/* * This file contains the sample fetches related to the SSL * * Copyright (C) 2012 EXCELIANCE, Emeric Brun * Copyright (C) 2020 HAProxy Technologies, William Lallemand * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /***** Below are some sample fetching functions for ACL/patterns *****/ #if defined(HAVE_CRYPTO_memcmp) /* Compares bytestring with a variable containing a bytestring. Return value * is `true` if both bytestrings are bytewise identical and `false` otherwise. * * Comparison will be performed in constant time if both bytestrings are of * the same length. If the lengths differ execution time will not be constant. */ static int sample_conv_secure_memcmp(const struct arg *arg_p, struct sample *smp, void *private) { struct sample tmp; int result; smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); if (arg_p[0].type != ARGT_VAR) return 0; if (!sample_conv_var2smp(&arg_p[0].data.var, &tmp, SMP_T_BIN)) return 0; if (smp->data.u.str.data != tmp.data.u.str.data) { smp->data.u.sint = 0; smp->data.type = SMP_T_BOOL; return 1; } /* The following comparison is performed in constant time. */ result = CRYPTO_memcmp(smp->data.u.str.area, tmp.data.u.str.area, smp->data.u.str.data); smp->data.u.sint = result == 0; smp->data.type = SMP_T_BOOL; return 1; } /* This function checks the "secure_memcmp" converter's arguments and extracts the * variable name and its scope. */ static int smp_check_secure_memcmp(struct arg *args, struct sample_conv *conv, const char *file, int line, char **err) { if (!args[0].data.str.data) { memprintf(err, "missing variable name"); return 0; } /* Try to decode a variable. */ if (vars_check_arg(&args[0], NULL)) return 1; memprintf(err, "failed to register variable name '%s'", args[0].data.str.area); return 0; } #endif // HAVE_secure_memcmp() static int smp_check_sha2(struct arg *args, struct sample_conv *conv, const char *file, int line, char **err) { if (args[0].type == ARGT_STOP) return 1; if (args[0].type != ARGT_SINT) { memprintf(err, "Invalid type '%s'", arg_type_names[args[0].type]); return 0; } switch (args[0].data.sint) { case 224: case 256: case 384: case 512: /* this is okay */ return 1; default: memprintf(err, "Unsupported number of bits: '%lld'", args[0].data.sint); return 0; } } static int sample_conv_sha2(const struct arg *arg_p, struct sample *smp, void *private) { struct buffer *trash = get_trash_chunk(); int bits = 256; EVP_MD_CTX *mdctx; const EVP_MD *evp = NULL; unsigned int digest_length = 0; if (arg_p->data.sint) bits = arg_p->data.sint; switch (bits) { case 224: evp = EVP_sha224(); break; case 256: evp = EVP_sha256(); break; case 384: evp = EVP_sha384(); break; case 512: evp = EVP_sha512(); break; default: return 0; } mdctx = EVP_MD_CTX_new(); if (!mdctx) return 0; EVP_DigestInit_ex(mdctx, evp, NULL); EVP_DigestUpdate(mdctx, smp->data.u.str.area, smp->data.u.str.data); EVP_DigestFinal_ex(mdctx, (unsigned char*)trash->area, &digest_length); trash->data = digest_length; EVP_MD_CTX_free(mdctx); smp->data.u.str = *trash; smp->data.type = SMP_T_BIN; smp->flags &= ~SMP_F_CONST; return 1; } /* This function checks an and fills it with a variable type if the * string contains a valid variable name. If failed, the function * tries to perform a base64 decode operation on the same string, and * fills the with the decoded content. * * Validation is skipped if the string is empty. * * This function returns 0 if the variable lookup fails and the specified * string is not a valid base64 encoded string, as well if * unexpected argument type is specified or memory allocation error * occurs. Otherwise it returns 1. */ static inline int sample_check_arg_base64(struct arg *arg, char **err) { char *dec = NULL; int dec_size; if (arg->type != ARGT_STR) { memprintf(err, "unexpected argument type"); return 0; } if (arg->data.str.data == 0) /* empty */ return 1; if (vars_check_arg(arg, NULL)) return 1; if (arg->data.str.data % 4) { memprintf(err, "argument needs to be base64 encoded, and " "can either be a string or a variable"); return 0; } dec_size = (arg->data.str.data / 4 * 3) - (arg->data.str.area[arg->data.str.data-1] == '=' ? 1 : 0) - (arg->data.str.area[arg->data.str.data-2] == '=' ? 1 : 0); if ((dec = malloc(dec_size)) == NULL) { memprintf(err, "memory allocation error"); return 0; } dec_size = base64dec(arg->data.str.area, arg->data.str.data, dec, dec_size); if (dec_size < 0) { memprintf(err, "argument needs to be base64 encoded, and " "can either be a string or a variable"); free(dec); return 0; } /* base64 decoded */ chunk_destroy(&arg->data.str); arg->data.str.area = dec; arg->data.str.data = dec_size; return 1; } #ifdef EVP_CIPH_GCM_MODE static int check_aes_gcm(struct arg *args, struct sample_conv *conv, const char *file, int line, char **err) { switch(args[0].data.sint) { case 128: case 192: case 256: break; default: memprintf(err, "key size must be 128, 192 or 256 (bits)."); return 0; } /* Try to decode variables. */ if (!sample_check_arg_base64(&args[1], err)) { memprintf(err, "failed to parse nonce : %s", *err); return 0; } if (!sample_check_arg_base64(&args[2], err)) { memprintf(err, "failed to parse key : %s", *err); return 0; } if (!sample_check_arg_base64(&args[3], err)) { memprintf(err, "failed to parse aead_tag : %s", *err); return 0; } return 1; } /* Arguments: AES size in bits, nonce, key, tag. The last three arguments are base64 encoded */ static int sample_conv_aes_gcm_dec(const struct arg *arg_p, struct sample *smp, void *private) { struct sample nonce, key, aead_tag; struct buffer *smp_trash = NULL, *smp_trash_alloc = NULL; EVP_CIPHER_CTX *ctx = NULL; int dec_size, ret; smp_trash_alloc = alloc_trash_chunk(); if (!smp_trash_alloc) return 0; /* smp copy */ smp_trash_alloc->data = smp->data.u.str.data; if (unlikely(smp_trash_alloc->data > smp_trash_alloc->size)) smp_trash_alloc->data = smp_trash_alloc->size; memcpy(smp_trash_alloc->area, smp->data.u.str.area, smp_trash_alloc->data); ctx = EVP_CIPHER_CTX_new(); if (!ctx) goto err; smp_trash = alloc_trash_chunk(); if (!smp_trash) goto err; smp_set_owner(&nonce, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp_str(&arg_p[1], &nonce)) goto err; if (arg_p[1].type == ARGT_VAR) { dec_size = base64dec(nonce.data.u.str.area, nonce.data.u.str.data, smp_trash->area, smp_trash->size); if (dec_size < 0) goto err; smp_trash->data = dec_size; nonce.data.u.str = *smp_trash; } /* Set cipher type and mode */ switch(arg_p[0].data.sint) { case 128: EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL); break; case 192: EVP_DecryptInit_ex(ctx, EVP_aes_192_gcm(), NULL, NULL, NULL); break; case 256: EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL); break; } EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, nonce.data.u.str.data, NULL); /* Initialise IV */ if(!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, (unsigned char *) nonce.data.u.str.area)) goto err; smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp_str(&arg_p[2], &key)) goto err; if (arg_p[2].type == ARGT_VAR) { dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, smp_trash->area, smp_trash->size); if (dec_size < 0) goto err; smp_trash->data = dec_size; key.data.u.str = *smp_trash; } /* Initialise key */ if (!EVP_DecryptInit_ex(ctx, NULL, NULL, (unsigned char *) key.data.u.str.area, NULL)) goto err; if (!EVP_DecryptUpdate(ctx, (unsigned char *) smp_trash->area, (int *) &smp_trash->data, (unsigned char *) smp_trash_alloc->area, (int) smp_trash_alloc->data)) goto err; smp_set_owner(&aead_tag, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp_str(&arg_p[3], &aead_tag)) goto err; if (arg_p[3].type == ARGT_VAR) { dec_size = base64dec(aead_tag.data.u.str.area, aead_tag.data.u.str.data, smp_trash_alloc->area, smp_trash_alloc->size); if (dec_size < 0) goto err; smp_trash_alloc->data = dec_size; aead_tag.data.u.str = *smp_trash_alloc; } dec_size = smp_trash->data; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, aead_tag.data.u.str.data, (void *) aead_tag.data.u.str.area); ret = EVP_DecryptFinal_ex(ctx, (unsigned char *) smp_trash->area + smp_trash->data, (int *) &smp_trash->data); if (ret <= 0) goto err; smp->data.u.str.data = dec_size + smp_trash->data; smp->data.u.str.area = smp_trash->area; smp->data.type = SMP_T_BIN; smp_dup(smp); free_trash_chunk(smp_trash_alloc); free_trash_chunk(smp_trash); EVP_CIPHER_CTX_free(ctx); return 1; err: free_trash_chunk(smp_trash_alloc); free_trash_chunk(smp_trash); EVP_CIPHER_CTX_free(ctx); return 0; } #endif static int check_crypto_digest(struct arg *args, struct sample_conv *conv, const char *file, int line, char **err) { const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area); if (evp) return 1; memprintf(err, "algorithm must be a valid OpenSSL message digest name."); return 0; } static int sample_conv_crypto_digest(const struct arg *args, struct sample *smp, void *private) { struct buffer *trash = get_trash_chunk(); unsigned char *md = (unsigned char*) trash->area; unsigned int md_len = trash->size; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area); if (!ctx) return 0; if (!EVP_DigestInit_ex(ctx, evp, NULL) || !EVP_DigestUpdate(ctx, smp->data.u.str.area, smp->data.u.str.data) || !EVP_DigestFinal_ex(ctx, md, &md_len)) { EVP_MD_CTX_free(ctx); return 0; } EVP_MD_CTX_free(ctx); trash->data = md_len; smp->data.u.str = *trash; smp->data.type = SMP_T_BIN; smp->flags &= ~SMP_F_CONST; return 1; } /* Take a numerical X509_V_ERR and return its constant name */ static int sample_conv_x509_v_err(const struct arg *arg_p, struct sample *smp, void *private) { const char *res = x509_v_err_int_to_str(smp->data.u.sint); /* if the value was found return its string */ if (res) { smp->data.u.str.area = (char *)res; smp->data.u.str.data = strlen(res); smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; return 1; } else { struct buffer *smp_trash = get_trash_chunk(); /* if the conversion failed, output the numbers as string */ chunk_printf(smp_trash, "%llu", smp->data.u.sint); smp->data.u.str = *smp_trash; smp->data.type = SMP_T_STR; smp->flags &= ~SMP_F_CONST; return 1; } return 0; } static int check_crypto_hmac(struct arg *args, struct sample_conv *conv, const char *file, int line, char **err) { if (!check_crypto_digest(args, conv, file, line, err)) return 0; if (!sample_check_arg_base64(&args[1], err)) { memprintf(err, "failed to parse key : %s", *err); return 0; } return 1; } static int sample_conv_crypto_hmac(const struct arg *args, struct sample *smp, void *private) { struct sample key; struct buffer *trash = NULL, *key_trash = NULL; unsigned char *md; unsigned int md_len; const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area); int dec_size; smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp_str(&args[1], &key)) return 0; if (args[1].type == ARGT_VAR) { key_trash = alloc_trash_chunk(); if (!key_trash) goto err; dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, key_trash->area, key_trash->size); if (dec_size < 0) goto err; key_trash->data = dec_size; key.data.u.str = *key_trash; } trash = alloc_trash_chunk(); if (!trash) goto err; md = (unsigned char*) trash->area; md_len = trash->size; if (!HMAC(evp, key.data.u.str.area, key.data.u.str.data, (const unsigned char*) smp->data.u.str.area, smp->data.u.str.data, md, &md_len)) goto err; free_trash_chunk(key_trash); trash->data = md_len; smp->data.u.str = *trash; smp->data.type = SMP_T_BIN; smp_dup(smp); free_trash_chunk(trash); return 1; err: free_trash_chunk(key_trash); free_trash_chunk(trash); return 0; } static int smp_fetch_ssl_fc_has_early(const struct arg *args, struct sample *smp, const char *kw, void *private) { SSL *ssl; struct connection *conn; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; smp->flags = 0; smp->data.type = SMP_T_BOOL; #ifdef OPENSSL_IS_BORINGSSL { smp->data.u.sint = (SSL_in_early_data(ssl) && SSL_early_data_accepted(ssl)); } #else smp->data.u.sint = ((conn->flags & CO_FL_EARLY_DATA) && (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_SSL_WAIT_HS))) ? 1 : 0; #endif return 1; } /* boolean, returns true if client cert was present */ static int smp_fetch_ssl_fc_has_crt(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = objt_conn(smp->sess->origin); struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn); if (!ctx) return 0; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_BOOL; smp->data.u.sint = SSL_SOCK_ST_FL_VERIFY_DONE & ctx->xprt_st ? 1 : 0; return 1; } /* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of the * client certificate's root CA. */ #ifdef HAVE_SSL_get0_verified_chain static int smp_fetch_ssl_r_dn(const struct arg *args, struct sample *smp, const char *kw, void *private) { X509 *crt = NULL; X509_NAME *name; int ret = 0; struct buffer *smp_trash; struct connection *conn; SSL *ssl; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } crt = ssl_sock_get_verified_chain_root(ssl); if (!crt) goto out; name = X509_get_subject_name(crt); if (!name) goto out; smp_trash = get_trash_chunk(); if (args[0].type == ARGT_STR && args[0].data.str.data > 0) { int pos = 1; if (args[1].type == ARGT_SINT) pos = args[1].data.sint; if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0) goto out; } else if (args[2].type == ARGT_STR && args[2].data.str.data > 0) { if (ssl_sock_get_dn_formatted(name, &args[2].data.str, smp_trash) <= 0) goto out; } else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0) goto out; smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_STR; smp->data.u.str = *smp_trash; ret = 1; out: return ret; } #endif /* binary, returns a certificate in a binary chunk (der/raw). * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_der(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct buffer *smp_trash; struct connection *conn; SSL *ssl; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = ssl_sock_get_peer_certificate(ssl); else crt = SSL_get_certificate(ssl); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_crt2der(crt, smp_trash) <= 0) goto out; smp->flags = SMP_F_VOL_SESS; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_BIN; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* binary, returns a chain certificate in a binary chunk (der/raw). * The 5th keyword char is used to support only peer cert */ static int smp_fetch_ssl_x_chain_der(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; struct buffer *smp_trash; struct buffer *tmp_trash = NULL; struct connection *conn; STACK_OF(X509) *certs = NULL; X509 *crt = NULL; SSL *ssl; int ret = 0; int num_certs; int i; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); if (!conn) return 0; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (!cert_peer) return 0; certs = SSL_get_peer_cert_chain(ssl); if (!certs) return 0; num_certs = sk_X509_num(certs); if (!num_certs) goto out; smp_trash = get_trash_chunk(); tmp_trash = alloc_trash_chunk(); if (!tmp_trash) goto out; for (i = 0; i < num_certs; i++) { crt = sk_X509_value(certs, i); if (ssl_sock_crt2der(crt, tmp_trash) <= 0) goto out; chunk_cat(smp_trash, tmp_trash); } smp->flags = SMP_F_VOL_SESS; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_BIN; ret = 1; out: if (tmp_trash) free_trash_chunk(tmp_trash); return ret; } /* binary, returns serial of certificate in a binary chunk. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_serial(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct buffer *smp_trash; struct connection *conn; SSL *ssl; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = ssl_sock_get_peer_certificate(ssl); else crt = SSL_get_certificate(ssl); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_get_serial(crt, smp_trash) <= 0) goto out; smp->flags = SMP_F_VOL_SESS; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_BIN; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* binary, returns the client certificate's SHA-1 fingerprint (SHA-1 hash of DER-encoded certificate) in a binary chunk. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_sha1(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; X509 *crt = NULL; const EVP_MD *digest; int ret = 0; unsigned int len = 0; struct buffer *smp_trash; struct connection *conn; SSL *ssl; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = ssl_sock_get_peer_certificate(ssl); else crt = SSL_get_certificate(ssl); if (!crt) goto out; smp_trash = get_trash_chunk(); digest = EVP_sha1(); X509_digest(crt, digest, (unsigned char *) smp_trash->area, &len); smp_trash->data = len; smp->flags = SMP_F_VOL_SESS; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_BIN; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns certificate's notafter date in ASN1_UTCTIME format. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_notafter(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct buffer *smp_trash; struct connection *conn; SSL *ssl; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = ssl_sock_get_peer_certificate(ssl); else crt = SSL_get_certificate(ssl); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_get_time(X509_getm_notAfter(crt), smp_trash) <= 0) goto out; smp->flags = SMP_F_VOL_SESS; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_STR; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of certificate's issuer * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_i_dn(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; X509 *crt = NULL; X509_NAME *name; int ret = 0; struct buffer *smp_trash; struct connection *conn; SSL *ssl; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = ssl_sock_get_peer_certificate(ssl); else crt = SSL_get_certificate(ssl); if (!crt) goto out; name = X509_get_issuer_name(crt); if (!name) goto out; smp_trash = get_trash_chunk(); if (args[0].type == ARGT_STR && args[0].data.str.data > 0) { int pos = 1; if (args[1].type == ARGT_SINT) pos = args[1].data.sint; if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0) goto out; } else if (args[2].type == ARGT_STR && args[2].data.str.data > 0) { if (ssl_sock_get_dn_formatted(name, &args[2].data.str, smp_trash) <= 0) goto out; } else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0) goto out; smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_STR; smp->data.u.str = *smp_trash; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns notbefore date in ASN1_UTCTIME format. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_notbefore(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct buffer *smp_trash; struct connection *conn; SSL *ssl; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = ssl_sock_get_peer_certificate(ssl); else crt = SSL_get_certificate(ssl); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_get_time(X509_getm_notBefore(crt), smp_trash) <= 0) goto out; smp->flags = SMP_F_VOL_SESS; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_STR; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of certificate's subject * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_s_dn(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; X509 *crt = NULL; X509_NAME *name; int ret = 0; struct buffer *smp_trash; struct connection *conn; SSL *ssl; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = ssl_sock_get_peer_certificate(ssl); else crt = SSL_get_certificate(ssl); if (!crt) goto out; name = X509_get_subject_name(crt); if (!name) goto out; smp_trash = get_trash_chunk(); if (args[0].type == ARGT_STR && args[0].data.str.data > 0) { int pos = 1; if (args[1].type == ARGT_SINT) pos = args[1].data.sint; if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0) goto out; } else if (args[2].type == ARGT_STR && args[2].data.str.data > 0) { if (ssl_sock_get_dn_formatted(name, &args[2].data.str, smp_trash) <= 0) goto out; } else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0) goto out; smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_STR; smp->data.u.str = *smp_trash; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* integer, returns true if current session use a client certificate */ static int smp_fetch_ssl_c_used(const struct arg *args, struct sample *smp, const char *kw, void *private) { X509 *crt; struct connection *conn; SSL *ssl; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } /* SSL_get_peer_certificate returns a ptr on allocated X509 struct */ crt = ssl_sock_get_peer_certificate(ssl); if (crt) { X509_free(crt); } smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_BOOL; smp->data.u.sint = (crt != NULL); return 1; } /* integer, returns the certificate version * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_version(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; X509 *crt; struct connection *conn; SSL *ssl; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = ssl_sock_get_peer_certificate(ssl); else crt = SSL_get_certificate(ssl); if (!crt) return 0; smp->flags = SMP_F_VOL_SESS; smp->data.u.sint = (unsigned int)(1 + X509_get_version(crt)); /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); smp->data.type = SMP_T_SINT; return 1; } /* string, returns the certificate's signature algorithm. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_sig_alg(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; X509 *crt; __OPENSSL_110_CONST__ ASN1_OBJECT *algorithm; int nid; struct connection *conn; SSL *ssl; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = ssl_sock_get_peer_certificate(ssl); else crt = SSL_get_certificate(ssl); if (!crt) return 0; X509_ALGOR_get0(&algorithm, NULL, NULL, X509_get0_tbs_sigalg(crt)); nid = OBJ_obj2nid(algorithm); smp->data.u.str.area = (char *)OBJ_nid2sn(nid); if (!smp->data.u.str.area) { /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); return 0; } smp->data.type = SMP_T_STR; smp->flags |= SMP_F_VOL_SESS | SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); return 1; } /* string, returns the certificate's key algorithm. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_key_alg(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0; int conn_server = (kw[4] == 's') ? 1 : 0; X509 *crt; ASN1_OBJECT *algorithm; int nid; struct connection *conn; SSL *ssl; if (conn_server) conn = smp->strm ? sc_conn(smp->strm->scb) : NULL; else conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = ssl_sock_get_peer_certificate(ssl); else crt = SSL_get_certificate(ssl); if (!crt) return 0; X509_PUBKEY_get0_param(&algorithm, NULL, NULL, NULL, X509_get_X509_PUBKEY(crt)); nid = OBJ_obj2nid(algorithm); smp->data.u.str.area = (char *)OBJ_nid2sn(nid); if (!smp->data.u.str.area) { /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); return 0; } smp->data.type = SMP_T_STR; smp->flags |= SMP_F_VOL_SESS | SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); if (cert_peer) X509_free(crt); return 1; } /* boolean, returns true if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; smp->data.type = SMP_T_BOOL; smp->data.u.sint = conn_is_ssl(conn); return 1; } /* boolean, returns true if client present a SNI */ static int smp_fetch_ssl_fc_has_sni(const struct arg *args, struct sample *smp, const char *kw, void *private) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME struct connection *conn = objt_conn(smp->sess->origin); SSL *ssl = ssl_sock_get_ssl_object(conn); smp->data.type = SMP_T_BOOL; smp->data.u.sint = ssl && SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) != NULL; return 1; #else return 0; #endif } /* boolean, returns true if client session has been resumed. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_is_resumed(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL *ssl; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; ssl = ssl_sock_get_ssl_object(conn); smp->data.type = SMP_T_BOOL; smp->data.u.sint = ssl && SSL_session_reused(ssl); return 1; } /* * string, returns the EC curve used for key agreement on the * front and backend connection. * * The function to get the curve name (SSL_get_negotiated_group) is only available * in OpenSSLv3 onwards and not for previous versions. */ #if (HA_OPENSSL_VERSION_NUMBER >= 0x3000000fL) static int smp_fetch_ssl_fc_ec(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL *ssl; int __maybe_unused nid; char *curve_name; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; /* * SSL_get0_group_name is a function to get the curve name and is available from * OpenSSL v3.2 onwards. For OpenSSL >=3.0 and <3.2, we will continue to use * SSL_get_negotiated_group to get the curve name. */ #if (HA_OPENSSL_VERSION_NUMBER >= 0x3020000fL) curve_name = (char *)SSL_get0_group_name(ssl); if (curve_name == NULL) return 0; else { /** * The curve name returned by SSL_get0_group_name is in lowercase whereas the curve * name returned when we use `SSL_get_negotiated_group` and `OBJ_nid2sn` is the * short name and is in upper case. To make the return value consistent across the * different functional calls and to make it consistent while upgrading OpenSSL versions, * will convert the curve name returned by SSL_get0_group_name to upper case. */ int i; for (i = 0; curve_name[i]; i++) curve_name[i] = toupper(curve_name[i]); } #else nid = SSL_get_negotiated_group(ssl); if (!nid) return 0; curve_name = (char *)OBJ_nid2sn(nid); if (curve_name == NULL) return 0; #endif smp->data.u.str.area = curve_name; if (!smp->data.u.str.area) return 0; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_VOL_SESS | SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); return 1; } #endif /* string, returns the used cipher if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_cipher(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL *ssl; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; smp->flags = 0; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; smp->data.u.str.area = (char *)SSL_get_cipher_name(ssl); if (!smp->data.u.str.area) return 0; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_VOL_SESS | SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); return 1; } /* integer, returns the algoritm's keysize if front conn. transport layer * is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_alg_keysize(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL *ssl; int sint; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; smp->flags = 0; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (!SSL_get_cipher_bits(ssl, &sint)) return 0; smp->flags = SMP_F_VOL_SESS; smp->data.u.sint = sint; smp->data.type = SMP_T_SINT; return 1; } /* integer, returns the used keysize if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_use_keysize(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL *ssl; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; smp->flags = 0; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; smp->data.u.sint = (unsigned int)SSL_get_cipher_bits(ssl, NULL); if (!smp->data.u.sint) return 0; smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_SINT; return 1; } #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) static int smp_fetch_ssl_fc_npn(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL *ssl; unsigned int len = 0; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_STR; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; smp->flags = SMP_F_VOL_SESS; smp->data.u.str.area = NULL; SSL_get0_next_proto_negotiated(ssl, (const unsigned char **)&smp->data.u.str.area, &len); if (!smp->data.u.str.area) return 0; smp->data.u.str.data = len; return 1; } #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation static int smp_fetch_ssl_fc_alpn(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL *ssl; unsigned int len = 0; smp->flags = SMP_F_VOL_SESS | SMP_F_CONST; smp->data.type = SMP_T_STR; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; smp->data.u.str.area = NULL; SSL_get0_alpn_selected(ssl, (const unsigned char **)&smp->data.u.str.area, &len); if (!smp->data.u.str.area) return 0; smp->data.u.str.data = len; return 1; } #endif /* string, returns the used protocol if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_protocol(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL *ssl; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; smp->flags = 0; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; smp->data.u.str.area = (char *)SSL_get_version(ssl); if (!smp->data.u.str.area) return 0; smp->data.type = SMP_T_STR; smp->flags = SMP_F_VOL_SESS | SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); return 1; } /* binary, returns the SSL stream id if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ #if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL static int smp_fetch_ssl_fc_session_id(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL_SESSION *ssl_sess; SSL *ssl; unsigned int len = 0; smp->flags = SMP_F_VOL_SESS | SMP_F_CONST; smp->data.type = SMP_T_BIN; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; ssl_sess = SSL_get_session(ssl); if (!ssl_sess) return 0; smp->data.u.str.area = (char *)SSL_SESSION_get_id(ssl_sess, &len); if (!smp->data.u.str.area || !len) return 0; smp->data.u.str.data = len; return 1; } #endif #ifdef HAVE_SSL_EXTRACT_RANDOM static int smp_fetch_ssl_fc_random(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct buffer *data; SSL *ssl; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; data = get_trash_chunk(); if (kw[7] == 'c') data->data = SSL_get_client_random(ssl, (unsigned char *) data->area, data->size); else data->data = SSL_get_server_random(ssl, (unsigned char *) data->area, data->size); if (!data->data) return 0; smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_BIN; smp->data.u.str = *data; return 1; } static int smp_fetch_ssl_fc_session_key(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL_SESSION *ssl_sess; struct buffer *data; SSL *ssl; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; ssl_sess = SSL_get_session(ssl); if (!ssl_sess) return 0; data = get_trash_chunk(); data->data = SSL_SESSION_get_master_key(ssl_sess, (unsigned char *) data->area, data->size); if (!data->data) return 0; smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_BIN; smp->data.u.str = *data; return 1; } #endif static int smp_fetch_ssl_fc_sni(const struct arg *args, struct sample *smp, const char *kw, void *private) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME struct connection *conn; SSL *ssl; smp->flags = SMP_F_VOL_SESS | SMP_F_CONST; smp->data.type = SMP_T_STR; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; smp->data.u.str.area = (char *)SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (!smp->data.u.str.area) { /* We might have stored the SNI ourselves, look for it in the * context's ex_data. */ smp->data.u.str.area = SSL_get_ex_data(ssl, ssl_client_sni_index); if (!smp->data.u.str.area) return 0; } smp->data.u.str.data = strlen(smp->data.u.str.area); return 1; #else /* SNI not supported */ return 0; #endif } /* binary, returns tls client hello cipher list. * Arguments: filter_option (0,1) */ static int smp_fetch_ssl_fc_cl_bin(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct buffer *smp_trash; struct connection *conn; struct ssl_capture *capture; SSL *ssl; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index); if (!capture) return 0; if (args[0].data.sint) { smp_trash = get_trash_chunk(); exclude_tls_grease(capture->data + capture->ciphersuite_offset, capture->ciphersuite_len, smp_trash); smp->data.u.str.area = smp_trash->area; smp->data.u.str.data = smp_trash->data; smp->flags = SMP_F_VOL_SESS; } else { smp->data.u.str.area = capture->data + capture->ciphersuite_offset; smp->data.u.str.data = capture->ciphersuite_len; smp->flags = SMP_F_VOL_TEST | SMP_F_CONST; } smp->data.type = SMP_T_BIN; return 1; } /* binary, returns tls client hello cipher list as hexadecimal string. * Arguments: filter_option (0,1) */ static int smp_fetch_ssl_fc_cl_hex(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct buffer *data; if (!smp_fetch_ssl_fc_cl_bin(args, smp, kw, private)) return 0; data = get_trash_chunk(); dump_binary(data, smp->data.u.str.area, smp->data.u.str.data); smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_BIN; smp->data.u.str = *data; return 1; } /* integer, returns xxh64 hash of tls client hello cipher list. */ static int smp_fetch_ssl_fc_cl_xxh64(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_capture *capture; SSL *ssl; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index); if (!capture) return 0; smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_SINT; smp->data.u.sint = capture->xxh64; return 1; } static int smp_fetch_ssl_fc_err(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_sock_ctx *ctx; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; if (!conn) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags = SMP_F_MAY_CHANGE; return 0; } ctx = conn_get_ssl_sock_ctx(conn); if (!ctx) return 0; smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_SINT; smp->data.u.sint = ctx->error_code; return 1; } static int smp_fetch_ssl_fc_protocol_hello_id(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_capture *capture; SSL *ssl; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index); if (!capture) return 0; smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_SINT; smp->data.u.sint = capture->protocol_version; return 1; } static int smp_fetch_ssl_fc_err_str(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_sock_ctx *ctx; const char *err_code_str; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; if (!conn) return 0; if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags = SMP_F_MAY_CHANGE; return 0; } ctx = conn_get_ssl_sock_ctx(conn); if (!ctx || !ctx->error_code) return 0; err_code_str = ERR_error_string(ctx->error_code, NULL); smp->flags = SMP_F_VOL_SESS; smp->data.type = SMP_T_STR; smp->data.u.str.area = (char*)err_code_str; smp->data.u.str.data = strlen(err_code_str); return 1; } /* binary, returns tls client hello extensions list. * Arguments: filter_option (0,1) */ static int smp_fetch_ssl_fc_ext_bin(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct buffer *smp_trash; struct connection *conn; struct ssl_capture *capture; SSL *ssl; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index); if (!capture) return 0; if (args[0].data.sint) { smp_trash = get_trash_chunk(); exclude_tls_grease(capture->data + capture->extensions_offset, capture->extensions_len, smp_trash); smp->data.u.str.area = smp_trash->area; smp->data.u.str.data = smp_trash->data; smp->flags = SMP_F_VOL_SESS; } else { smp->data.u.str.area = capture->data + capture->extensions_offset; smp->data.u.str.data = capture->extensions_len; smp->flags = SMP_F_VOL_TEST | SMP_F_CONST; } smp->data.type = SMP_T_BIN; return 1; } /* binary, returns tls client hello supported elliptic curves. * Arguments: filter_option (0,1) */ static int smp_fetch_ssl_fc_ecl_bin(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct buffer *smp_trash; struct connection *conn; struct ssl_capture *capture; SSL *ssl; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index); if (!capture) return 0; if (args[0].data.sint) { smp_trash = get_trash_chunk(); exclude_tls_grease(capture->data + capture->ec_offset, capture->ec_len, smp_trash); smp->data.u.str.area = smp_trash->area; smp->data.u.str.data = smp_trash->data; smp->flags = SMP_F_VOL_SESS; } else { smp->data.u.str.area = capture->data + capture->ec_offset; smp->data.u.str.data = capture->ec_len; smp->flags = SMP_F_VOL_TEST | SMP_F_CONST; } smp->data.type = SMP_T_BIN; return 1; } /* binary, returns tls client hello supported elliptic curve point formats */ static int smp_fetch_ssl_fc_ecf_bin(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_capture *capture; SSL *ssl; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index); if (!capture) return 0; smp->flags = SMP_F_VOL_TEST | SMP_F_CONST; smp->data.type = SMP_T_BIN; smp->data.u.str.area = capture->data + capture->ec_formats_offset; smp->data.u.str.data = capture->ec_formats_len; return 1; } /* Dump the SSL keylog, it only works with "tune.ssl.keylog 1" */ #ifdef HAVE_SSL_KEYLOG static int smp_fetch_ssl_x_keylog(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_keylog *keylog; SSL *ssl; char *src = NULL; const char *sfx; if (global_ssl.keylog <= 0) return 0; conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; if (!conn) return 0; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; keylog = SSL_get_ex_data(ssl, ssl_keylog_index); if (!keylog) return 0; sfx = kw + strlen("ssl_xx_"); if (strcmp(sfx, "client_early_traffic_secret") == 0) { src = keylog->client_early_traffic_secret; } else if (strcmp(sfx, "client_handshake_traffic_secret") == 0) { src = keylog->client_handshake_traffic_secret; } else if (strcmp(sfx, "server_handshake_traffic_secret") == 0) { src = keylog->server_handshake_traffic_secret; } else if (strcmp(sfx, "client_traffic_secret_0") == 0) { src = keylog->client_traffic_secret_0; } else if (strcmp(sfx, "server_traffic_secret_0") == 0) { src = keylog->server_traffic_secret_0; } else if (strcmp(sfx, "exporter_secret") == 0) { src = keylog->exporter_secret; } else if (strcmp(sfx, "early_exporter_secret") == 0) { src = keylog->early_exporter_secret; } if (!src || !*src) return 0; smp->data.u.str.area = src; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_VOL_TEST | SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); return 1; } #endif static int smp_fetch_ssl_fc_cl_str(const struct arg *args, struct sample *smp, const char *kw, void *private) { #if defined(OPENSSL_IS_BORINGSSL) || defined(SSL_CTRL_GET_RAW_CIPHERLIST) struct buffer *data; int i; if (!smp_fetch_ssl_fc_cl_bin(args, smp, kw, private)) return 0; data = get_trash_chunk(); for (i = 0; i + 1 < smp->data.u.str.data; i += 2) { const char *str; const SSL_CIPHER *cipher; const unsigned char *bin = (const unsigned char *) smp->data.u.str.area + i; uint16_t id = (bin[0] << 8) | bin[1]; #if defined(OPENSSL_IS_BORINGSSL) cipher = SSL_get_cipher_by_value(id); #else struct connection *conn = __objt_conn(smp->sess->origin); SSL *ssl = ssl_sock_get_ssl_object(conn); cipher = SSL_CIPHER_find(ssl, bin); #endif str = SSL_CIPHER_get_name(cipher); if (!str || strcmp(str, "(NONE)") == 0) chunk_appendf(data, "%sUNKNOWN(%04x)", i == 0 ? "" : ",", id); else chunk_appendf(data, "%s%s", i == 0 ? "" : ",", str); } smp->data.type = SMP_T_STR; smp->data.u.str = *data; return 1; #else return smp_fetch_ssl_fc_cl_xxh64(args, smp, kw, private); #endif } #if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL static int smp_fetch_ssl_fc_unique_id(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; int finished_len; struct buffer *finished_trash; SSL *ssl; if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; else conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? sc_conn(smp->strm->scb) : NULL; smp->flags = 0; ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } finished_trash = get_trash_chunk(); if (!SSL_session_reused(ssl)) finished_len = SSL_get_peer_finished(ssl, finished_trash->area, finished_trash->size); else finished_len = SSL_get_finished(ssl, finished_trash->area, finished_trash->size); if (!finished_len) return 0; finished_trash->data = finished_len; smp->flags = SMP_F_VOL_SESS; smp->data.u.str = *finished_trash; smp->data.type = SMP_T_BIN; return 1; } #endif /* integer, returns the first verify error in CA chain of client certificate chain. */ static int smp_fetch_ssl_c_ca_err(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = objt_conn(smp->sess->origin); struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn); if (conn && conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags = SMP_F_MAY_CHANGE; return 0; } if (!ctx) return 0; smp->data.type = SMP_T_SINT; smp->data.u.sint = (unsigned long long int)SSL_SOCK_ST_TO_CA_ERROR(ctx->xprt_st); smp->flags = SMP_F_VOL_SESS; return 1; } /* integer, returns the depth of the first verify error in CA chain of client certificate chain. */ static int smp_fetch_ssl_c_ca_err_depth(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = objt_conn(smp->sess->origin); struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn); if (conn && conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags = SMP_F_MAY_CHANGE; return 0; } if (!ctx) return 0; smp->data.type = SMP_T_SINT; smp->data.u.sint = (long long int)SSL_SOCK_ST_TO_CAEDEPTH(ctx->xprt_st); smp->flags = SMP_F_VOL_SESS; return 1; } /* integer, returns the first verify error on client certificate */ static int smp_fetch_ssl_c_err(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = objt_conn(smp->sess->origin); struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn); if (conn && conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { smp->flags = SMP_F_MAY_CHANGE; return 0; } if (!ctx) return 0; smp->data.type = SMP_T_SINT; smp->data.u.sint = (long long int)SSL_SOCK_ST_TO_CRTERROR(ctx->xprt_st); smp->flags = SMP_F_VOL_SESS; return 1; } /* integer, returns the verify result on client cert */ static int smp_fetch_ssl_c_verify(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; SSL *ssl; conn = objt_conn(smp->sess->origin); ssl = ssl_sock_get_ssl_object(conn); if (!ssl) return 0; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags = SMP_F_MAY_CHANGE; return 0; } smp->data.type = SMP_T_SINT; smp->data.u.sint = (long long int)SSL_get_verify_result(ssl); smp->flags = SMP_F_VOL_SESS; return 1; } /* Argument validation functions */ /* This function is used to validate the arguments passed to any "x_dn" ssl * keywords. These keywords support specifying a third parameter that must be * either empty or the value "rfc2253". Returns 0 on error, non-zero if OK. */ int val_dnfmt(struct arg *arg, char **err_msg) { if (arg && arg[2].type == ARGT_STR && arg[2].data.str.data > 0 && (strcmp(arg[2].data.str.area, "rfc2253") != 0)) { memprintf(err_msg, "only rfc2253 or a blank value are currently supported as the format argument."); return 0; } return 1; } /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { { "ssl_bc", smp_fetch_ssl_fc, 0, NULL, SMP_T_BOOL, SMP_USE_L5SRV }, { "ssl_bc_alg_keysize", smp_fetch_ssl_fc_alg_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV }, #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation { "ssl_bc_alpn", smp_fetch_ssl_fc_alpn, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, #endif { "ssl_bc_cipher", smp_fetch_ssl_fc_cipher, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, #if (HA_OPENSSL_VERSION_NUMBER >= 0x3000000fL) { "ssl_bc_curve", smp_fetch_ssl_fc_ec, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, #endif #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) { "ssl_bc_npn", smp_fetch_ssl_fc_npn, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, #endif { "ssl_bc_is_resumed", smp_fetch_ssl_fc_is_resumed, 0, NULL, SMP_T_BOOL, SMP_USE_L5SRV }, { "ssl_bc_protocol", smp_fetch_ssl_fc_protocol, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, { "ssl_bc_unique_id", smp_fetch_ssl_fc_unique_id, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, { "ssl_bc_use_keysize", smp_fetch_ssl_fc_use_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV }, #if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL { "ssl_bc_session_id", smp_fetch_ssl_fc_session_id, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, #endif #ifdef HAVE_SSL_EXTRACT_RANDOM { "ssl_bc_client_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, { "ssl_bc_server_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, { "ssl_bc_session_key", smp_fetch_ssl_fc_session_key, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, #endif { "ssl_bc_err", smp_fetch_ssl_fc_err, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV }, { "ssl_bc_err_str", smp_fetch_ssl_fc_err_str, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, { "ssl_c_ca_err", smp_fetch_ssl_c_ca_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_ca_err_depth", smp_fetch_ssl_c_ca_err_depth, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_c_chain_der", smp_fetch_ssl_x_chain_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_c_err", smp_fetch_ssl_c_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_i_dn", smp_fetch_ssl_x_i_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #ifdef HAVE_SSL_get0_verified_chain { "ssl_c_r_dn", smp_fetch_ssl_r_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, #endif { "ssl_c_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_s_dn", smp_fetch_ssl_x_s_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_c_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_c_used", smp_fetch_ssl_c_used, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_c_verify", smp_fetch_ssl_c_verify, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_f_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_f_i_dn", smp_fetch_ssl_x_i_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_s_dn", smp_fetch_ssl_x_s_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_f_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_f_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_fc", smp_fetch_ssl_fc, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_alg_keysize", smp_fetch_ssl_fc_alg_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_fc_cipher", smp_fetch_ssl_fc_cipher, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #if (HA_OPENSSL_VERSION_NUMBER >= 0x3000000fL) { "ssl_fc_curve", smp_fetch_ssl_fc_ec, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #endif { "ssl_fc_has_crt", smp_fetch_ssl_fc_has_crt, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_has_early", smp_fetch_ssl_fc_has_early, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_has_sni", smp_fetch_ssl_fc_has_sni, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_is_resumed", smp_fetch_ssl_fc_is_resumed, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) { "ssl_fc_npn", smp_fetch_ssl_fc_npn, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation { "ssl_fc_alpn", smp_fetch_ssl_fc_alpn, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #endif { "ssl_fc_protocol", smp_fetch_ssl_fc_protocol, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL { "ssl_fc_unique_id", smp_fetch_ssl_fc_unique_id, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, #endif { "ssl_fc_use_keysize", smp_fetch_ssl_fc_use_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, #if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL { "ssl_fc_session_id", smp_fetch_ssl_fc_session_id, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, #endif #ifdef HAVE_SSL_EXTRACT_RANDOM { "ssl_fc_client_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_fc_server_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_fc_session_key", smp_fetch_ssl_fc_session_key, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, #endif #ifdef HAVE_SSL_KEYLOG { "ssl_fc_client_early_traffic_secret", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_client_handshake_traffic_secret", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_server_handshake_traffic_secret", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_client_traffic_secret_0", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_server_traffic_secret_0", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_exporter_secret", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_early_exporter_secret", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #endif { "ssl_fc_sni", smp_fetch_ssl_fc_sni, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_bin", smp_fetch_ssl_fc_cl_bin, ARG1(0,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_hex", smp_fetch_ssl_fc_cl_hex, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_str", smp_fetch_ssl_fc_cl_str, ARG1(0,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_xxh", smp_fetch_ssl_fc_cl_xxh64, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_fc_err", smp_fetch_ssl_fc_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_fc_err_str", smp_fetch_ssl_fc_err_str, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_protocol_hello_id",smp_fetch_ssl_fc_protocol_hello_id,0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_fc_extlist_bin", smp_fetch_ssl_fc_ext_bin, ARG1(0,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_eclist_bin", smp_fetch_ssl_fc_ecl_bin, ARG1(0,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_ecformats_bin", smp_fetch_ssl_fc_ecf_bin, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, /* SSL server certificate fetches */ { "ssl_s_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_s_chain_der", smp_fetch_ssl_x_chain_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_s_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_s_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_s_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_s_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_s_s_dn", smp_fetch_ssl_x_s_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_s_i_dn", smp_fetch_ssl_x_i_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_s_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_s_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_s_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { NULL, NULL, 0, 0, 0 }, }}; INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords); /* Note: must not be declared as its list will be overwritten */ static struct sample_conv_kw_list sample_conv_kws = {ILH, { { "sha2", sample_conv_sha2, ARG1(0, SINT), smp_check_sha2, SMP_T_BIN, SMP_T_BIN }, #ifdef EVP_CIPH_GCM_MODE { "aes_gcm_dec", sample_conv_aes_gcm_dec, ARG4(4,SINT,STR,STR,STR), check_aes_gcm, SMP_T_BIN, SMP_T_BIN }, #endif { "x509_v_err_str", sample_conv_x509_v_err, 0, NULL, SMP_T_SINT, SMP_T_STR }, { "digest", sample_conv_crypto_digest, ARG1(1,STR), check_crypto_digest, SMP_T_BIN, SMP_T_BIN }, { "hmac", sample_conv_crypto_hmac, ARG2(2,STR,STR), check_crypto_hmac, SMP_T_BIN, SMP_T_BIN }, #if defined(HAVE_CRYPTO_memcmp) { "secure_memcmp", sample_conv_secure_memcmp, ARG1(1,STR), smp_check_secure_memcmp, SMP_T_BIN, SMP_T_BOOL }, #endif { NULL, NULL, 0, 0, 0 }, }}; INITCALL1(STG_REGISTER, sample_register_convs, &sample_conv_kws); /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct acl_kw_list acl_kws = {ILH, { { "ssl_fc_sni_end", "ssl_fc_sni", PAT_MATCH_END }, { "ssl_fc_sni_reg", "ssl_fc_sni", PAT_MATCH_REG }, { /* END */ }, }}; INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws);