/* * functions about threads. * * Copyright (C) 2017 Christopher Fauet - cfaulet@haproxy.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #define _GNU_SOURCE #include #include #include #include #ifdef _POSIX_PRIORITY_SCHEDULING #include #endif #ifdef USE_THREAD # include #endif #ifdef USE_CPU_AFFINITY # include # if defined(__FreeBSD__) || defined(__DragonFly__) # include # ifdef __FreeBSD__ # include # endif # include # endif # ifdef __APPLE__ # include # include # include # endif # include #endif #include #include #include #include #include #include #include struct tgroup_info ha_tgroup_info[MAX_TGROUPS] = { }; THREAD_LOCAL const struct tgroup_info *tg = &ha_tgroup_info[0]; struct thread_info ha_thread_info[MAX_THREADS] = { }; THREAD_LOCAL const struct thread_info *ti = &ha_thread_info[0]; struct tgroup_ctx ha_tgroup_ctx[MAX_TGROUPS] = { }; THREAD_LOCAL struct tgroup_ctx *tg_ctx = &ha_tgroup_ctx[0]; struct thread_ctx ha_thread_ctx[MAX_THREADS] = { }; THREAD_LOCAL struct thread_ctx *th_ctx = &ha_thread_ctx[0]; #ifdef USE_THREAD volatile unsigned long all_tgroups_mask __read_mostly = 1; // nbtgroup 1 assumed by default volatile unsigned int rdv_requests = 0; // total number of threads requesting RDV volatile unsigned int isolated_thread = ~0; // ID of the isolated thread, or ~0 when none THREAD_LOCAL unsigned int tgid = 1; // thread ID starts at 1 THREAD_LOCAL unsigned int tid = 0; int thread_cpus_enabled_at_boot = 1; static pthread_t ha_pthread[MAX_THREADS] = { }; /* Marks the thread as harmless until the last thread using the rendez-vous * point quits. Given that we can wait for a long time, sched_yield() is * used when available to offer the CPU resources to competing threads if * needed. */ void thread_harmless_till_end() { _HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit); while (_HA_ATOMIC_LOAD(&rdv_requests) != 0) { ha_thread_relax(); } } /* Isolates the current thread : request the ability to work while all other * threads are harmless, as defined by thread_harmless_now() (i.e. they're not * going to touch any visible memory area). Only returns once all of them are * harmless, with the current thread's bit in &tg_ctx->threads_harmless cleared. * Needs to be completed using thread_release(). */ void thread_isolate() { uint tgrp, thr; _HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit); __ha_barrier_atomic_store(); _HA_ATOMIC_INC(&rdv_requests); /* wait for all threads to become harmless. They cannot change their * mind once seen thanks to rdv_requests above, unless they pass in * front of us. For this reason we proceed in 4 steps: * 1) wait for all threads to declare themselves harmless * 2) try to grab the isolated_thread exclusivity * 3) verify again that all threads are harmless, since another one * that was isolating between 1 and 2 could have dropped its * harmless state there. * 4) drop harmless flag (which also has the benefit of leaving * all other threads wait on reads instead of writes. */ while (1) { for (tgrp = 0; tgrp < global.nbtgroups; tgrp++) { do { ulong te = _HA_ATOMIC_LOAD(&ha_tgroup_info[tgrp].threads_enabled); ulong th = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_harmless); if ((th & te) == te) break; ha_thread_relax(); } while (1); } /* all other ones are harmless. isolated_thread will contain * ~0U if no other one competes, !=tid if another one got it, * tid if the current thread already grabbed it on the previous * round. */ thr = _HA_ATOMIC_LOAD(&isolated_thread); if (thr == tid) break; // we won and we're certain everyone is harmless /* try to win the race against others */ if (thr != ~0U || !_HA_ATOMIC_CAS(&isolated_thread, &thr, tid)) ha_thread_relax(); } /* the thread is no longer harmless as it runs */ _HA_ATOMIC_AND(&tg_ctx->threads_harmless, ~ti->ltid_bit); /* the thread is isolated until it calls thread_release() which will * 1) reset isolated_thread to ~0; * 2) decrement rdv_requests. */ } /* Isolates the current thread : request the ability to work while all other * threads are idle, as defined by thread_idle_now(). It only returns once * all of them are both harmless and idle, with the current thread's bit in * &tg_ctx->threads_harmless and idle_mask cleared. Needs to be completed using * thread_release(). By doing so the thread also engages in being safe against * any actions that other threads might be about to start under the same * conditions. This specifically targets destruction of any internal structure, * which implies that the current thread may not hold references to any object. * * Note that a concurrent thread_isolate() will usually win against * thread_isolate_full() as it doesn't consider the idle_mask, allowing it to * get back to the poller or any other fully idle location, that will * ultimately release this one. */ void thread_isolate_full() { uint tgrp, thr; _HA_ATOMIC_OR(&tg_ctx->threads_idle, ti->ltid_bit); _HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit); __ha_barrier_atomic_store(); _HA_ATOMIC_INC(&rdv_requests); /* wait for all threads to become harmless. They cannot change their * mind once seen thanks to rdv_requests above, unless they pass in * front of us. For this reason we proceed in 4 steps: * 1) wait for all threads to declare themselves harmless * 2) try to grab the isolated_thread exclusivity * 3) verify again that all threads are harmless, since another one * that was isolating between 1 and 2 could have dropped its * harmless state there. * 4) drop harmless flag (which also has the benefit of leaving * all other threads wait on reads instead of writes. */ while (1) { for (tgrp = 0; tgrp < global.nbtgroups; tgrp++) { do { ulong te = _HA_ATOMIC_LOAD(&ha_tgroup_info[tgrp].threads_enabled); ulong th = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_harmless); ulong id = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_idle); if ((th & id & te) == te) break; ha_thread_relax(); } while (1); } /* all other ones are harmless and idle. isolated_thread will * contain ~0U if no other one competes, !=tid if another one * got it, tid if the current thread already grabbed it on the * previous round. */ thr = _HA_ATOMIC_LOAD(&isolated_thread); if (thr == tid) break; // we won and we're certain everyone is harmless if (thr != ~0U || !_HA_ATOMIC_CAS(&isolated_thread, &thr, tid)) ha_thread_relax(); } /* we're not idle nor harmless anymore at this point. Other threads * waiting on this condition will need to wait until out next pass to * the poller, or our next call to thread_isolate_full(). */ _HA_ATOMIC_AND(&tg_ctx->threads_idle, ~ti->ltid_bit); _HA_ATOMIC_AND(&tg_ctx->threads_harmless, ~ti->ltid_bit); /* the thread is isolated until it calls thread_release() which will * 1) reset isolated_thread to ~0; * 2) decrement rdv_requests. */ } /* Cancels the effect of thread_isolate() by resetting the ID of the isolated * thread and decrementing the number of RDV requesters. This immediately allows * other threads to expect to be executed, though they will first have to wait * for this thread to become harmless again (possibly by reaching the poller * again). */ void thread_release() { HA_ATOMIC_STORE(&isolated_thread, ~0U); HA_ATOMIC_DEC(&rdv_requests); } /* Sets up threads, signals and masks, and starts threads 2 and above. * Does nothing when threads are disabled. */ void setup_extra_threads(void *(*handler)(void *)) { sigset_t blocked_sig, old_sig; int i; /* ensure the signals will be blocked in every thread */ sigfillset(&blocked_sig); sigdelset(&blocked_sig, SIGPROF); sigdelset(&blocked_sig, SIGBUS); sigdelset(&blocked_sig, SIGFPE); sigdelset(&blocked_sig, SIGILL); sigdelset(&blocked_sig, SIGSEGV); pthread_sigmask(SIG_SETMASK, &blocked_sig, &old_sig); /* Create nbthread-1 thread. The first thread is the current process */ ha_pthread[0] = pthread_self(); for (i = 1; i < global.nbthread; i++) pthread_create(&ha_pthread[i], NULL, handler, &ha_thread_info[i]); } /* waits for all threads to terminate. Does nothing when threads are * disabled. */ void wait_for_threads_completion() { int i; /* Wait the end of other threads */ for (i = 1; i < global.nbthread; i++) pthread_join(ha_pthread[i], NULL); #if defined(DEBUG_THREAD) || defined(DEBUG_FULL) show_lock_stats(); #endif } /* Tries to set the current thread's CPU affinity according to the cpu_map */ void set_thread_cpu_affinity() { #if defined(USE_CPU_AFFINITY) /* no affinity setting for the master process */ if (master) return; /* Now the CPU affinity for all threads */ if (ha_cpuset_count(&cpu_map[tgid - 1].thread[ti->ltid])) {/* only do this if the thread has a THREAD map */ # if defined(__APPLE__) /* Note: this API is limited to the first 32/64 CPUs */ unsigned long set = cpu_map[tgid - 1].thread[ti->ltid].cpuset; int j; while ((j = ffsl(set)) > 0) { thread_affinity_policy_data_t cpu_set = { j - 1 }; thread_port_t mthread; mthread = pthread_mach_thread_np(ha_pthread[tid]); thread_policy_set(mthread, THREAD_AFFINITY_POLICY, (thread_policy_t)&cpu_set, 1); set &= ~(1UL << (j - 1)); } # else struct hap_cpuset *set = &cpu_map[tgid - 1].thread[ti->ltid]; pthread_setaffinity_np(ha_pthread[tid], sizeof(set->cpuset), &set->cpuset); # endif } #endif /* USE_CPU_AFFINITY */ } /* Retrieves the opaque pthread_t of thread cast to an unsigned long long * since POSIX took great care of not specifying its representation, making it * hard to export for post-mortem analysis. For this reason we copy it into a * union and will use the smallest scalar type at least as large as its size, * which will keep endianness and alignment for all regular sizes. As a last * resort we end up with a long long ligned to the first bytes in memory, which * will be endian-dependent if pthread_t is larger than a long long (not seen * yet). */ unsigned long long ha_get_pthread_id(unsigned int thr) { union { pthread_t t; unsigned long long ll; unsigned int i; unsigned short s; unsigned char c; } u = { 0 }; u.t = ha_pthread[thr]; if (sizeof(u.t) <= sizeof(u.c)) return u.c; else if (sizeof(u.t) <= sizeof(u.s)) return u.s; else if (sizeof(u.t) <= sizeof(u.i)) return u.i; return u.ll; } /* send signal to thread */ void ha_tkill(unsigned int thr, int sig) { pthread_kill(ha_pthread[thr], sig); } /* send signal to all threads. The calling thread is signaled last in * order to allow all threads to synchronize in the handler. */ void ha_tkillall(int sig) { unsigned int thr; for (thr = 0; thr < global.nbthread; thr++) { if (!(ha_thread_info[thr].tg->threads_enabled & ha_thread_info[thr].ltid_bit)) continue; if (thr == tid) continue; pthread_kill(ha_pthread[thr], sig); } raise(sig); } void ha_thread_relax(void) { #ifdef _POSIX_PRIORITY_SCHEDULING sched_yield(); #else pl_cpu_relax(); #endif } /* these calls are used as callbacks at init time when debugging is on */ void ha_spin_init(HA_SPINLOCK_T *l) { HA_SPIN_INIT(l); } /* these calls are used as callbacks at init time when debugging is on */ void ha_rwlock_init(HA_RWLOCK_T *l) { HA_RWLOCK_INIT(l); } /* returns the number of CPUs the current process is enabled to run on, * regardless of any MAX_THREADS limitation. */ static int thread_cpus_enabled() { int ret = 1; #ifdef USE_CPU_AFFINITY #if defined(__linux__) && defined(CPU_COUNT) cpu_set_t mask; if (sched_getaffinity(0, sizeof(mask), &mask) == 0) ret = CPU_COUNT(&mask); #elif defined(__FreeBSD__) && defined(USE_CPU_AFFINITY) cpuset_t cpuset; if (cpuset_getaffinity(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, sizeof(cpuset), &cpuset) == 0) ret = CPU_COUNT(&cpuset); #elif defined(__APPLE__) ret = (int)sysconf(_SC_NPROCESSORS_ONLN); #endif #endif ret = MAX(ret, 1); return ret; } /* Returns 1 if the cpu set is currently restricted for the process else 0. * Currently only implemented for the Linux platform. */ int thread_cpu_mask_forced() { #if defined(__linux__) const int cpus_avail = sysconf(_SC_NPROCESSORS_ONLN); return cpus_avail != thread_cpus_enabled(); #else return 0; #endif } /* Below come the lock-debugging functions */ #if defined(DEBUG_THREAD) || defined(DEBUG_FULL) struct lock_stat lock_stats[LOCK_LABELS]; /* this is only used below */ static const char *lock_label(enum lock_label label) { switch (label) { case TASK_RQ_LOCK: return "TASK_RQ"; case TASK_WQ_LOCK: return "TASK_WQ"; case LISTENER_LOCK: return "LISTENER"; case PROXY_LOCK: return "PROXY"; case SERVER_LOCK: return "SERVER"; case LBPRM_LOCK: return "LBPRM"; case SIGNALS_LOCK: return "SIGNALS"; case STK_TABLE_LOCK: return "STK_TABLE"; case STK_SESS_LOCK: return "STK_SESS"; case APPLETS_LOCK: return "APPLETS"; case PEER_LOCK: return "PEER"; case SHCTX_LOCK: return "SHCTX"; case SSL_LOCK: return "SSL"; case SSL_GEN_CERTS_LOCK: return "SSL_GEN_CERTS"; case PATREF_LOCK: return "PATREF"; case PATEXP_LOCK: return "PATEXP"; case VARS_LOCK: return "VARS"; case COMP_POOL_LOCK: return "COMP_POOL"; case LUA_LOCK: return "LUA"; case NOTIF_LOCK: return "NOTIF"; case SPOE_APPLET_LOCK: return "SPOE_APPLET"; case DNS_LOCK: return "DNS"; case PID_LIST_LOCK: return "PID_LIST"; case EMAIL_ALERTS_LOCK: return "EMAIL_ALERTS"; case PIPES_LOCK: return "PIPES"; case TLSKEYS_REF_LOCK: return "TLSKEYS_REF"; case AUTH_LOCK: return "AUTH"; case RING_LOCK: return "RING"; case DICT_LOCK: return "DICT"; case PROTO_LOCK: return "PROTO"; case QUEUE_LOCK: return "QUEUE"; case CKCH_LOCK: return "CKCH"; case SNI_LOCK: return "SNI"; case SSL_SERVER_LOCK: return "SSL_SERVER"; case SFT_LOCK: return "SFT"; case IDLE_CONNS_LOCK: return "IDLE_CONNS"; case OCSP_LOCK: return "OCSP"; case QC_CID_LOCK: return "QC_CID"; case CACHE_LOCK: return "CACHE"; case OTHER_LOCK: return "OTHER"; case DEBUG1_LOCK: return "DEBUG1"; case DEBUG2_LOCK: return "DEBUG2"; case DEBUG3_LOCK: return "DEBUG3"; case DEBUG4_LOCK: return "DEBUG4"; case DEBUG5_LOCK: return "DEBUG5"; case LOCK_LABELS: break; /* keep compiler happy */ }; /* only way to come here is consecutive to an internal bug */ abort(); } void show_lock_stats() { int lbl; for (lbl = 0; lbl < LOCK_LABELS; lbl++) { if (!lock_stats[lbl].num_write_locked && !lock_stats[lbl].num_seek_locked && !lock_stats[lbl].num_read_locked) { fprintf(stderr, "Stats about Lock %s: not used\n", lock_label(lbl)); continue; } fprintf(stderr, "Stats about Lock %s: \n", lock_label(lbl)); if (lock_stats[lbl].num_write_locked) fprintf(stderr, "\t # write lock : %llu\n" "\t # write unlock: %llu (%lld)\n" "\t # wait time for write : %.3f msec\n" "\t # wait time for write/lock: %.3f nsec\n", (ullong)lock_stats[lbl].num_write_locked, (ullong)lock_stats[lbl].num_write_unlocked, (llong)(lock_stats[lbl].num_write_unlocked - lock_stats[lbl].num_write_locked), (double)lock_stats[lbl].nsec_wait_for_write / 1000000.0, lock_stats[lbl].num_write_locked ? ((double)lock_stats[lbl].nsec_wait_for_write / (double)lock_stats[lbl].num_write_locked) : 0); if (lock_stats[lbl].num_seek_locked) fprintf(stderr, "\t # seek lock : %llu\n" "\t # seek unlock : %llu (%lld)\n" "\t # wait time for seek : %.3f msec\n" "\t # wait time for seek/lock : %.3f nsec\n", (ullong)lock_stats[lbl].num_seek_locked, (ullong)lock_stats[lbl].num_seek_unlocked, (llong)(lock_stats[lbl].num_seek_unlocked - lock_stats[lbl].num_seek_locked), (double)lock_stats[lbl].nsec_wait_for_seek / 1000000.0, lock_stats[lbl].num_seek_locked ? ((double)lock_stats[lbl].nsec_wait_for_seek / (double)lock_stats[lbl].num_seek_locked) : 0); if (lock_stats[lbl].num_read_locked) fprintf(stderr, "\t # read lock : %llu\n" "\t # read unlock : %llu (%lld)\n" "\t # wait time for read : %.3f msec\n" "\t # wait time for read/lock : %.3f nsec\n", (ullong)lock_stats[lbl].num_read_locked, (ullong)lock_stats[lbl].num_read_unlocked, (llong)(lock_stats[lbl].num_read_unlocked - lock_stats[lbl].num_read_locked), (double)lock_stats[lbl].nsec_wait_for_read / 1000000.0, lock_stats[lbl].num_read_locked ? ((double)lock_stats[lbl].nsec_wait_for_read / (double)lock_stats[lbl].num_read_locked) : 0); } } void __ha_rwlock_init(struct ha_rwlock *l) { memset(l, 0, sizeof(struct ha_rwlock)); __RWLOCK_INIT(&l->lock); } void __ha_rwlock_destroy(struct ha_rwlock *l) { __RWLOCK_DESTROY(&l->lock); memset(l, 0, sizeof(struct ha_rwlock)); } void __ha_rwlock_wrlock(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) abort(); HA_ATOMIC_OR(&st->wait_writers, tbit); start_time = now_mono_time(); __RWLOCK_WRLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); st->cur_writer = tbit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&st->wait_writers, ~tbit); } int __ha_rwlock_trywrlock(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; int r; if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) abort(); /* We set waiting writer because trywrlock could wait for readers to quit */ HA_ATOMIC_OR(&st->wait_writers, tbit); start_time = now_mono_time(); r = __RWLOCK_TRYWRLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); if (unlikely(r)) { HA_ATOMIC_AND(&st->wait_writers, ~tbit); return r; } HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); st->cur_writer = tbit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&st->wait_writers, ~tbit); return 0; } void __ha_rwlock_wrunlock(enum lock_label lbl,struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; if (unlikely(!(st->cur_writer & tbit))) { /* the thread is not owning the lock for write */ abort(); } st->cur_writer = 0; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; __RWLOCK_WRUNLOCK(&l->lock); HA_ATOMIC_INC(&lock_stats[lbl].num_write_unlocked); } void __ha_rwlock_rdlock(enum lock_label lbl,struct ha_rwlock *l) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) abort(); HA_ATOMIC_OR(&st->wait_readers, tbit); start_time = now_mono_time(); __RWLOCK_RDLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); HA_ATOMIC_OR(&st->cur_readers, tbit); HA_ATOMIC_AND(&st->wait_readers, ~tbit); } int __ha_rwlock_tryrdlock(enum lock_label lbl,struct ha_rwlock *l) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; int r; if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) abort(); /* try read should never wait */ r = __RWLOCK_TRYRDLOCK(&l->lock); if (unlikely(r)) return r; HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); HA_ATOMIC_OR(&st->cur_readers, tbit); return 0; } void __ha_rwlock_rdunlock(enum lock_label lbl,struct ha_rwlock *l) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; if (unlikely(!(st->cur_readers & tbit))) { /* the thread is not owning the lock for read */ abort(); } HA_ATOMIC_AND(&st->cur_readers, ~tbit); __RWLOCK_RDUNLOCK(&l->lock); HA_ATOMIC_INC(&lock_stats[lbl].num_read_unlocked); } void __ha_rwlock_wrtord(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; if ((st->cur_readers | st->cur_seeker) & tbit) abort(); if (!(st->cur_writer & tbit)) abort(); HA_ATOMIC_OR(&st->wait_readers, tbit); start_time = now_mono_time(); __RWLOCK_WRTORD(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); HA_ATOMIC_OR(&st->cur_readers, tbit); HA_ATOMIC_AND(&st->cur_writer, ~tbit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&st->wait_readers, ~tbit); } void __ha_rwlock_wrtosk(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; if ((st->cur_readers | st->cur_seeker) & tbit) abort(); if (!(st->cur_writer & tbit)) abort(); HA_ATOMIC_OR(&st->wait_seekers, tbit); start_time = now_mono_time(); __RWLOCK_WRTOSK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); HA_ATOMIC_OR(&st->cur_seeker, tbit); HA_ATOMIC_AND(&st->cur_writer, ~tbit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&st->wait_seekers, ~tbit); } void __ha_rwlock_sklock(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) abort(); HA_ATOMIC_OR(&st->wait_seekers, tbit); start_time = now_mono_time(); __RWLOCK_SKLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); HA_ATOMIC_OR(&st->cur_seeker, tbit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&st->wait_seekers, ~tbit); } void __ha_rwlock_sktowr(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; if ((st->cur_readers | st->cur_writer) & tbit) abort(); if (!(st->cur_seeker & tbit)) abort(); HA_ATOMIC_OR(&st->wait_writers, tbit); start_time = now_mono_time(); __RWLOCK_SKTOWR(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); HA_ATOMIC_OR(&st->cur_writer, tbit); HA_ATOMIC_AND(&st->cur_seeker, ~tbit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&st->wait_writers, ~tbit); } void __ha_rwlock_sktord(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; if ((st->cur_readers | st->cur_writer) & tbit) abort(); if (!(st->cur_seeker & tbit)) abort(); HA_ATOMIC_OR(&st->wait_readers, tbit); start_time = now_mono_time(); __RWLOCK_SKTORD(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); HA_ATOMIC_OR(&st->cur_readers, tbit); HA_ATOMIC_AND(&st->cur_seeker, ~tbit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&st->wait_readers, ~tbit); } void __ha_rwlock_skunlock(enum lock_label lbl,struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; if (!(st->cur_seeker & tbit)) abort(); HA_ATOMIC_AND(&st->cur_seeker, ~tbit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; __RWLOCK_SKUNLOCK(&l->lock); HA_ATOMIC_INC(&lock_stats[lbl].num_seek_unlocked); } int __ha_rwlock_trysklock(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; int r; if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) abort(); HA_ATOMIC_OR(&st->wait_seekers, tbit); start_time = now_mono_time(); r = __RWLOCK_TRYSKLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); if (likely(!r)) { /* got the lock ! */ HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); HA_ATOMIC_OR(&st->cur_seeker, tbit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; } HA_ATOMIC_AND(&st->wait_seekers, ~tbit); return r; } int __ha_rwlock_tryrdtosk(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_rwlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; int r; if ((st->cur_writer | st->cur_seeker) & tbit) abort(); if (!(st->cur_readers & tbit)) abort(); HA_ATOMIC_OR(&st->wait_seekers, tbit); start_time = now_mono_time(); r = __RWLOCK_TRYRDTOSK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); if (likely(!r)) { /* got the lock ! */ HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); HA_ATOMIC_OR(&st->cur_seeker, tbit); HA_ATOMIC_AND(&st->cur_readers, ~tbit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; } HA_ATOMIC_AND(&st->wait_seekers, ~tbit); return r; } void __spin_init(struct ha_spinlock *l) { memset(l, 0, sizeof(struct ha_spinlock)); __SPIN_INIT(&l->lock); } void __spin_destroy(struct ha_spinlock *l) { __SPIN_DESTROY(&l->lock); memset(l, 0, sizeof(struct ha_spinlock)); } void __spin_lock(enum lock_label lbl, struct ha_spinlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_spinlock_state *st = &l->info.st[tgid-1]; uint64_t start_time; if (unlikely(st->owner & tbit)) { /* the thread is already owning the lock */ abort(); } HA_ATOMIC_OR(&st->waiters, tbit); start_time = now_mono_time(); __SPIN_LOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); st->owner = tbit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&st->waiters, ~tbit); } int __spin_trylock(enum lock_label lbl, struct ha_spinlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_spinlock_state *st = &l->info.st[tgid-1]; int r; if (unlikely(st->owner & tbit)) { /* the thread is already owning the lock */ abort(); } /* try read should never wait */ r = __SPIN_TRYLOCK(&l->lock); if (unlikely(r)) return r; HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); st->owner = tbit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; return 0; } void __spin_unlock(enum lock_label lbl, struct ha_spinlock *l, const char *func, const char *file, int line) { ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; struct ha_spinlock_state *st = &l->info.st[tgid-1]; if (unlikely(!(st->owner & tbit))) { /* the thread is not owning the lock */ abort(); } st->owner = 0; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; __SPIN_UNLOCK(&l->lock); HA_ATOMIC_INC(&lock_stats[lbl].num_write_unlocked); } #endif // defined(DEBUG_THREAD) || defined(DEBUG_FULL) #if defined(USE_PTHREAD_EMULATION) /* pthread rwlock emulation using plocks (to avoid expensive futexes). * these are a direct mapping on Progressive Locks, with the exception that * since there's a common unlock operation in pthreads, we need to know if * we need to unlock for reads or writes, so we set the topmost bit to 1 when * a write lock is acquired to indicate that a write unlock needs to be * performed. It's not a problem since this bit will never be used given that * haproxy won't support as many threads as the plocks. * * The storage is the pthread_rwlock_t cast as an ulong */ int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr) { ulong *lock = (ulong *)rwlock; *lock = 0; return 0; } int pthread_rwlock_destroy(pthread_rwlock_t *rwlock) { ulong *lock = (ulong *)rwlock; *lock = 0; return 0; } int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock) { pl_lorw_rdlock((unsigned long *)rwlock); return 0; } int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock) { return !!pl_cmpxchg((unsigned long *)rwlock, 0, PLOCK_LORW_SHR_BASE); } int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abstime) { return pthread_rwlock_tryrdlock(rwlock); } int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock) { pl_lorw_wrlock((unsigned long *)rwlock); return 0; } int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock) { return !!pl_cmpxchg((unsigned long *)rwlock, 0, PLOCK_LORW_EXC_BASE); } int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abstime) { return pthread_rwlock_trywrlock(rwlock); } int pthread_rwlock_unlock(pthread_rwlock_t *rwlock) { pl_lorw_unlock((unsigned long *)rwlock); return 0; } #endif // defined(USE_PTHREAD_EMULATION) /* Depending on the platform and how libpthread was built, pthread_exit() may * involve some code in libgcc_s that would be loaded on exit for the first * time, causing aborts if the process is chrooted. It's harmless bit very * dirty. There isn't much we can do to make sure libgcc_s is loaded only if * needed, so what we do here is that during early boot we create a dummy * thread that immediately exits. This will lead to libgcc_s being loaded * during boot on the platforms where it's required. */ static void *dummy_thread_function(void *data) { pthread_exit(NULL); return NULL; } static inline void preload_libgcc_s(void) { pthread_t dummy_thread; if (pthread_create(&dummy_thread, NULL, dummy_thread_function, NULL) == 0) pthread_join(dummy_thread, NULL); } static void __thread_init(void) { char *ptr = NULL; preload_libgcc_s(); thread_cpus_enabled_at_boot = thread_cpus_enabled(); thread_cpus_enabled_at_boot = MIN(thread_cpus_enabled_at_boot, MAX_THREADS); memprintf(&ptr, "Built with multi-threading support (MAX_TGROUPS=%d, MAX_THREADS=%d, default=%d).", MAX_TGROUPS, MAX_THREADS, thread_cpus_enabled_at_boot); hap_register_build_opts(ptr, 1); #if defined(DEBUG_THREAD) || defined(DEBUG_FULL) memset(lock_stats, 0, sizeof(lock_stats)); #endif } INITCALL0(STG_PREPARE, __thread_init); #else /* send signal to thread (send to process in fact) */ void ha_tkill(unsigned int thr, int sig) { raise(sig); } /* send signal to all threads (send to process in fact) */ void ha_tkillall(int sig) { raise(sig); } void ha_thread_relax(void) { #ifdef _POSIX_PRIORITY_SCHEDULING sched_yield(); #endif } REGISTER_BUILD_OPTS("Built without multi-threading support (USE_THREAD not set)."); #endif // USE_THREAD /* Returns non-zero on anomaly (bound vs unbound), and emits a warning in this * case. */ int thread_detect_binding_discrepancies(void) { #if defined(USE_CPU_AFFINITY) uint th, tg, id; uint tot_b = 0, tot_u = 0; int first_b = -1; int first_u = -1; for (th = 0; th < global.nbthread; th++) { tg = ha_thread_info[th].tgid; id = ha_thread_info[th].ltid; if (ha_cpuset_count(&cpu_map[tg - 1].thread[id]) == 0) { tot_u++; if (first_u < 0) first_u = th; } else { tot_b++; if (first_b < 0) first_b = th; } } if (tot_u > 0 && tot_b > 0) { ha_warning("Found %u thread(s) mapped to a CPU and %u thread(s) not mapped to any CPU. " "This will result in some threads being randomly assigned to the same CPU, " "which will occasionally cause severe performance degradation. First thread " "bound is %d and first thread not bound is %d. Please either bind all threads " "or none (maybe some cpu-map directives are missing?).\n", tot_b, tot_u, first_b, first_u); return 1; } #endif return 0; } /* Returns non-zero on anomaly (more threads than CPUs), and emits a warning in * this case. It checks against configured cpu-map if any, otherwise against * the number of CPUs at boot if known. It's better to run it only after * thread_detect_binding_discrepancies() so that mixed cases can be eliminated. */ int thread_detect_more_than_cpus(void) { #if defined(USE_CPU_AFFINITY) struct hap_cpuset cpuset_map, cpuset_boot, cpuset_all; uint th, tg, id; int bound; int tot_map, tot_all; ha_cpuset_zero(&cpuset_boot); ha_cpuset_zero(&cpuset_map); ha_cpuset_zero(&cpuset_all); bound = 0; for (th = 0; th < global.nbthread; th++) { tg = ha_thread_info[th].tgid; id = ha_thread_info[th].ltid; if (ha_cpuset_count(&cpu_map[tg - 1].thread[id])) { ha_cpuset_or(&cpuset_map, &cpu_map[tg - 1].thread[id]); bound++; } } ha_cpuset_assign(&cpuset_all, &cpuset_map); if (bound != global.nbthread) { if (ha_cpuset_detect_bound(&cpuset_boot)) ha_cpuset_or(&cpuset_all, &cpuset_boot); } tot_map = ha_cpuset_count(&cpuset_map); tot_all = ha_cpuset_count(&cpuset_all); if (tot_map && bound > tot_map) { ha_warning("This configuration binds %d threads to a total of %d CPUs via cpu-map " "directives. This means that some threads will compete for the same CPU, " "which will cause severe performance degradation. Please fix either the " "'cpu-map' directives or set the global 'nbthread' value accordingly.\n", bound, tot_map); return 1; } else if (tot_all && global.nbthread > tot_all) { ha_warning("This configuration enables %d threads running on a total of %d CPUs. " "This means that some threads will compete for the same CPU, which will cause " "severe performance degradation. Please either the 'cpu-map' directives to " "adjust the CPUs to use, or fix the global 'nbthread' value.\n", global.nbthread, tot_all); return 1; } #endif return 0; } /* scans the configured thread mapping and establishes the final one. Returns <0 * on failure, >=0 on success. */ int thread_map_to_groups() { int t, g, ut, ug; int q, r; ulong m __maybe_unused; ut = ug = 0; // unassigned threads & groups for (t = 0; t < global.nbthread; t++) { if (!ha_thread_info[t].tg) ut++; } for (g = 0; g < global.nbtgroups; g++) { if (!ha_tgroup_info[g].count) ug++; ha_tgroup_info[g].tgid_bit = 1UL << g; } if (ug > ut) { ha_alert("More unassigned thread-groups (%d) than threads (%d). Please reduce thread-groups\n", ug, ut); return -1; } /* look for first unassigned thread */ for (t = 0; t < global.nbthread && ha_thread_info[t].tg; t++) ; /* assign threads to empty groups */ for (g = 0; ug && ut; ) { /* due to sparse thread assignment we can end up with more threads * per group on last assigned groups than former ones, so we must * always try to pack the maximum remaining ones together first. */ q = ut / ug; r = ut % ug; if ((q + !!r) > MAX_THREADS_PER_GROUP) { ha_alert("Too many remaining unassigned threads (%d) for thread groups (%d). Please increase thread-groups or make sure to keep thread numbers contiguous\n", ut, ug); return -1; } /* thread is the next unassigned one. Let's look for next * unassigned group, we know there are some left */ while (ut >= ug && ha_tgroup_info[g].count) g++; /* group g is unassigned, try to fill it with consecutive threads */ while (ut && ut >= ug && ha_tgroup_info[g].count < q + !!r && (!ha_tgroup_info[g].count || t == ha_tgroup_info[g].base + ha_tgroup_info[g].count)) { if (!ha_tgroup_info[g].count) { /* assign new group */ ha_tgroup_info[g].base = t; ug--; } ha_tgroup_info[g].count++; ha_thread_info[t].tgid = g + 1; ha_thread_info[t].tg = &ha_tgroup_info[g]; ha_thread_info[t].tg_ctx = &ha_tgroup_ctx[g]; ut--; /* switch to next unassigned thread */ while (++t < global.nbthread && ha_thread_info[t].tg) ; } } if (ut) { ha_alert("Remaining unassigned threads found (%d) because all groups are in use. Please increase 'thread-groups', reduce 'nbthreads' or remove or extend 'thread-group' enumerations.\n", ut); return -1; } for (t = 0; t < global.nbthread; t++) { ha_thread_info[t].tid = t; ha_thread_info[t].ltid = t - ha_thread_info[t].tg->base; ha_thread_info[t].ltid_bit = 1UL << ha_thread_info[t].ltid; } m = 0; for (g = 0; g < global.nbtgroups; g++) { ha_tgroup_info[g].threads_enabled = nbits(ha_tgroup_info[g].count); /* for now, additional threads are not started, so we should * consider them as harmless and idle. * This will get automatically updated when such threads are * started in run_thread_poll_loop() * Without this, thread_isolate() and thread_isolate_full() * will fail to work as long as secondary threads did not enter * the polling loop at least once. */ ha_tgroup_ctx[g].threads_harmless = ha_tgroup_info[g].threads_enabled; ha_tgroup_ctx[g].threads_idle = ha_tgroup_info[g].threads_enabled; if (!ha_tgroup_info[g].count) continue; m |= 1UL << g; } #ifdef USE_THREAD all_tgroups_mask = m; #endif return 0; } /* Converts a configuration thread set based on either absolute or relative * thread numbers into a global group+mask. This is essentially for use with * the "thread" directive on "bind" lines, where "thread 4-6,10-12" might be * turned to "2/1-3,4/1-3". It cannot be used before the thread mapping above * was completed and the thread group numbers configured. The thread_set is * replaced by the resolved group-based one. It is possible to force a single * default group for unspecified sets instead of enabling all groups by passing * this group's non-zero value to defgrp. * * Returns <0 on failure, >=0 on success. */ int thread_resolve_group_mask(struct thread_set *ts, int defgrp, char **err) { struct thread_set new_ts = { }; ulong mask, imask; uint g; if (!ts->grps) { /* unspecified group, IDs are global */ if (thread_set_is_empty(ts)) { /* all threads of all groups, unless defgrp is set and * we then set it as the only group. */ for (g = defgrp ? defgrp-1 : 0; g < (defgrp ? defgrp : global.nbtgroups); g++) { new_ts.rel[g] = ha_tgroup_info[g].threads_enabled; if (new_ts.rel[g]) new_ts.grps |= 1UL << g; } } else { /* some absolute threads are set, we must remap them to * relative ones. Each group cannot have more than * LONGBITS threads, thus it spans at most two absolute * blocks. */ for (g = 0; g < global.nbtgroups; g++) { uint block = ha_tgroup_info[g].base / LONGBITS; uint base = ha_tgroup_info[g].base % LONGBITS; mask = ts->abs[block] >> base; if (base && (block + 1) < sizeof(ts->abs) / sizeof(ts->abs[0]) && ha_tgroup_info[g].count > (LONGBITS - base)) mask |= ts->abs[block + 1] << (LONGBITS - base); mask &= nbits(ha_tgroup_info[g].count); mask &= ha_tgroup_info[g].threads_enabled; /* now the mask exactly matches the threads to be enabled * in this group. */ new_ts.rel[g] |= mask; if (new_ts.rel[g]) new_ts.grps |= 1UL << g; } } } else { /* groups were specified */ for (g = 0; g < MAX_TGROUPS; g++) { imask = ts->rel[g]; if (!imask) continue; if (g >= global.nbtgroups) { memprintf(err, "'thread' directive references non-existing thread group %u", g+1); return -1; } /* some relative threads are set. Keep only existing ones for this group */ mask = nbits(ha_tgroup_info[g].count); if (!(mask & imask)) { /* no intersection between the thread group's * threads and the bind line's. */ #ifdef THREAD_AUTO_ADJUST_GROUPS unsigned long new_mask = 0; while (imask) { new_mask |= imask & mask; imask >>= ha_tgroup_info[g].count; } imask = new_mask; #else memprintf(err, "'thread' directive only references threads not belonging to group %u", g+1); return -1; #endif } new_ts.rel[g] = imask & mask; if (new_ts.rel[g]) new_ts.grps |= 1UL << g; } } /* update the thread_set */ if (!thread_set_nth_group(&new_ts, 0)) { memprintf(err, "'thread' directive only references non-existing threads"); return -1; } *ts = new_ts; return 0; } /* Parse a string representing a thread set in one of the following forms: * * - { "all" | "odd" | "even" | [ "-" ] }[,...] * => these are (lists of) absolute thread numbers * * - "/" { "all" | "odd" | "even" | [ "-" ][,...] * => these are (lists of) per-group relative thread numbers. All numbers * must be lower than or equal to LONGBITS. When multiple list elements * are provided, each of them must contain the thread group number. * * Minimum value for a thread or group number is always 1. Maximum value for an * absolute thread number is MAX_THREADS, maximum value for a relative thread * number is MAX_THREADS_PER_GROUP, an maximum value for a thread group is * MAX_TGROUPS. "all", "even" and "odd" will be bound by MAX_THREADS and/or * MAX_THREADS_PER_GROUP in any case. In ranges, a missing digit before "-" * is implicitly 1, and a missing digit after "-" is implicitly the highest of * its class. As such "-" is equivalent to "all", allowing to build strings * such as "${MIN}-${MAX}" where both MIN and MAX are optional. * * It is not valid to mix absolute and relative numbers. As such: * - all valid (all absolute threads) * - 12-19,24-31 valid (abs threads 12 to 19 and 24 to 31) * - 1/all valid (all 32 or 64 threads of group 1) * - 1/1-4,1/8-10,2/1 valid * - 1/1-4,8-10 invalid (mixes relatve "1/1-4" with absolute "8-10") * - 1-4,8-10,2/1 invalid (mixes absolute "1-4,8-10" with relative "2/1") * - 1/odd-4 invalid (mixes range with boundary) * * The target thread set is *completed* with supported threads, which means * that it's the caller's responsibility for pre-initializing it. If the target * thread set is NULL, it's not updated and the function only verifies that the * input parses. * * On success, it returns 0. otherwise it returns non-zero with an error * message in . */ int parse_thread_set(const char *arg, struct thread_set *ts, char **err) { const char *set; const char *sep; int v, min, max, tg; int is_rel; /* search for the first delimiter (',', '-' or '/') to decide whether * we're facing an absolute or relative form. The relative form always * starts with a number followed by a slash. */ for (sep = arg; isdigit((uchar)*sep); sep++) ; is_rel = (/*sep > arg &&*/ *sep == '/'); /* relative form */ /* from there we have to cut the thread spec around commas */ set = arg; tg = 0; while (*set) { /* note: we can't use strtol() here because "-3" would parse as * (-3) while we want to stop before the "-", so we find the * separator ourselves and rely on atoi() whose value we may * ignore depending where the separator is. */ for (sep = set; isdigit((uchar)*sep); sep++) ; if (sep != set && *sep && *sep != '/' && *sep != '-' && *sep != ',') { memprintf(err, "invalid character '%c' in thread set specification: '%s'.", *sep, set); return -1; } v = (sep != set) ? atoi(set) : 0; /* Now we know that the string is made of an optional series of digits * optionally followed by one of the delimiters above, or that it * starts with a different character. */ /* first, let's search for the thread group (digits before '/') */ if (tg || !is_rel) { /* thread group already specified or not expected if absolute spec */ if (*sep == '/') { if (tg) memprintf(err, "redundant thread group specification '%s' for group %d", set, tg); else memprintf(err, "group-relative thread specification '%s' is not permitted after a absolute thread range.", set); return -1; } } else { /* this is a group-relative spec, first field is the group number */ if (sep == set && *sep == '/') { memprintf(err, "thread group number expected before '%s'.", set); return -1; } if (*sep != '/') { memprintf(err, "absolute thread specification '%s' is not permitted after a group-relative thread range.", set); return -1; } if (v < 1 || v > MAX_TGROUPS) { memprintf(err, "invalid thread group number '%d', permitted range is 1..%d in '%s'.", v, MAX_TGROUPS, set); return -1; } tg = v; /* skip group number and go on with set,sep,v as if * there was no group number. */ set = sep + 1; continue; } /* Now 'set' starts at the min thread number, whose value is in v if any, * and preset the max to it, unless the range is filled at once via "all" * (stored as 1:0), "odd" (stored as) 1:-1, or "even" (stored as 1:-2). * 'sep' points to the next non-digit which may be set itself e.g. for * "all" etc or "-xx". */ if (!*set) { /* empty set sets no restriction */ min = 1; max = is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS; } else { if (sep != set && *sep && *sep != '-' && *sep != ',') { // Only delimiters are permitted around digits. memprintf(err, "invalid character '%c' in thread set specification: '%s'.", *sep, set); return -1; } /* for non-digits, find next delim */ for (; *sep && *sep != '-' && *sep != ','; sep++) ; min = max = 1; if (sep != set) { /* non-empty first thread */ if (isteq(ist2(set, sep-set), ist("all"))) max = 0; else if (isteq(ist2(set, sep-set), ist("odd"))) max = -1; else if (isteq(ist2(set, sep-set), ist("even"))) max = -2; else if (v) min = max = v; else max = min = 0; // throw an error below } if (min < 1 || min > MAX_THREADS || (is_rel && min > MAX_THREADS_PER_GROUP)) { memprintf(err, "invalid first thread number '%s', permitted range is 1..%d, or 'all', 'odd', 'even'.", set, is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS); return -1; } /* is this a range ? */ if (*sep == '-') { if (min != max) { memprintf(err, "extraneous range after 'all', 'odd' or 'even': '%s'.", set); return -1; } /* this is a seemingly valid range, there may be another number */ for (set = ++sep; isdigit((uchar)*sep); sep++) ; v = atoi(set); if (sep == set) { // no digit: to the max max = is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS; if (*sep && *sep != ',') max = 0; // throw an error below } else max = v; if (max < 1 || max > MAX_THREADS || (is_rel && max > MAX_THREADS_PER_GROUP)) { memprintf(err, "invalid last thread number '%s', permitted range is 1..%d.", set, is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS); return -1; } } /* here sep points to the first non-digit after the thread spec, * must be a valid delimiter. */ if (*sep && *sep != ',') { memprintf(err, "invalid character '%c' after thread set specification: '%s'.", *sep, set); return -1; } } /* store values */ if (ts) { if (is_rel) { /* group-relative thread numbers */ ts->grps |= 1UL << (tg - 1); if (max >= min) { for (v = min; v <= max; v++) ts->rel[tg - 1] |= 1UL << (v - 1); } else { memset(&ts->rel[tg - 1], (max == 0) ? 0xff /* all */ : (max == -1) ? 0x55 /* odd */: 0xaa /* even */, sizeof(ts->rel[tg - 1])); } } else { /* absolute thread numbers */ if (max >= min) { for (v = min; v <= max; v++) ts->abs[(v - 1) / LONGBITS] |= 1UL << ((v - 1) % LONGBITS); } else { memset(&ts->abs, (max == 0) ? 0xff /* all */ : (max == -1) ? 0x55 /* odd */: 0xaa /* even */, sizeof(ts->abs)); } } } set = *sep ? sep + 1 : sep; tg = 0; } return 0; } /* Parse the "nbthread" global directive, which takes an integer argument that * contains the desired number of threads. */ static int cfg_parse_nbthread(char **args, int section_type, struct proxy *curpx, const struct proxy *defpx, const char *file, int line, char **err) { long nbthread; char *errptr; if (too_many_args(1, args, err, NULL)) return -1; if (non_global_section_parsed == 1) { memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]); return -1; } nbthread = strtol(args[1], &errptr, 10); if (!*args[1] || *errptr) { memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); return -1; } #ifndef USE_THREAD if (nbthread != 1) { memprintf(err, "'%s' specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD", args[0]); return -1; } #else if (nbthread < 1 || nbthread > MAX_THREADS) { memprintf(err, "'%s' value must be between 1 and %d (was %ld)", args[0], MAX_THREADS, nbthread); return -1; } #endif HA_DIAG_WARNING_COND(global.nbthread, "parsing [%s:%d] : '%s' is already defined and will be overridden.\n", file, line, args[0]); global.nbthread = nbthread; return 0; } /* Parse the "thread-group" global directive, which takes an integer argument * that designates a thread group, and a list of threads to put into that group. */ static int cfg_parse_thread_group(char **args, int section_type, struct proxy *curpx, const struct proxy *defpx, const char *file, int line, char **err) { char *errptr; long tnum, tend, tgroup; int arg, tot; if (non_global_section_parsed == 1) { memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]); return -1; } tgroup = strtol(args[1], &errptr, 10); if (!*args[1] || *errptr) { memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); return -1; } if (tgroup < 1 || tgroup > MAX_TGROUPS) { memprintf(err, "'%s' thread-group number must be between 1 and %d (was %ld)", args[0], MAX_TGROUPS, tgroup); return -1; } /* look for a preliminary definition of any thread pointing to this * group, and remove them. */ if (ha_tgroup_info[tgroup-1].count) { ha_warning("parsing [%s:%d] : '%s %ld' was already defined and will be overridden.\n", file, line, args[0], tgroup); for (tnum = ha_tgroup_info[tgroup-1].base; tnum < ha_tgroup_info[tgroup-1].base + ha_tgroup_info[tgroup-1].count; tnum++) { if (ha_thread_info[tnum-1].tg == &ha_tgroup_info[tgroup-1]) { ha_thread_info[tnum-1].tg = NULL; ha_thread_info[tnum-1].tgid = 0; ha_thread_info[tnum-1].tg_ctx = NULL; } } ha_tgroup_info[tgroup-1].count = ha_tgroup_info[tgroup-1].base = 0; } tot = 0; for (arg = 2; args[arg] && *args[arg]; arg++) { tend = tnum = strtol(args[arg], &errptr, 10); if (*errptr == '-') tend = strtol(errptr + 1, &errptr, 10); if (*errptr || tnum < 1 || tend < 1 || tnum > MAX_THREADS || tend > MAX_THREADS) { memprintf(err, "'%s %ld' passed an unparsable or invalid thread number '%s' (valid range is 1 to %d)", args[0], tgroup, args[arg], MAX_THREADS); return -1; } for(; tnum <= tend; tnum++) { if (ha_thread_info[tnum-1].tg == &ha_tgroup_info[tgroup-1]) { ha_warning("parsing [%s:%d] : '%s %ld': thread %ld assigned more than once on the same line.\n", file, line, args[0], tgroup, tnum); } else if (ha_thread_info[tnum-1].tg) { ha_warning("parsing [%s:%d] : '%s %ld': thread %ld was previously assigned to thread group %ld and will be overridden.\n", file, line, args[0], tgroup, tnum, (long)(ha_thread_info[tnum-1].tg - &ha_tgroup_info[0] + 1)); } if (!ha_tgroup_info[tgroup-1].count) { ha_tgroup_info[tgroup-1].base = tnum-1; ha_tgroup_info[tgroup-1].count = 1; } else if (tnum >= ha_tgroup_info[tgroup-1].base + ha_tgroup_info[tgroup-1].count) { ha_tgroup_info[tgroup-1].count = tnum - ha_tgroup_info[tgroup-1].base; } else if (tnum < ha_tgroup_info[tgroup-1].base) { ha_tgroup_info[tgroup-1].count += ha_tgroup_info[tgroup-1].base - tnum-1; ha_tgroup_info[tgroup-1].base = tnum - 1; } ha_thread_info[tnum-1].tgid = tgroup; ha_thread_info[tnum-1].tg = &ha_tgroup_info[tgroup-1]; ha_thread_info[tnum-1].tg_ctx = &ha_tgroup_ctx[tgroup-1]; tot++; } } if (ha_tgroup_info[tgroup-1].count > tot) { memprintf(err, "'%s %ld' assigned sparse threads, only contiguous supported", args[0], tgroup); return -1; } if (ha_tgroup_info[tgroup-1].count > MAX_THREADS_PER_GROUP) { memprintf(err, "'%s %ld' assigned too many threads (%d, max=%d)", args[0], tgroup, tot, MAX_THREADS_PER_GROUP); return -1; } return 0; } /* Parse the "thread-groups" global directive, which takes an integer argument * that contains the desired number of thread groups. */ static int cfg_parse_thread_groups(char **args, int section_type, struct proxy *curpx, const struct proxy *defpx, const char *file, int line, char **err) { long nbtgroups; char *errptr; if (too_many_args(1, args, err, NULL)) return -1; if (non_global_section_parsed == 1) { memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]); return -1; } nbtgroups = strtol(args[1], &errptr, 10); if (!*args[1] || *errptr) { memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); return -1; } #ifndef USE_THREAD if (nbtgroups != 1) { memprintf(err, "'%s' specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD", args[0]); return -1; } #else if (nbtgroups < 1 || nbtgroups > MAX_TGROUPS) { memprintf(err, "'%s' value must be between 1 and %d (was %ld)", args[0], MAX_TGROUPS, nbtgroups); return -1; } #endif HA_DIAG_WARNING_COND(global.nbtgroups, "parsing [%s:%d] : '%s' is already defined and will be overridden.\n", file, line, args[0]); global.nbtgroups = nbtgroups; return 0; } /* config keyword parsers */ static struct cfg_kw_list cfg_kws = {ILH, { { CFG_GLOBAL, "nbthread", cfg_parse_nbthread, 0 }, { CFG_GLOBAL, "thread-group", cfg_parse_thread_group, 0 }, { CFG_GLOBAL, "thread-groups", cfg_parse_thread_groups, 0 }, { 0, NULL, NULL } }}; INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);