PROTO_TYPE_STREAM, .sock_type = SOCK_STREAM, .sock_prot = IPPROTO_TCP, .rx_enable = sock_enable, .rx_disable = sock_disable, .rx_unbind = sock_unbind, .rx_listening = sock_accepting_conn, .default_iocb = sock_accept_iocb, .receivers = LIST_HEAD_INIT(proto_tcpv6.receivers), .nb_receivers = 0, #ifdef SO_REUSEPORT .flags = PROTO_F_REUSEPORT_SUPPORTED, #endif }; INITCALL1(STG_REGISTER, protocol_register, &proto_tcpv6); /* Binds ipv4/ipv6 address to socket , unless is set, in which * case we try to bind . is a 2-bit field consisting of : * - 0 : ignore remote address (may even be a NULL pointer) * - 1 : use provided address * - 2 : use provided port * - 3 : use both * * The function supports multiple foreign binding methods : * - linux_tproxy: we directly bind to the foreign address * The second one can be used as a fallback for the first one. * This function returns 0 when everything's OK, 1 if it could not bind, to the * local address, 2 if it could not bind to the foreign address. */ int tcp_bind_socket(int fd, int flags, struct sockaddr_storage *local, struct sockaddr_storage *remote) { struct sockaddr_storage bind_addr; int foreign_ok = 0; int ret; static THREAD_LOCAL int ip_transp_working = 1; static THREAD_LOCAL int ip6_transp_working = 1; switch (local->ss_family) { case AF_INET: if (flags && ip_transp_working) { /* This deserves some explanation. Some platforms will support * multiple combinations of certain methods, so we try the * supported ones until one succeeds. */ if (sock_inet4_make_foreign(fd)) foreign_ok = 1; else ip_transp_working = 0; } break; case AF_INET6: if (flags && ip6_transp_working) { if (sock_inet6_make_foreign(fd)) foreign_ok = 1; else ip6_transp_working = 0; } break; } if (flags) { memset(&bind_addr, 0, sizeof(bind_addr)); bind_addr.ss_family = remote->ss_family; switch (remote->ss_family) { case AF_INET: if (flags & 1) ((struct sockaddr_in *)&bind_addr)->sin_addr = ((struct sockaddr_in *)remote)->sin_addr; if (flags & 2) ((struct sockaddr_in *)&bind_addr)->sin_port = ((struct sockaddr_in *)remote)->sin_port; break; case AF_INET6: if (flags & 1) ((struct sockaddr_in6 *)&bind_addr)->sin6_addr = ((struct sockaddr_in6 *)remote)->sin6_addr; if (flags & 2) ((struct sockaddr_in6 *)&bind_addr)->sin6_port = ((struct sockaddr_in6 *)remote)->sin6_port; break; default: /* we don't want to try to bind to an unknown address family */ foreign_ok = 0; } } setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); if (foreign_ok) { if (is_inet_addr(&bind_addr)) { ret = bind(fd, (struct sockaddr *)&bind_addr, get_addr_len(&bind_addr)); if (ret < 0) return 2; } } else { if (is_inet_addr(local)) { ret = bind(fd, (struct sockaddr *)local, get_addr_len(local)); if (ret < 0) return 1; } } if (!flags) return 0; if (!foreign_ok) /* we could not bind to a foreign address */ return 2; return 0; } /* * This function initiates a TCP connection establishment to the target assigned * to connection using (si->{target,dst}). A source address may be * pointed to by conn->src in case of transparent proxying. Normal source * bind addresses are still determined locally (due to the possible need of a * source port). conn->target may point either to a valid server or to a backend, * depending on conn->target. Only OBJ_TYPE_PROXY and OBJ_TYPE_SERVER are * supported. The parameter is a boolean indicating whether there are data * waiting for being sent or not, in order to adjust data write polling and on * some platforms, the ability to avoid an empty initial ACK. The argument * allows the caller to force using a delayed ACK when establishing the connection * - 0 = no delayed ACK unless data are advertised and backend has tcp-smart-connect * - CONNECT_DELACK_SMART_CONNECT = delayed ACK if backend has tcp-smart-connect, regardless of data * - CONNECT_DELACK_ALWAYS = delayed ACK regardless of backend options * * Note that a pending send_proxy message accounts for data. * * It can return one of : * - SF_ERR_NONE if everything's OK * - SF_ERR_SRVTO if there are no more servers * - SF_ERR_SRVCL if the connection was refused by the server * - SF_ERR_PRXCOND if the connection has been limited by the proxy (maxconn) * - SF_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...) * - SF_ERR_INTERNAL for any other purely internal errors * Additionally, in the case of SF_ERR_RESOURCE, an emergency log will be emitted. * * The connection's fd is inserted only when SF_ERR_NONE is returned, otherwise * it's invalid and the caller has nothing to do. */ int tcp_connect_server(struct connection *conn, int flags) { int fd; struct server *srv; struct proxy *be; struct conn_src *src; int use_fastopen = 0; struct sockaddr_storage *addr; BUG_ON(!conn->dst); conn->flags |= CO_FL_WAIT_L4_CONN; /* connection in progress */ switch (obj_type(conn->target)) { case OBJ_TYPE_PROXY: be = __objt_proxy(conn->target); srv = NULL; break; case OBJ_TYPE_SERVER: srv = __objt_server(conn->target); be = srv->proxy; /* Make sure we check that we have data before activating * TFO, or we could trigger a kernel issue whereby after * a successful connect() == 0, any subsequent connect() * will return EINPROGRESS instead of EISCONN. */ use_fastopen = (srv->flags & SRV_F_FASTOPEN) && ((flags & (CONNECT_CAN_USE_TFO | CONNECT_HAS_DATA)) == (CONNECT_CAN_USE_TFO | CONNECT_HAS_DATA)); break; default: conn->flags |= CO_FL_ERROR; return SF_ERR_INTERNAL; } fd = conn->handle.fd = sock_create_server_socket(conn); if (fd == -1) { qfprintf(stderr, "Cannot get a server socket.\n"); if (errno == ENFILE) { conn->err_code = CO_ER_SYS_FDLIM; send_log(be, LOG_EMERG, "Proxy %s reached system FD limit (maxsock=%d). Please check system tunables.\n", be->id, global.maxsock); } else if (errno == EMFILE) { conn->err_code = CO_ER_PROC_FDLIM; send_log(be, LOG_EMERG, "Proxy %s reached process FD limit (maxsock=%d). Please check 'ulimit-n' and restart.\n", be->id, global.maxsock); } else if (errno == ENOBUFS || errno == ENOMEM) { conn->err_code = CO_ER_SYS_MEMLIM; send_log(be, LOG_EMERG, "Proxy %s reached system memory limit (maxsock=%d). Please check system tunables.\n", be->id, global.maxsock); } else if (errno == EAFNOSUPPORT || errno == EPROTONOSUPPORT) { conn->err_code = CO_ER_NOPROTO; } else conn->err_code = CO_ER_SOCK_ERR; /* this is a resource error */ conn->flags |= CO_FL_ERROR; return SF_ERR_RESOURCE; } if (fd >= global.maxsock) { /* do not log anything there, it's a normal condition when this option * is used to serialize connections to a server ! */ ha_alert("socket(): not enough free sockets. Raise -n argument. Giving up.\n"); close(fd); conn->err_code = CO_ER_CONF_FDLIM; conn->flags |= CO_FL_ERROR; return SF_ERR_PRXCOND; /* it is a configuration limit */ } if (fd_set_nonblock(fd) == -1 || (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one)) == -1)) { qfprintf(stderr,"Cannot set client socket to non blocking mode.\n"); close(fd); conn->err_code = CO_ER_SOCK_ERR; conn->flags |= CO_FL_ERROR; return SF_ERR_INTERNAL; } if (master == 1 && fd_set_cloexec(fd) == -1) { ha_alert("Cannot set CLOEXEC on client socket.\n"); close(fd); conn->err_code = CO_ER_SOCK_ERR; conn->flags |= CO_FL_ERROR; return SF_ERR_INTERNAL; } if (be->options & PR_O_TCP_SRV_KA) { setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, &one, sizeof(one)); #ifdef TCP_KEEPCNT if (be->srvtcpka_cnt) setsockopt(fd, IPPROTO_TCP, TCP_KEEPCNT, &be->srvtcpka_cnt, sizeof(be->srvtcpka_cnt)); #endif #ifdef TCP_KEEPIDLE if (be->srvtcpka_idle) setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &be->srvtcpka_idle, sizeof(be->srvtcpka_idle)); #endif #ifdef TCP_KEEPINTVL if (be->srvtcpka_intvl) setsockopt(fd, IPPROTO_TCP, TCP_KEEPINTVL, &be->srvtcpka_intvl, sizeof(be->srvtcpka_intvl)); #endif } /* allow specific binding : * - server-specific at first * - proxy-specific next */ if (srv && srv->conn_src.opts & CO_SRC_BIND) src = &srv->conn_src; else if (be->conn_src.opts & CO_SRC_BIND) src = &be->conn_src; else src = NULL; if (src) { int ret, flags = 0; if (conn->src && is_inet_addr(conn->src)) { switch (src->opts & CO_SRC_TPROXY_MASK) { case CO_SRC_TPROXY_CLI: case CO_SRC_TPROXY_ADDR: flags = 3; break; case CO_SRC_TPROXY_CIP: case CO_SRC_TPROXY_DYN: flags = 1; break; } } #ifdef SO_BINDTODEVICE /* Note: this might fail if not CAP_NET_RAW */ if (src->iface_name) setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, src->iface_name, src->iface_len + 1); #endif if (src->sport_range) { int attempts = 10; /* should be more than enough to find a spare port */ struct sockaddr_storage sa; ret = 1; memcpy(&sa, &src->source_addr, sizeof(sa)); do { /* note: in case of retry, we may have to release a previously * allocated port, hence this loop's construct. */ port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); fdinfo[fd].port_range = NULL; if (!attempts) break; attempts--; fdinfo[fd].local_port = port_range_alloc_port(src->sport_range); if (!fdinfo[fd].local_port) { conn->err_code = CO_ER_PORT_RANGE; break; } fdinfo[fd].port_range = src->sport_range; set_host_port(&sa, fdinfo[fd].local_port); ret = tcp_bind_socket(fd, flags, &sa, conn->src); if (ret != 0) conn->err_code = CO_ER_CANT_BIND; } while (ret != 0); /* binding NOK */ } else { #ifdef IP_BIND_ADDRESS_NO_PORT static THREAD_LOCAL int bind_address_no_port = 1; setsockopt(fd, IPPROTO_IP, IP_BIND_ADDRESS_NO_PORT, (const void *) &bind_address_no_port, sizeof(int)); #endif ret = tcp_bind_socket(fd, flags, &src->source_addr, conn->src); if (ret != 0) conn->err_code = CO_ER_CANT_BIND; } if (unlikely(ret != 0)) { port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); fdinfo[fd].port_range = NULL; close(fd); if (ret == 1) { ha_alert("Cannot bind to source address before connect() for backend %s. Aborting.\n", be->id); send_log(be, LOG_EMERG, "Cannot bind to source address before connect() for backend %s.\n", be->id); } else { ha_alert("Cannot bind to tproxy source address before connect() for backend %s. Aborting.\n", be->id); send_log(be, LOG_EMERG, "Cannot bind to tproxy source address before connect() for backend %s.\n", be->id); } conn->flags |= CO_FL_ERROR; return SF_ERR_RESOURCE; } } #if defined(TCP_QUICKACK) /* disabling tcp quick ack now allows the first request to leave the * machine with the first ACK. We only do this if there are pending * data in the buffer. */ if (flags & (CONNECT_DELACK_ALWAYS) || ((flags & CONNECT_DELACK_SMART_CONNECT || (flags & CONNECT_HAS_DATA) || conn->send_proxy_ofs) && (be->options2 & PR_O2_SMARTCON))) setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &zero, sizeof(zero)); #endif #ifdef TCP_USER_TIMEOUT /* there is not much more we can do here when it fails, it's still minor */ if (srv && srv->tcp_ut) setsockopt(fd, IPPROTO_TCP, TCP_USER_TIMEOUT, &srv->tcp_ut, sizeof(srv->tcp_ut)); #endif if (use_fastopen) { #if defined(TCP_FASTOPEN_CONNECT) setsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN_CONNECT, &one, sizeof(one)); #endif } if (global.tune.server_sndbuf) setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &global.tune.server_sndbuf, sizeof(global.tune.server_sndbuf)); if (global.tune.server_rcvbuf) setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &global.tune.server_rcvbuf, sizeof(global.tune.server_rcvbuf)); addr = (conn->flags & CO_FL_SOCKS4) ? &srv->socks4_addr : conn->dst; if (connect(fd, (const struct sockaddr *)addr, get_addr_len(addr)) == -1) { if (errno == EINPROGRESS || errno == EALREADY) { /* common case, let's wait for connect status */ conn->flags |= CO_FL_WAIT_L4_CONN; } else if (errno == EISCONN) { /* should normally not happen but if so, indicates that it's OK */ conn->flags &= ~CO_FL_WAIT_L4_CONN; } else if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EADDRINUSE || errno == EADDRNOTAVAIL) { char *msg; if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EADDRNOTAVAIL) { msg = "no free ports"; conn->err_code = CO_ER_FREE_PORTS; } else { msg = "local address already in use"; conn->err_code = CO_ER_ADDR_INUSE; } qfprintf(stderr,"Connect() failed for backend %s: %s.\n", be->id, msg); port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); fdinfo[fd].port_range = NULL; close(fd); send_log(be, LOG_ERR, "Connect() failed for backend %s: %s.\n", be->id, msg); conn->flags |= CO_FL_ERROR; return SF_ERR_RESOURCE; } else if (errno == ETIMEDOUT) { //qfprintf(stderr,"Connect(): ETIMEDOUT"); port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); fdinfo[fd].port_range = NULL; close(fd); conn->err_code = CO_ER_SOCK_ERR; conn->flags |= CO_FL_ERROR; return SF_ERR_SRVTO; } else { // (errno == ECONNREFUSED || errno == ENETUNREACH || errno == EACCES || errno == EPERM) //qfprintf(stderr,"Connect(): %d", errno); port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); fdinfo[fd].port_range = NULL; close(fd); conn->err_code = CO_ER_SOCK_ERR; conn->flags |= CO_FL_ERROR; return SF_ERR_SRVCL; } } else { /* connect() == 0, this is great! */ conn->flags &= ~CO_FL_WAIT_L4_CONN; } conn_ctrl_init(conn); /* registers the FD */ HA_ATOMIC_OR(&fdtab[fd].state, FD_LINGER_RISK); /* close hard if needed */ if (conn->flags & CO_FL_WAIT_L4_CONN) { fd_want_send(fd); fd_cant_send(fd); fd_cant_recv(fd); } return SF_ERR_NONE; /* connection is OK */ } /* This function tries to bind a TCPv4/v6 listener. It may return a warning or * an error message in if the message is at most bytes long * (including '\0'). Note that may be NULL if is also zero. * The return value is composed from ERR_ABORT, ERR_WARN, * ERR_ALERT, ERR_RETRYABLE and ERR_FATAL. ERR_NONE indicates that everything * was alright and that no message was returned. ERR_RETRYABLE means that an * error occurred but that it may vanish after a retry (eg: port in use), and * ERR_FATAL indicates a non-fixable error. ERR_WARN and ERR_ALERT do not alter * the meaning of the error, but just indicate that a message is present which * should be displayed with the respective level. Last, ERR_ABORT indicates * that it's pointless to try to start other listeners. No error message is * returned if errlen is NULL. */ int tcp_bind_listener(struct listener *listener, char *errmsg, int errlen) { int fd, err; int ready; struct buffer *msg = alloc_trash_chunk(); err = ERR_NONE; if (!msg) { if (errlen) snprintf(errmsg, errlen, "out of memory"); return ERR_ALERT | ERR_FATAL; } /* ensure we never return garbage */ if (errlen) *errmsg = 0; if (listener->state != LI_ASSIGNED) return ERR_NONE; /* already bound */ if (!(listener->rx.flags & RX_F_BOUND)) { chunk_appendf(msg, "%sreceiving socket not bound", msg->data ? ", " : ""); goto tcp_return; } if (listener->rx.flags & RX_F_MUST_DUP) goto done; fd = listener->rx.fd; if (listener->bind_conf->options & BC_O_NOLINGER) setsockopt(fd, SOL_SOCKET, SO_LINGER, &nolinger, sizeof(struct linger)); else { struct linger tmplinger; socklen_t len = sizeof(tmplinger); if (getsockopt(fd, SOL_SOCKET, SO_LINGER, &tmplinger, &len) == 0 && (tmplinger.l_onoff == 1 || tmplinger.l_linger == 0)) { tmplinger.l_onoff = 0; tmplinger.l_linger = 0; setsockopt(fd, SOL_SOCKET, SO_LINGER, &tmplinger, sizeof(tmplinger)); } } #if defined(TCP_MAXSEG) if (listener->bind_conf->maxseg > 0) { if (setsockopt(fd, IPPROTO_TCP, TCP_MAXSEG, &listener->bind_conf->maxseg, sizeof(listener->bind_conf->maxseg)) == -1) { chunk_appendf(msg, "%scannot set MSS to %d", msg->data ? ", " : "", listener->bind_conf->maxseg); err |= ERR_WARN; } } else { /* we may want to try to restore the default MSS if the socket was inherited */ int tmpmaxseg = -1; int defaultmss; socklen_t len = sizeof(tmpmaxseg); if (listener->rx.addr.ss_family == AF_INET) defaultmss = sock_inet_tcp_maxseg_default; else defaultmss = sock_inet6_tcp_maxseg_default; getsockopt(fd, IPPROTO_TCP, TCP_MAXSEG, &tmpmaxseg, &len); if (defaultmss > 0 && tmpmaxseg != defaultmss && setsockopt(fd, IPPROTO_TCP, TCP_MAXSEG, &defaultmss, sizeof(defaultmss)) == -1) { chunk_appendf(msg, "%scannot set MSS to %d", msg->data ? ", " : "", defaultmss); err |= ERR_WARN; } } #endif #if defined(TCP_USER_TIMEOUT) if (listener->bind_conf->tcp_ut) { if (setsockopt(fd, IPPROTO_TCP, TCP_USER_TIMEOUT, &listener->bind_conf->tcp_ut, sizeof(listener->bind_conf->tcp_ut)) == -1) { chunk_appendf(msg, "%scannot set TCP User Timeout", msg->data ? ", " : ""); err |= ERR_WARN; } } else setsockopt(fd, IPPROTO_TCP, TCP_USER_TIMEOUT, &zero, sizeof(zero)); #endif #if defined(TCP_DEFER_ACCEPT) if (listener->bind_conf->options & BC_O_DEF_ACCEPT) { /* defer accept by up to one second */ int accept_delay = 1; if (setsockopt(fd, IPPROTO_TCP, TCP_DEFER_ACCEPT, &accept_delay, sizeof(accept_delay)) == -1) { chunk_appendf(msg, "%scannot enable DEFER_ACCEPT", msg->data ? ", " : ""); err |= ERR_WARN; } } else setsockopt(fd, IPPROTO_TCP, TCP_DEFER_ACCEPT, &zero, sizeof(zero)); #endif #if defined(TCP_FASTOPEN) if (listener->bind_conf->options & BC_O_TCP_FO) { /* TFO needs a queue length, let's use the configured backlog */ int qlen = listener_backlog(listener); if (setsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN, &qlen, sizeof(qlen)) == -1) { chunk_appendf(msg, "%scannot enable TCP_FASTOPEN", msg->data ? ", " : ""); err |= ERR_WARN; } } else { socklen_t len; int qlen; len = sizeof(qlen); /* Only disable fast open if it was enabled, we don't want * the kernel to create a fast open queue if there's none. */ if (getsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN, &qlen, &len) == 0 && qlen != 0) { if (setsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN, &zero, sizeof(zero)) == -1) { chunk_appendf(msg, "%scannot disable TCP_FASTOPEN", msg->data ? ", " : ""); err |= ERR_WARN; } } } #endif ready = sock_accepting_conn(&listener->rx) > 0; if (!ready && /* only listen if not already done by external process */ listen(fd, listener_backlog(listener)) == -1) { err |= ERR_RETRYABLE | ERR_ALERT; chunk_appendf(msg, "%scannot listen to socket", msg->data ? ", " : ""); goto tcp_close_return; } #if !defined(TCP_DEFER_ACCEPT) && defined(SO_ACCEPTFILTER) /* the socket needs to listen first */ if (listener->bind_conf->options & BC_O_DEF_ACCEPT) { struct accept_filter_arg accept; memset(&accept, 0, sizeof(accept)); strlcpy2(accept.af_name, "dataready", sizeof(accept.af_name)); if (setsockopt(fd, SOL_SOCKET, SO_ACCEPTFILTER, &accept, sizeof(accept)) == -1) { chunk_appendf(msg, "%scannot enable ACCEPT_FILTER", msg->data ? ", " : ""); err |= ERR_WARN; } } #endif #if defined(TCP_QUICKACK) if (listener->bind_conf->options & BC_O_NOQUICKACK) setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &zero, sizeof(zero)); else setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one)); #endif done: /* the socket is ready */ listener_set_state(listener, LI_LISTEN); goto tcp_return; tcp_close_return: free_trash_chunk(msg); msg = NULL; close(fd); tcp_return: if (msg && errlen && msg->data) { char pn[INET6_ADDRSTRLEN]; addr_to_str(&listener->rx.addr, pn, sizeof(pn)); snprintf(errmsg, errlen, "%s for [%s:%d]", msg->area, pn, get_host_port(&listener->rx.addr)); } free_trash_chunk(msg); msg = NULL; return err; } /* Enable receipt of incoming connections for listener . The receiver must * still be valid. */ static void tcp_enable_listener(struct listener *l) { fd_want_recv_safe(l->rx.fd); } /* Disable receipt of incoming connections for listener . The receiver must * still be valid. */ static void tcp_disable_listener(struct listener *l) { fd_stop_recv(l->rx.fd); } /* Suspend a receiver. Returns < 0 in case of failure, 0 if the receiver * was totally stopped, or > 0 if correctly suspended. Note that inherited FDs * are neither suspended nor resumed, we only enable/disable polling on them. */ static int tcp_suspend_receiver(struct receiver *rx) { const struct sockaddr sa = { .sa_family = AF_UNSPEC }; int ret; /* We never disconnect a shared FD otherwise we'd break it in the * parent process and any possible subsequent worker inheriting it. * Thus we just stop receiving from it. */ if (rx->flags & RX_F_INHERITED) goto done; if (connect(rx->fd, &sa, sizeof(sa)) < 0) goto check_already_done; done: fd_stop_recv(rx->fd); return 1; check_already_done: /* in case one of the shutdown() above fails, it might be because we're * dealing with a socket that is shared with other processes doing the * same. Let's check if it's still accepting connections. */ ret = sock_accepting_conn(rx); if (ret <= 0) { /* unrecoverable or paused by another process */ fd_stop_recv(rx->fd); return ret == 0; } /* still listening, that's not good */ return -1; } /* Resume a receiver. Returns < 0 in case of failure, 0 if the receiver * was totally stopped, or > 0 if correctly resumed. Note that inherited FDs * are neither suspended nor resumed, we only enable/disable polling on them. */ static int tcp_resume_receiver(struct receiver *rx) { struct listener *l = LIST_ELEM(rx, struct listener *, rx); if (rx->fd < 0) return 0; if ((rx->flags & RX_F_INHERITED) || listen(rx->fd, listener_backlog(l)) == 0) { fd_want_recv(l->rx.fd); return 1; } return -1; } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */