/* * Generic code for native (BSD-compatible) sockets * * Copyright 2000-2020 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SOCK_XFER_OPT_FOREIGN 0x000000001 #define SOCK_XFER_OPT_V6ONLY 0x000000002 #define SOCK_XFER_OPT_DGRAM 0x000000004 /* the list of remaining sockets transferred from an older process */ struct xfer_sock_list { int fd; int options; /* socket options as SOCK_XFER_OPT_* */ char *iface; char *namespace; int if_namelen; int ns_namelen; struct xfer_sock_list *prev; struct xfer_sock_list *next; struct sockaddr_storage addr; }; static struct xfer_sock_list *xfer_sock_list; /* Accept an incoming connection from listener , and return it, as well as * a CO_AC_* status code into if not null. Null is returned on error. * must be a valid listener with a valid frontend. */ struct connection *sock_accept_conn(struct listener *l, int *status) { #ifdef USE_ACCEPT4 static int accept4_broken; #endif struct proxy *p = l->bind_conf->frontend; struct connection *conn = NULL; struct sockaddr_storage *addr = NULL; socklen_t laddr; int ret; int cfd; if (!sockaddr_alloc(&addr, NULL, 0)) goto fail_addr; /* accept() will mark all accepted FDs O_NONBLOCK and the ones accepted * in the master process as FD_CLOEXEC. It's not done for workers * because 1) workers are not supposed to execute anything so there's * no reason for uselessly slowing down everything, and 2) that would * prevent us from implementing fd passing in the future. */ #ifdef USE_ACCEPT4 laddr = sizeof(*conn->src); /* only call accept4() if it's known to be safe, otherwise fallback to * the legacy accept() + fcntl(). */ if (unlikely(accept4_broken) || (((cfd = accept4(l->rx.fd, (struct sockaddr*)addr, &laddr, SOCK_NONBLOCK | (master ? SOCK_CLOEXEC : 0))) == -1) && (errno == ENOSYS || errno == EINVAL || errno == EBADF) && ((accept4_broken = 1)))) #endif { laddr = sizeof(*conn->src); if ((cfd = accept(l->rx.fd, (struct sockaddr*)addr, &laddr)) != -1) { fd_set_nonblock(cfd); if (master) fd_set_cloexec(cfd); } } if (likely(cfd != -1)) { if (unlikely(cfd >= global.maxsock)) { send_log(p, LOG_EMERG, "Proxy %s reached the configured maximum connection limit. Please check the global 'maxconn' value.\n", p->id); goto fail_conn; } /* Perfect, the connection was accepted */ conn = conn_new(&l->obj_type); if (!conn) goto fail_conn; conn->src = addr; conn->handle.fd = cfd; ret = CO_AC_DONE; goto done; } /* error conditions below */ sockaddr_free(&addr); switch (errno) { #if defined(EWOULDBLOCK) && defined(EAGAIN) && EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif case EAGAIN: ret = CO_AC_DONE; /* nothing more to accept */ if (fdtab[l->rx.fd].state & (FD_POLL_HUP|FD_POLL_ERR)) { /* the listening socket might have been disabled in a shared * process and we're a collateral victim. We'll just pause for * a while in case it comes back. In the mean time, we need to * clear this sticky flag. */ _HA_ATOMIC_AND(&fdtab[l->rx.fd].state, ~(FD_POLL_HUP|FD_POLL_ERR)); ret = CO_AC_PAUSE; } fd_cant_recv(l->rx.fd); break; case EINVAL: /* might be trying to accept on a shut fd (eg: soft stop) */ ret = CO_AC_PAUSE; break; case EINTR: case ECONNABORTED: ret = CO_AC_RETRY; break; case ENFILE: if (p) send_log(p, LOG_EMERG, "Proxy %s reached system FD limit (maxsock=%d). Please check system tunables.\n", p->id, global.maxsock); ret = CO_AC_PAUSE; break; case EMFILE: if (p) send_log(p, LOG_EMERG, "Proxy %s reached process FD limit (maxsock=%d). Please check 'ulimit-n' and restart.\n", p->id, global.maxsock); ret = CO_AC_PAUSE; break; case ENOBUFS: case ENOMEM: if (p) send_log(p, LOG_EMERG, "Proxy %s reached system memory limit (maxsock=%d). Please check system tunables.\n", p->id, global.maxsock); ret = CO_AC_PAUSE; break; default: /* unexpected result, let's give up and let other tasks run */ ret = CO_AC_YIELD; } done: if (status) *status = ret; return conn; fail_conn: sockaddr_free(&addr); /* The accept call already succeeded by the time we try to allocate the connection, * we need to close it in case of failure. */ close(cfd); fail_addr: ret = CO_AC_PAUSE; goto done; } /* Create a socket to connect to the server in conn->dst (which MUST be valid), * using the configured namespace if needed, or the one passed by the proxy * protocol if required to do so. It ultimately calls socket() or socketat() * and returns the FD or error code. */ int sock_create_server_socket(struct connection *conn) { const struct netns_entry *ns = NULL; #ifdef USE_NS if (objt_server(conn->target)) { if (__objt_server(conn->target)->flags & SRV_F_USE_NS_FROM_PP) ns = conn->proxy_netns; else ns = __objt_server(conn->target)->netns; } #endif return my_socketat(ns, conn->dst->ss_family, SOCK_STREAM, 0); } /* Enables receiving on receiver once already bound. */ void sock_enable(struct receiver *rx) { if (rx->flags & RX_F_BOUND) fd_want_recv_safe(rx->fd); } /* Disables receiving on receiver once already bound. */ void sock_disable(struct receiver *rx) { if (rx->flags & RX_F_BOUND) fd_stop_recv(rx->fd); } /* stops, unbinds and possibly closes the FD associated with receiver rx */ void sock_unbind(struct receiver *rx) { /* There are a number of situations where we prefer to keep the FD and * not to close it (unless we're stopping, of course): * - worker process unbinding from a worker's non-suspendable FD (ABNS) => close * - worker process unbinding from a worker's FD with socket transfer enabled => keep * - master process unbinding from a master's inherited FD => keep * - master process unbinding from a master's FD => close * - master process unbinding from a worker's inherited FD => keep * - master process unbinding from a worker's FD => close * - worker process unbinding from a master's FD => close * - worker process unbinding from a worker's FD => close */ if (rx->flags & RX_F_BOUND) rx->proto->rx_disable(rx); if (!stopping && !master && !(rx->flags & RX_F_MWORKER) && !(rx->flags & RX_F_NON_SUSPENDABLE) && (global.tune.options & GTUNE_SOCKET_TRANSFER)) return; if (!stopping && master && rx->flags & RX_F_INHERITED) return; rx->flags &= ~RX_F_BOUND; if (rx->fd != -1) fd_delete(rx->fd); rx->fd = -1; } /* * Retrieves the source address for the socket , with indicating * if we're a listener (=0) or an initiator (!=0). It returns 0 in case of * success, -1 in case of error. The socket's source address is stored in * for bytes. */ int sock_get_src(int fd, struct sockaddr *sa, socklen_t salen, int dir) { if (dir) return getsockname(fd, sa, &salen); else return getpeername(fd, sa, &salen); } /* * Retrieves the original destination address for the socket , with * indicating if we're a listener (=0) or an initiator (!=0). It returns 0 in * case of success, -1 in case of error. The socket's source address is stored * in for bytes. */ int sock_get_dst(int fd, struct sockaddr *sa, socklen_t salen, int dir) { if (dir) return getpeername(fd, sa, &salen); else return getsockname(fd, sa, &salen); } /* Try to retrieve exported sockets from worker at CLI . These * ones will be placed into the xfer_sock_list for later use by function * sock_find_compatible_fd(). Returns 0 on success, -1 on failure. */ int sock_get_old_sockets(const char *unixsocket) { char *cmsgbuf = NULL, *tmpbuf = NULL; int *tmpfd = NULL; struct sockaddr_un addr; struct cmsghdr *cmsg; struct msghdr msghdr; struct iovec iov; struct xfer_sock_list *xfer_sock = NULL; struct timeval tv = { .tv_sec = 1, .tv_usec = 0 }; int sock = -1; int ret = -1; int ret2 = -1; int fd_nb; int got_fd = 0; int cur_fd = 0; size_t maxoff = 0, curoff = 0; if (strncmp("sockpair@", unixsocket, strlen("sockpair@")) == 0) { /* sockpair for master-worker usage */ int sv[2]; int dst_fd; dst_fd = strtoll(unixsocket + strlen("sockpair@"), NULL, 0); if (socketpair(PF_UNIX, SOCK_STREAM, 0, sv) == -1) { ha_warning("socketpair(): Cannot create socketpair. Giving up.\n"); } if (send_fd_uxst(dst_fd, sv[0]) == -1) { ha_alert("socketpair: Cannot transfer the fd %d over sockpair@%d. Giving up.\n", sv[0], dst_fd); close(sv[0]); close(sv[1]); goto out; } close(sv[0]); /* we don't need this side anymore */ sock = sv[1]; } else { /* Unix socket */ sock = socket(PF_UNIX, SOCK_STREAM, 0); if (sock < 0) { ha_warning("Failed to connect to the old process socket '%s'\n", unixsocket); goto out; } strncpy(addr.sun_path, unixsocket, sizeof(addr.sun_path) - 1); addr.sun_path[sizeof(addr.sun_path) - 1] = 0; addr.sun_family = PF_UNIX; ret = connect(sock, (struct sockaddr *)&addr, sizeof(addr)); if (ret < 0) { ha_warning("Failed to connect to the old process socket '%s'\n", unixsocket); goto out; } } memset(&msghdr, 0, sizeof(msghdr)); cmsgbuf = malloc(CMSG_SPACE(sizeof(int)) * MAX_SEND_FD); if (!cmsgbuf) { ha_warning("Failed to allocate memory to send sockets\n"); goto out; } setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, (void *)&tv, sizeof(tv)); iov.iov_base = &fd_nb; iov.iov_len = sizeof(fd_nb); msghdr.msg_iov = &iov; msghdr.msg_iovlen = 1; if (send(sock, "_getsocks\n", strlen("_getsocks\n"), 0) != strlen("_getsocks\n")) { ha_warning("Failed to get the number of sockets to be transferred !\n"); goto out; } /* First, get the number of file descriptors to be received */ if (recvmsg(sock, &msghdr, MSG_WAITALL) != sizeof(fd_nb)) { ha_warning("Failed to get the number of sockets to be transferred !\n"); goto out; } if (fd_nb == 0) { ret2 = 0; goto out; } tmpbuf = malloc(fd_nb * (1 + MAXPATHLEN + 1 + IFNAMSIZ + sizeof(int))); if (tmpbuf == NULL) { ha_warning("Failed to allocate memory while receiving sockets\n"); goto out; } tmpfd = malloc(fd_nb * sizeof(int)); if (tmpfd == NULL) { ha_warning("Failed to allocate memory while receiving sockets\n"); goto out; } msghdr.msg_control = cmsgbuf; msghdr.msg_controllen = CMSG_SPACE(sizeof(int)) * MAX_SEND_FD; iov.iov_len = MAX_SEND_FD * (1 + MAXPATHLEN + 1 + IFNAMSIZ + sizeof(int)); do { int ret3; iov.iov_base = tmpbuf + curoff; ret = recvmsg(sock, &msghdr, 0); if (ret == -1 && errno == EINTR) continue; if (ret <= 0) break; /* Send an ack to let the sender know we got the sockets * and it can send some more */ do { ret3 = send(sock, &got_fd, sizeof(got_fd), 0); } while (ret3 == -1 && errno == EINTR); for (cmsg = CMSG_FIRSTHDR(&msghdr); cmsg != NULL; cmsg = CMSG_NXTHDR(&msghdr, cmsg)) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { size_t totlen = cmsg->cmsg_len - CMSG_LEN(0); if (totlen / sizeof(int) + got_fd > fd_nb) { ha_warning("Got to many sockets !\n"); goto out; } /* * Be paranoid and use memcpy() to avoid any * potential alignment issue. */ memcpy(&tmpfd[got_fd], CMSG_DATA(cmsg), totlen); got_fd += totlen / sizeof(int); } } curoff += ret; } while (got_fd < fd_nb); if (got_fd != fd_nb) { ha_warning("We didn't get the expected number of sockets (expecting %d got %d)\n", fd_nb, got_fd); goto out; } maxoff = curoff; curoff = 0; for (cur_fd = 0; cur_fd < got_fd; cur_fd++) { int fd = tmpfd[cur_fd]; socklen_t socklen; int val; int len; xfer_sock = calloc(1, sizeof(*xfer_sock)); if (!xfer_sock) { ha_warning("Failed to allocate memory in get_old_sockets() !\n"); break; } xfer_sock->fd = -1; socklen = sizeof(xfer_sock->addr); if (getsockname(fd, (struct sockaddr *)&xfer_sock->addr, &socklen) != 0) { ha_warning("Failed to get socket address\n"); ha_free(&xfer_sock); continue; } if (curoff >= maxoff) { ha_warning("Inconsistency while transferring sockets\n"); goto out; } len = tmpbuf[curoff++]; if (len > 0) { /* We have a namespace */ if (curoff + len > maxoff) { ha_warning("Inconsistency while transferring sockets\n"); goto out; } xfer_sock->namespace = malloc(len + 1); if (!xfer_sock->namespace) { ha_warning("Failed to allocate memory while transferring sockets\n"); goto out; } memcpy(xfer_sock->namespace, &tmpbuf[curoff], len); xfer_sock->namespace[len] = 0; xfer_sock->ns_namelen = len; curoff += len; } if (curoff >= maxoff) { ha_warning("Inconsistency while transferring sockets\n"); goto out; } len = tmpbuf[curoff++]; if (len > 0) { /* We have an interface */ if (curoff + len > maxoff) { ha_warning("Inconsistency while transferring sockets\n"); goto out; } xfer_sock->iface = malloc(len + 1); if (!xfer_sock->iface) { ha_warning("Failed to allocate memory while transferring sockets\n"); goto out; } memcpy(xfer_sock->iface, &tmpbuf[curoff], len); xfer_sock->iface[len] = 0; xfer_sock->if_namelen = len; curoff += len; } if (curoff + sizeof(int) > maxoff) { ha_warning("Inconsistency while transferring sockets\n"); goto out; } /* we used to have 32 bits of listener options here but we don't * use them anymore. */ curoff += sizeof(int); /* determine the foreign status directly from the socket itself */ if (sock_inet_is_foreign(fd, xfer_sock->addr.ss_family)) xfer_sock->options |= SOCK_XFER_OPT_FOREIGN; socklen = sizeof(val); if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &val, &socklen) == 0 && val == SOCK_DGRAM) xfer_sock->options |= SOCK_XFER_OPT_DGRAM; #if defined(IPV6_V6ONLY) /* keep only the v6only flag depending on what's currently * active on the socket, and always drop the v4v6 one. */ socklen = sizeof(val); if (xfer_sock->addr.ss_family == AF_INET6 && getsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &val, &socklen) == 0 && val > 0) xfer_sock->options |= SOCK_XFER_OPT_V6ONLY; #endif xfer_sock->fd = fd; if (xfer_sock_list) xfer_sock_list->prev = xfer_sock; xfer_sock->next = xfer_sock_list; xfer_sock->prev = NULL; xfer_sock_list = xfer_sock; xfer_sock = NULL; } ret2 = 0; out: /* If we failed midway make sure to close the remaining * file descriptors */ if (tmpfd != NULL && cur_fd < got_fd) { for (; cur_fd < got_fd; cur_fd++) { close(tmpfd[cur_fd]); } } free(tmpbuf); free(tmpfd); free(cmsgbuf); if (sock != -1) close(sock); if (xfer_sock) { free(xfer_sock->namespace); free(xfer_sock->iface); if (xfer_sock->fd != -1) close(xfer_sock->fd); free(xfer_sock); } return (ret2); } /* When binding the receivers, check if a socket has been sent to us by the * previous process that we could reuse, instead of creating a new one. Note * that some address family-specific options are checked on the listener and * on the socket. Typically for AF_INET and AF_INET6, we check for transparent * mode, and for AF_INET6 we also check for "v4v6" or "v6only". The reused * socket is automatically removed from the list so that it's not proposed * anymore. */ int sock_find_compatible_fd(const struct receiver *rx) { struct xfer_sock_list *xfer_sock = xfer_sock_list; int options = 0; int if_namelen = 0; int ns_namelen = 0; int ret = -1; if (!rx->proto->fam->addrcmp) return -1; if (rx->proto->proto_type == PROTO_TYPE_DGRAM) options |= SOCK_XFER_OPT_DGRAM; if (rx->settings->options & RX_O_FOREIGN) options |= SOCK_XFER_OPT_FOREIGN; if (rx->addr.ss_family == AF_INET6) { /* Prepare to match the v6only option against what we really want. Note * that sadly the two options are not exclusive to each other and that * v6only is stronger than v4v6. */ if ((rx->settings->options & RX_O_V6ONLY) || (sock_inet6_v6only_default && !(rx->settings->options & RX_O_V4V6))) options |= SOCK_XFER_OPT_V6ONLY; } if (rx->settings->interface) if_namelen = strlen(rx->settings->interface); #ifdef USE_NS if (rx->settings->netns) ns_namelen = rx->settings->netns->name_len; #endif while (xfer_sock) { if ((options == xfer_sock->options) && (if_namelen == xfer_sock->if_namelen) && (ns_namelen == xfer_sock->ns_namelen) && (!if_namelen || strcmp(rx->settings->interface, xfer_sock->iface) == 0) && #ifdef USE_NS (!ns_namelen || strcmp(rx->settings->netns->node.key, xfer_sock->namespace) == 0) && #endif rx->proto->fam->addrcmp(&xfer_sock->addr, &rx->addr) == 0) break; xfer_sock = xfer_sock->next; } if (xfer_sock != NULL) { ret = xfer_sock->fd; if (xfer_sock == xfer_sock_list) xfer_sock_list = xfer_sock->next; if (xfer_sock->prev) xfer_sock->prev->next = xfer_sock->next; if (xfer_sock->next) xfer_sock->next->prev = xfer_sock->prev; free(xfer_sock->iface); free(xfer_sock->namespace); free(xfer_sock); } return ret; } /* After all protocols are bound, there may remain some old sockets that have * been removed between the previous config and the new one. These ones must * be dropped, otherwise they will remain open and may prevent a service from * restarting. */ void sock_drop_unused_old_sockets() { while (xfer_sock_list != NULL) { struct xfer_sock_list *tmpxfer = xfer_sock_list->next; close(xfer_sock_list->fd); free(xfer_sock_list->iface); free(xfer_sock_list->namespace); free(xfer_sock_list); xfer_sock_list = tmpxfer; } } /* Tests if the receiver supports accepting connections. Returns positive on * success, 0 if not possible, negative if the socket is non-recoverable. The * rationale behind this is that inherited FDs may be broken and that shared * FDs might have been paused by another process. */ int sock_accepting_conn(const struct receiver *rx) { int opt_val = 0; socklen_t opt_len = sizeof(opt_val); if (getsockopt(rx->fd, SOL_SOCKET, SO_ACCEPTCONN, &opt_val, &opt_len) == -1) return -1; return opt_val; } /* This is the FD handler IO callback for stream sockets configured for * accepting incoming connections. It's a pass-through to listener_accept() * which will iterate over the listener protocol's accept_conn() function. * The FD's owner must be a listener. */ void sock_accept_iocb(int fd) { struct listener *l = fdtab[fd].owner; if (!l) return; BUG_ON(!!master != !!(l->rx.flags & RX_F_MWORKER)); listener_accept(l); } /* This completes the initialization of connection by inserting its FD * into the fdtab, associating it with the regular connection handler. It will * be bound to the current thread only. This call cannot fail. */ void sock_conn_ctrl_init(struct connection *conn) { BUG_ON(conn->flags & CO_FL_FDLESS); fd_insert(conn->handle.fd, conn, sock_conn_iocb, tgid, ti->ltid_bit); } /* This completes the release of connection by removing its FD from the * fdtab and deleting it. The connection must not use the FD anymore past this * point. The FD may be modified in the connection. */ void sock_conn_ctrl_close(struct connection *conn) { BUG_ON(conn->flags & CO_FL_FDLESS); fd_delete(conn->handle.fd); conn->handle.fd = DEAD_FD_MAGIC; } /* This is the callback which is set when a connection establishment is pending * and we have nothing to send. It may update the FD polling status to indicate * !READY. It returns 0 if it fails in a fatal way or needs to poll to go * further, otherwise it returns non-zero and removes the CO_FL_WAIT_L4_CONN * flag from the connection's flags. In case of error, it sets CO_FL_ERROR and * leaves the error code in errno. */ int sock_conn_check(struct connection *conn) { struct sockaddr_storage *addr; int fd = conn->handle.fd; if (conn->flags & CO_FL_ERROR) return 0; if (!conn_ctrl_ready(conn)) return 0; if (!(conn->flags & CO_FL_WAIT_L4_CONN)) return 1; /* strange we were called while ready */ BUG_ON(conn->flags & CO_FL_FDLESS); if (!fd_send_ready(fd) && !(fdtab[fd].state & (FD_POLL_ERR|FD_POLL_HUP))) return 0; /* Here we have 2 cases : * - modern pollers, able to report ERR/HUP. If these ones return any * of these flags then it's likely a failure, otherwise it possibly * is a success (i.e. there may have been data received just before * the error was reported). * - select, which doesn't report these and with which it's always * necessary either to try connect() again or to check for SO_ERROR. * In order to simplify everything, we double-check using connect() as * soon as we meet either of these delicate situations. Note that * SO_ERROR would clear the error after reporting it! */ if (cur_poller.flags & HAP_POLL_F_ERRHUP) { /* modern poller, able to report ERR/HUP */ if ((fdtab[fd].state & (FD_POLL_IN|FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_IN) goto done; if ((fdtab[fd].state & (FD_POLL_OUT|FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_OUT) goto done; if (!(fdtab[fd].state & (FD_POLL_ERR|FD_POLL_HUP))) goto wait; /* error present, fall through common error check path */ } /* Use connect() to check the state of the socket. This has the double * advantage of *not* clearing the error (so that health checks can * still use getsockopt(SO_ERROR)) and giving us the following info : * - error * - connecting (EALREADY, EINPROGRESS) * - connected (EISCONN, 0) */ addr = conn->dst; if ((conn->flags & CO_FL_SOCKS4) && obj_type(conn->target) == OBJ_TYPE_SERVER) addr = &objt_server(conn->target)->socks4_addr; if (connect(fd, (const struct sockaddr *)addr, get_addr_len(addr)) == -1) { if (errno == EALREADY || errno == EINPROGRESS) goto wait; if (errno && errno != EISCONN) goto out_error; } done: /* The FD is ready now, we'll mark the connection as complete and * forward the event to the transport layer which will notify the * data layer. */ conn->flags &= ~CO_FL_WAIT_L4_CONN; fd_may_send(fd); fd_cond_recv(fd); errno = 0; // make health checks happy return 1; out_error: /* Write error on the file descriptor. Report it to the connection * and disable polling on this FD. */ conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; HA_ATOMIC_AND(&fdtab[fd].state, ~FD_LINGER_RISK); fd_stop_both(fd); return 0; wait: fd_cant_send(fd); fd_want_send(fd); return 0; } /* I/O callback for fd-based connections. It calls the read/write handlers * provided by the connection's sock_ops, which must be valid. */ void sock_conn_iocb(int fd) { struct connection *conn = fdtab[fd].owner; unsigned int flags; int need_wake = 0; struct tasklet *t; if (unlikely(!conn)) { activity[tid].conn_dead++; return; } flags = conn->flags & ~CO_FL_ERROR; /* ensure to call the wake handler upon error */ if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && ((fd_send_ready(fd) && fd_send_active(fd)) || (fd_recv_ready(fd) && fd_recv_active(fd)))) { /* Still waiting for a connection to establish and nothing was * attempted yet to probe the connection. this will clear the * CO_FL_WAIT_L4_CONN flag on success. */ if (!sock_conn_check(conn)) goto leave; need_wake = 1; } if (fd_send_ready(fd) && fd_send_active(fd)) { /* force reporting of activity by clearing the previous flags : * we'll have at least ERROR or CONNECTED at the end of an I/O, * both of which will be detected below. */ flags = 0; if (conn->subs && conn->subs->events & SUB_RETRY_SEND) { t = conn->subs->tasklet; need_wake = 0; // wake will be called after this I/O conn->subs->events &= ~SUB_RETRY_SEND; if (!conn->subs->events) conn->subs = NULL; tasklet_wakeup(t); } fd_stop_send(fd); } /* The data transfer starts here and stops on error and handshakes. Note * that we must absolutely test conn->xprt at each step in case it suddenly * changes due to a quick unexpected close(). */ if (fd_recv_ready(fd) && fd_recv_active(fd)) { /* force reporting of activity by clearing the previous flags : * we'll have at least ERROR or CONNECTED at the end of an I/O, * both of which will be detected below. */ flags = 0; if (conn->subs && conn->subs->events & SUB_RETRY_RECV) { t = conn->subs->tasklet; need_wake = 0; // wake will be called after this I/O conn->subs->events &= ~SUB_RETRY_RECV; if (!conn->subs->events) conn->subs = NULL; tasklet_wakeup(t); } fd_stop_recv(fd); } leave: /* we may have to finish to install a mux or to wake it up based on * what was just done above. It may kill the connection so we have to * be prpared not to use it anymore. */ if (conn_notify_mux(conn, flags, need_wake) < 0) return; /* commit polling changes in case of error. * WT: it seems that the last case where this could still be relevant * is if a mux wake function above report a connection error but does * not stop polling. Shouldn't we enforce this into the mux instead of * having to deal with this ? */ if (unlikely(conn->flags & CO_FL_ERROR)) { if (conn_ctrl_ready(conn)) fd_stop_both(fd); if (conn->subs) { t = conn->subs->tasklet; conn->subs->events = 0; if (!conn->subs->events) conn->subs = NULL; tasklet_wakeup(t); } } } /* Drains possibly pending incoming data on the file descriptor attached to the * connection. This is used to know whether we need to disable lingering on * close. Returns non-zero if it is safe to close without disabling lingering, * otherwise zero. */ int sock_drain(struct connection *conn) { int turns = 2; int fd = conn->handle.fd; int len; BUG_ON(conn->flags & CO_FL_FDLESS); if (fdtab[fd].state & (FD_POLL_ERR|FD_POLL_HUP)) goto shut; if (!(conn->flags & CO_FL_WANT_DRAIN) && !fd_recv_ready(fd)) return 0; /* no drain function defined, use the generic one */ while (turns) { #ifdef MSG_TRUNC_CLEARS_INPUT len = recv(fd, NULL, INT_MAX, MSG_DONTWAIT | MSG_NOSIGNAL | MSG_TRUNC); if (len == -1 && errno == EFAULT) #endif len = recv(fd, trash.area, trash.size, MSG_DONTWAIT | MSG_NOSIGNAL); if (len == 0) goto shut; if (len < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { /* connection not closed yet */ fd_cant_recv(fd); break; } if (errno == EINTR) /* oops, try again */ continue; /* other errors indicate a dead connection, fine. */ goto shut; } /* OK we read some data, let's try again once */ turns--; } /* some data are still present, give up */ return 0; shut: /* we're certain the connection was shut down */ HA_ATOMIC_AND(&fdtab[fd].state, ~FD_LINGER_RISK); return 1; } /* Checks the connection's FD for readiness of events , which may * only be a combination of SUB_RETRY_RECV and SUB_RETRY_SEND. Those which are * ready are returned. The ones that are not ready are enabled. The caller is * expected to do what is needed to handle ready events and to deal with * subsequent wakeups caused by the requested events' readiness. */ int sock_check_events(struct connection *conn, int event_type) { int ret = 0; BUG_ON(conn->flags & CO_FL_FDLESS); if (event_type & SUB_RETRY_RECV) { if (fd_recv_ready(conn->handle.fd)) ret |= SUB_RETRY_RECV; else fd_want_recv(conn->handle.fd); } if (event_type & SUB_RETRY_SEND) { if (fd_send_ready(conn->handle.fd)) ret |= SUB_RETRY_SEND; else fd_want_send(conn->handle.fd); } return ret; } /* Ignore readiness events from connection's FD for events of types * which may only be a combination of SUB_RETRY_RECV and SUB_RETRY_SEND. */ void sock_ignore_events(struct connection *conn, int event_type) { BUG_ON(conn->flags & CO_FL_FDLESS); if (event_type & SUB_RETRY_RECV) fd_stop_recv(conn->handle.fd); if (event_type & SUB_RETRY_SEND) fd_stop_send(conn->handle.fd); } /* Live check to see if a socket type supports SO_REUSEPORT for the specified * family and socket() settings. Returns non-zero on success, 0 on failure. Use * protocol_supports_flag() instead, which checks cached flags. */ int _sock_supports_reuseport(const struct proto_fam *fam, int type, int protocol) { int ret = 0; #ifdef SO_REUSEPORT struct sockaddr_storage ss; socklen_t sl = sizeof(ss); int fd1, fd2; /* for the check, we'll need two sockets */ fd1 = fd2 = -1; /* ignore custom sockets */ if (!fam || fam->sock_domain >= AF_MAX) goto leave; fd1 = socket(fam->sock_domain, type, protocol); if (fd1 < 0) goto leave; if (setsockopt(fd1, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one)) < 0) goto leave; /* bind to any address assigned by the kernel, we'll then try to do it twice */ memset(&ss, 0, sizeof(ss)); ss.ss_family = fam->sock_family; if (bind(fd1, (struct sockaddr *)&ss, fam->sock_addrlen) < 0) goto leave; if (getsockname(fd1, (struct sockaddr *)&ss, &sl) < 0) goto leave; fd2 = socket(fam->sock_domain, type, protocol); if (fd2 < 0) goto leave; if (setsockopt(fd2, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one)) < 0) goto leave; if (bind(fd2, (struct sockaddr *)&ss, sl) < 0) goto leave; /* OK we could bind twice to the same address:port, REUSEPORT * is supported for this protocol. */ ret = 1; leave: if (fd2 >= 0) close(fd2); if (fd1 >= 0) close(fd1); #endif return ret; } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */