summaryrefslogtreecommitdiffstats
path: root/include/haproxy/quic_tls.h
blob: 86b8c1ee32c772fcf5cb82f01c8c3fe8d8eccf0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
/*
 * include/proto/quic_tls.h
 * This file provides definitions for QUIC-TLS.
 *
 * Copyright 2019 HAProxy Technologies, Frederic Lecaille <flecaille@haproxy.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _PROTO_QUIC_TLS_H
#define _PROTO_QUIC_TLS_H
#ifdef USE_QUIC
#ifndef USE_OPENSSL
#error "Must define USE_OPENSSL"
#endif

#include <stdlib.h>
#include <string.h>

#include <haproxy/dynbuf.h>
#include <haproxy/pool.h>
#include <haproxy/openssl-compat.h>
#include <haproxy/quic_conn.h>
#include <haproxy/quic_frame.h>
#include <haproxy/quic_tls-t.h>
#include <haproxy/quic_tx.h>
#include <haproxy/quic_trace.h>
#include <haproxy/trace.h>

int quic_tls_finalize(struct quic_conn *qc, int server);
void quic_tls_ctx_free(struct quic_tls_ctx **ctx);
void quic_pktns_release(struct quic_conn *qc, struct quic_pktns **pktns);
int qc_enc_level_alloc(struct quic_conn *qc, struct quic_pktns **pktns,
                       struct quic_enc_level **qel, enum ssl_encryption_level_t level);
void qc_enc_level_free(struct quic_conn *qc, struct quic_enc_level **qel);

void quic_tls_keys_hexdump(struct buffer *buf,
                           const struct quic_tls_secrets *secs);
void quic_tls_kp_keys_hexdump(struct buffer *buf,
                              const struct quic_tls_kp *kp);

void quic_conn_enc_level_uninit(struct quic_conn *qc, struct quic_enc_level *qel);
void quic_tls_secret_hexdump(struct buffer *buf,
                             const unsigned char *secret, size_t secret_len);

int quic_derive_initial_secret(const EVP_MD *md,
                               const unsigned char *initial_salt, size_t initial_salt_sz,
                               unsigned char *initial_secret, size_t initial_secret_sz,
                               const unsigned char *secret, size_t secret_sz);

int quic_tls_derive_initial_secrets(const EVP_MD *md,
                                    unsigned char *rx, size_t rx_sz,
                                    unsigned char *tx, size_t tx_sz,
                                    const unsigned char *secret, size_t secret_sz,
                                    int server);

int quic_tls_encrypt(unsigned char *buf, size_t len,
                     const unsigned char *aad, size_t aad_len,
                     EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
                     const unsigned char *iv);

int quic_tls_decrypt2(unsigned char *out,
                      unsigned char *in, size_t ilen,
                      unsigned char *aad, size_t aad_len,
                      EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
                      const unsigned char *key, const unsigned char *iv);

int quic_tls_decrypt(unsigned char *buf, size_t len,
                     unsigned char *aad, size_t aad_len,
                     EVP_CIPHER_CTX *tls_ctx, const EVP_CIPHER *aead,
                     const unsigned char *key, const unsigned char *iv);

int quic_tls_generate_retry_integrity_tag(unsigned char *odcid, unsigned char odcid_len,
                                          unsigned char *buf, size_t len,
                                          const struct quic_version *qv);

int quic_tls_derive_keys(const EVP_CIPHER *aead, const EVP_CIPHER *hp,
                         const EVP_MD *md, const struct quic_version *qv,
                         unsigned char *key, size_t keylen,
                         unsigned char *iv, size_t ivlen,
                         unsigned char *hp_key, size_t hp_keylen,
                         const unsigned char *secret, size_t secretlen);

int quic_tls_derive_retry_token_secret(const EVP_MD *md,
                                       unsigned char *key, size_t keylen,
                                       unsigned char *iv, size_t ivlen,
                                       const unsigned char *salt, size_t saltlen,
                                       const unsigned char *secret, size_t secretlen);

int quic_hkdf_expand(const EVP_MD *md,
                     unsigned char *buf, size_t buflen,
                     const unsigned char *key, size_t keylen,
                     const unsigned char *label, size_t labellen);

int quic_hkdf_expand_label(const EVP_MD *md,
                           unsigned char *buf, size_t buflen,
                           const unsigned char *key, size_t keylen,
                           const unsigned char *label, size_t labellen);

int quic_hkdf_extract_and_expand(const EVP_MD *md,
                                 unsigned char *buf, size_t buflen,
                                 const unsigned char *key, size_t keylen,
                                 const unsigned char *salt, size_t saltlen,
                                 const unsigned char *label, size_t labellen);

int quic_tls_rx_ctx_init(EVP_CIPHER_CTX **rx_ctx,
                         const EVP_CIPHER *aead, unsigned char *key);
int quic_tls_tx_ctx_init(EVP_CIPHER_CTX **tx_ctx,
                         const EVP_CIPHER *aead, unsigned char *key);

int quic_tls_sec_update(const EVP_MD *md, const struct quic_version *qv,
                        unsigned char *new_sec, size_t new_seclen,
                        const unsigned char *sec, size_t seclen);

void quic_aead_iv_build(unsigned char *iv, size_t ivlen,
                        unsigned char *aead_iv, size_t aead_ivlen, uint64_t pn);

/* HP protection (AES) */
int quic_tls_dec_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx,
                              const EVP_CIPHER *aes, unsigned char *key);
int quic_tls_enc_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx,
                              const EVP_CIPHER *aes, unsigned char *key);
int quic_tls_aes_decrypt(unsigned char *out,
                         const unsigned char *in, size_t inlen,
                         EVP_CIPHER_CTX *ctx);
int quic_tls_aes_encrypt(unsigned char *out,
                         const unsigned char *in, size_t inlen,
                         EVP_CIPHER_CTX *ctx);

int quic_tls_key_update(struct quic_conn *qc);
void quic_tls_rotate_keys(struct quic_conn *qc);

static inline const EVP_CIPHER *tls_aead(const SSL_CIPHER *cipher)
{
	switch (SSL_CIPHER_get_id(cipher)) {
	case TLS1_3_CK_AES_128_GCM_SHA256:
		return EVP_aes_128_gcm();
	case TLS1_3_CK_AES_256_GCM_SHA384:
		return EVP_aes_256_gcm();
#if !defined(OPENSSL_IS_AWSLC)
	case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
		return EVP_chacha20_poly1305();
#endif
#if !defined(USE_OPENSSL_WOLFSSL) && !defined(OPENSSL_IS_AWSLC)
	case TLS1_3_CK_AES_128_CCM_SHA256:
		return EVP_aes_128_ccm();
#endif
	default:
		return NULL;
	}
}

static inline const EVP_MD *tls_md(const SSL_CIPHER *cipher)
{
	switch (SSL_CIPHER_get_id(cipher)) {
	case TLS1_3_CK_AES_128_GCM_SHA256:
	case TLS1_3_CK_AES_128_CCM_SHA256:
	case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
		return EVP_sha256();
	case TLS1_3_CK_AES_256_GCM_SHA384:
		return EVP_sha384();
	default:
		return NULL;
	}
}

static inline const EVP_CIPHER *tls_hp(const SSL_CIPHER *cipher)
{
	switch (SSL_CIPHER_get_id(cipher)) {
#if !defined(OPENSSL_IS_AWSLC)
	case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
		return EVP_chacha20();
#endif
	case TLS1_3_CK_AES_128_CCM_SHA256:
	case TLS1_3_CK_AES_128_GCM_SHA256:
		return EVP_aes_128_ctr();
	case TLS1_3_CK_AES_256_GCM_SHA384:
		return EVP_aes_256_ctr();
	default:
		return NULL;
	}

}

/* These following functions map TLS implementation encryption level to ours */
static inline struct quic_pktns **ssl_to_quic_pktns(struct quic_conn *qc,
                                                    enum ssl_encryption_level_t level)
{
	switch (level) {
	case ssl_encryption_initial:
		return &qc->ipktns;
	case ssl_encryption_early_data:
		return &qc->apktns;
	case ssl_encryption_handshake:
		return &qc->hpktns;
	case ssl_encryption_application:
		return &qc->apktns;
	default:
		return NULL;
	}
}

/* These following functions map TLS implementation encryption level to ours */
static inline struct quic_pktns **qel_to_quic_pktns(struct quic_conn *qc,
                                                    enum quic_tls_enc_level level)
{
	switch (level) {
	case QUIC_TLS_ENC_LEVEL_INITIAL:
		return &qc->ipktns;
	case QUIC_TLS_ENC_LEVEL_EARLY_DATA:
		return &qc->apktns;
	case QUIC_TLS_ENC_LEVEL_HANDSHAKE:
		return &qc->hpktns;
	case QUIC_TLS_ENC_LEVEL_APP:
		return &qc->apktns;
	default:
		return NULL;
	}
}

/* Map <level> TLS stack encryption level to our internal QUIC TLS encryption level
 * if succeeded, or -1 if failed.
 */
static inline enum quic_tls_enc_level ssl_to_quic_enc_level(enum ssl_encryption_level_t level)
{
	switch (level) {
	case ssl_encryption_initial:
		return QUIC_TLS_ENC_LEVEL_INITIAL;
	case ssl_encryption_early_data:
		return QUIC_TLS_ENC_LEVEL_EARLY_DATA;
	case ssl_encryption_handshake:
		return QUIC_TLS_ENC_LEVEL_HANDSHAKE;
	case ssl_encryption_application:
		return QUIC_TLS_ENC_LEVEL_APP;
	default:
		return -1;
	}
}

/* Return the address of the QUIC TLS encryption level associated to <level> TLS
 * stack encryption level and attached to <qc> QUIC connection if succeeded, or
 * NULL if failed.
 */
static inline struct quic_enc_level **ssl_to_qel_addr(struct quic_conn *qc,
                                                      enum ssl_encryption_level_t level)
{
	switch (level) {
	case ssl_encryption_initial:
		return &qc->iel;
	case ssl_encryption_early_data:
		return &qc->eel;
	case ssl_encryption_handshake:
		return &qc->hel;
	case ssl_encryption_application:
		return &qc->ael;
	default:
		return NULL;
	}
}

/* Return the address of the QUIC TLS encryption level associated to <level> internal
 * encryption level and attached to <qc> QUIC connection if succeeded, or
 * NULL if failed.
 */
static inline struct quic_enc_level **qel_to_qel_addr(struct quic_conn *qc,
                                                      enum quic_tls_enc_level level)
{
	switch (level) {
	case QUIC_TLS_ENC_LEVEL_INITIAL:
		return &qc->iel;
	case QUIC_TLS_ENC_LEVEL_EARLY_DATA:
		return &qc->eel;
	case QUIC_TLS_ENC_LEVEL_HANDSHAKE:
		return &qc->hel;
	case QUIC_TLS_ENC_LEVEL_APP:
		return &qc->ael;
	default:
		return NULL;
	}
}

/* Return the QUIC TLS encryption level associated to <level> internal encryption
 * level attached to <qc> QUIC connection if succeeded, or NULL if failed.
 */
static inline struct quic_enc_level *qc_quic_enc_level(const struct quic_conn *qc,
                                                       enum quic_tls_enc_level level)
{
	switch (level) {
	case QUIC_TLS_ENC_LEVEL_INITIAL:
		return qc->iel;
	case QUIC_TLS_ENC_LEVEL_EARLY_DATA:
		return qc->eel;
	case QUIC_TLS_ENC_LEVEL_HANDSHAKE:
		return qc->hel;
	case QUIC_TLS_ENC_LEVEL_APP:
		return qc->ael;
	default:
		return NULL;
	}
}

/* These two following functions map our encryption level to the TLS implementation ones. */
static inline enum ssl_encryption_level_t quic_to_ssl_enc_level(enum quic_tls_enc_level level)
{
	switch (level) {
	case QUIC_TLS_ENC_LEVEL_INITIAL:
		return ssl_encryption_initial;
	case QUIC_TLS_ENC_LEVEL_EARLY_DATA:
		return ssl_encryption_early_data;
	case QUIC_TLS_ENC_LEVEL_HANDSHAKE:
		return ssl_encryption_handshake;
	case QUIC_TLS_ENC_LEVEL_APP:
		return ssl_encryption_application;
	default:
		return -1;
	}
}

/* Return a human readable string from <state> QUIC handshake state of NULL
 * for unknown state values (for debug purpose).
 */
static inline char *quic_hdshk_state_str(const enum quic_handshake_state state)
{
	switch (state) {
	case QUIC_HS_ST_CLIENT_INITIAL:
		return "CI";
	case QUIC_HS_ST_CLIENT_HANDSHAKE:
		return "CH";
	case QUIC_HS_ST_CLIENT_HANDSHAKE_FAILED:
		return "CF";
	case QUIC_HS_ST_SERVER_INITIAL:
		return "SI";
	case QUIC_HS_ST_SERVER_HANDSHAKE:
		return "SH";
	case QUIC_HS_ST_SERVER_HANDSHAKE_FAILED:
		return "SF";
	case QUIC_HS_ST_COMPLETE:
		return "HCP";
	case QUIC_HS_ST_CONFIRMED:
		return "HCF";
	}

	return NULL;
}

/* Return a human readable string from <err> SSL error (returned from
 * SSL_get_error())
 */
static inline const char *ssl_error_str(int err)
{
	switch (err) {
	case SSL_ERROR_NONE:
		return "NONE";
	case SSL_ERROR_SSL:
		return "SSL";
	case SSL_ERROR_WANT_READ:
		return "WANT_READ";
	case SSL_ERROR_WANT_WRITE:
		return "WANT_WRITE";
	case SSL_ERROR_WANT_X509_LOOKUP:
		return "X509_LOOKUP";
	case SSL_ERROR_SYSCALL:
		return "SYSCALL";
	case SSL_ERROR_ZERO_RETURN:
		return "ZERO_RETURN";
	case SSL_ERROR_WANT_CONNECT:
		return "WANT_CONNECT";
	case SSL_ERROR_WANT_ACCEPT:
		return "WANT_ACCEPT";
#if !defined(LIBRESSL_VERSION_NUMBER) && !defined(USE_OPENSSL_WOLFSSL) && !defined(OPENSSL_IS_AWSLC)
	case SSL_ERROR_WANT_ASYNC:
		return "WANT_ASYNC";
	case SSL_ERROR_WANT_ASYNC_JOB:
		return "WANT_ASYNC_JOB";
	case SSL_ERROR_WANT_CLIENT_HELLO_CB:
		return "WANT_CLIENT_HELLO_CB";
#endif
	default:
		return "UNKNOWN";
	}
}


/* Return a character identifying the encryption level from <level> QUIC TLS
 * encryption level (for debug purpose).
 * Initial -> 'I', Early Data -> 'E', Handshake -> 'H', Application -> 'A' and
 * '-' if undefined.
 */
static inline char quic_enc_level_char(enum quic_tls_enc_level level)
{
	switch (level) {
	case QUIC_TLS_ENC_LEVEL_INITIAL:
		return 'I';
	case QUIC_TLS_ENC_LEVEL_EARLY_DATA:
		return 'E';
	case QUIC_TLS_ENC_LEVEL_HANDSHAKE:
		return 'H';
	case QUIC_TLS_ENC_LEVEL_APP:
		return 'A';
	default:
		return '-';
	}
}

/* Return a character identifying <qel> encryption level from <qc> QUIC connection
 * (for debug purpose).
 * Initial -> 'I', Early Data -> 'E', Handshake -> 'H', Application -> 'A' and
 * '-' if undefined.
 */
static inline char quic_enc_level_char_from_qel(const struct quic_enc_level *qel,
                                                const struct quic_conn *qc)
{
	if (qel == qc->iel)
		return 'I';
	else if (qel == qc->eel)
		return 'E';
	else if (qel == qc->hel)
		return 'H';
	else if (qel == qc->ael)
		return 'A';
	return '-';
}

/* Return a character identifying the encryption level of a packet depending on
 * its <type> type, and its <long_header> header length (for debug purpose).
 * Initial -> 'I', ORTT -> '0', Handshake -> 'H', Application -> 'A' and
 * '-' if undefined.
 */
static inline char quic_packet_type_enc_level_char(int packet_type)
{
	switch (packet_type) {
	case QUIC_PACKET_TYPE_INITIAL:
		return 'I';
	case QUIC_PACKET_TYPE_0RTT:
		return '0';
	case QUIC_PACKET_TYPE_HANDSHAKE:
		return 'H';
	case QUIC_PACKET_TYPE_SHORT:
		return 'A';
	default:
		return '-';
	}
}

/* Initialize a QUIC packet number space.
 * Never fails.
 */
static inline int quic_pktns_init(struct quic_conn *qc, struct quic_pktns **p)
{
	struct quic_pktns *pktns;

	pktns = pool_alloc(pool_head_quic_pktns);
	if (!pktns)
		return 0;

	LIST_INIT(&pktns->tx.frms);
	pktns->tx.next_pn = -1;
	pktns->tx.pkts = EB_ROOT_UNIQUE;
	pktns->tx.time_of_last_eliciting = 0;
	pktns->tx.loss_time = TICK_ETERNITY;
	pktns->tx.pto_probe = 0;
	pktns->tx.in_flight = 0;
	pktns->tx.ack_delay = 0;

	pktns->rx.largest_pn = -1;
	pktns->rx.largest_acked_pn = -1;
	pktns->rx.arngs.root = EB_ROOT_UNIQUE;
	pktns->rx.arngs.sz = 0;
	pktns->rx.arngs.enc_sz = 0;
	pktns->rx.nb_aepkts_since_last_ack = 0;
	pktns->rx.largest_time_received = 0;

	pktns->flags = 0;
	if (p == &qc->hpktns && qc->apktns)
		LIST_INSERT(&qc->ipktns->list, &pktns->list);
	else
		LIST_APPEND(&qc->pktns_list, &pktns->list);
	*p = pktns;

	return 1;
}

static inline void quic_pktns_tx_pkts_release(struct quic_pktns *pktns, struct quic_conn *qc)
{
	struct eb64_node *node;

	TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc);

	node = eb64_first(&pktns->tx.pkts);
	while (node) {
		struct quic_tx_packet *pkt;
		struct quic_frame *frm, *frmbak;

		pkt = eb64_entry(node, struct quic_tx_packet, pn_node);
		node = eb64_next(node);
		if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)
			qc->path->ifae_pkts--;
		list_for_each_entry_safe(frm, frmbak, &pkt->frms, list) {
			TRACE_DEVEL("freeing frame from packet",
			            QUIC_EV_CONN_PRSAFRM, qc, frm, &pkt->pn_node.key);
			qc_frm_unref(frm, qc);
			LIST_DEL_INIT(&frm->list);
			quic_tx_packet_refdec(frm->pkt);
			qc_frm_free(qc, &frm);
		}
		eb64_delete(&pkt->pn_node);
		quic_tx_packet_refdec(pkt);
	}

	TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc);
}

/* Discard <pktns> packet number space attached to <qc> QUIC connection.
 * Its loss information are reset. Deduce the outstanding bytes for this
 * packet number space from the outstanding bytes for the path of this
 * connection.
 * Note that all the non acknowledged TX packets and their frames are freed.
 * Always succeeds.
 */
static inline void quic_pktns_discard(struct quic_pktns *pktns,
                                      struct quic_conn *qc)
{
	TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc);

	if (pktns == qc->ipktns)
		qc->flags |= QUIC_FL_CONN_IPKTNS_DCD;
	else if (pktns == qc->hpktns)
		qc->flags |= QUIC_FL_CONN_HPKTNS_DCD;
	qc->path->in_flight -= pktns->tx.in_flight;
	qc->path->prep_in_flight -= pktns->tx.in_flight;
	qc->path->loss.pto_count = 0;

	pktns->tx.time_of_last_eliciting = 0;
	pktns->tx.loss_time = TICK_ETERNITY;
	pktns->tx.pto_probe = 0;
	pktns->tx.in_flight = 0;
	quic_pktns_tx_pkts_release(pktns, qc);

	TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc);
}


/* Release all the frames attached to <pktns> packet number space */
static inline void qc_release_pktns_frms(struct quic_conn *qc,
                                         struct quic_pktns *pktns)
{
	struct quic_frame *frm, *frmbak;

	TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc);

	if (!pktns)
		goto leave;

	list_for_each_entry_safe(frm, frmbak, &pktns->tx.frms, list)
		qc_frm_free(qc, &frm);

 leave:
	TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc);
}

/* Return 1 if <pktns> matches with the Application packet number space of
 * <conn> connection which is common to the 0-RTT and 1-RTT encryption levels, 0
 * if not (handshake packets).
 */
static inline int quic_application_pktns(struct quic_pktns *pktns, struct quic_conn *qc)
{
	return pktns == qc->apktns;
}

/* Returns the current largest acknowledged packet number if exists, -1 if not */
static inline int64_t quic_pktns_get_largest_acked_pn(struct quic_pktns *pktns)
{
	struct eb64_node *ar = eb64_last(&pktns->rx.arngs.root);

	if (!ar)
		return -1;

	return eb64_entry(ar, struct quic_arng_node, first)->last;
}

/* Return a character to identify the packet number space <pktns> of <qc> QUIC
 * connection. 'I' for Initial packet number space, 'H' for Handshake packet
 * space, and 'A' for Application data number space, or '-' if not found.
 */
static inline char quic_pktns_char(const struct quic_conn *qc,
                                   const struct quic_pktns *pktns)
{
	if (pktns == qc->apktns)
		return 'A';
	else if (pktns == qc->hpktns)
		return 'H';
	else if (pktns == qc->ipktns)
		return 'I';

	return '-';
}

/* Return the TLS encryption level to be used for <packet_type>
 * QUIC packet type.
 * Returns -1 if there is no TLS encryption level for <packet_type>
 * packet type.
 */
static inline enum quic_tls_enc_level quic_packet_type_enc_level(enum quic_pkt_type packet_type)
{
	switch (packet_type) {
	case QUIC_PACKET_TYPE_INITIAL:
		return QUIC_TLS_ENC_LEVEL_INITIAL;
	case QUIC_PACKET_TYPE_0RTT:
		return QUIC_TLS_ENC_LEVEL_EARLY_DATA;
	case QUIC_PACKET_TYPE_HANDSHAKE:
		return QUIC_TLS_ENC_LEVEL_HANDSHAKE;
	case QUIC_PACKET_TYPE_RETRY:
		return QUIC_TLS_ENC_LEVEL_NONE;
	case QUIC_PACKET_TYPE_SHORT:
		return QUIC_TLS_ENC_LEVEL_APP;
	default:
		return QUIC_TLS_ENC_LEVEL_NONE;
	}
}

static inline enum quic_tls_pktns quic_tls_pktns(enum quic_tls_enc_level level)
{
	switch (level) {
	case QUIC_TLS_ENC_LEVEL_INITIAL:
		return QUIC_TLS_PKTNS_INITIAL;
	case QUIC_TLS_ENC_LEVEL_EARLY_DATA:
	case QUIC_TLS_ENC_LEVEL_APP:
		return QUIC_TLS_PKTNS_01RTT;
	case QUIC_TLS_ENC_LEVEL_HANDSHAKE:
		return QUIC_TLS_PKTNS_HANDSHAKE;
	default:
		return -1;
	}
}

/* Return 1 if <pktns> packet number space attached to <qc> connection has been discarded,
 * 0 if not.
 */
static inline int quic_tls_pktns_is_dcd(struct quic_conn *qc, struct quic_pktns *pktns)
{
	if (pktns == qc->apktns)
		return 0;

	if ((pktns == qc->ipktns && (qc->flags & QUIC_FL_CONN_IPKTNS_DCD)) ||
	    (pktns == qc->hpktns && (qc->flags & QUIC_FL_CONN_HPKTNS_DCD)))
		return 1;

	return 0;
}

/* Return 1 the packet number space attached to <qc> connection with <type> associated
 * packet type has been discarded, 0 if not.
 */
static inline int quic_tls_pkt_type_pktns_dcd(struct quic_conn *qc, unsigned char type)
{
	if ((type == QUIC_PACKET_TYPE_INITIAL && (qc->flags & QUIC_FL_CONN_IPKTNS_DCD)) ||
	    (type == QUIC_PACKET_TYPE_HANDSHAKE && (qc->flags & QUIC_FL_CONN_HPKTNS_DCD)))
		return 1;

	return 0;
}

/* Select the correct TLS cipher context to used to decipher an RX packet
 * with <type> as type and <version> as version and attached to <qc>
 * connection from <qel> encryption level.
 */
static inline struct quic_tls_ctx *qc_select_tls_ctx(struct quic_conn *qc,
                                                     struct quic_enc_level *qel,
                                                     unsigned char type,
                                                     const struct quic_version *version)
{
	return type != QUIC_PACKET_TYPE_INITIAL ? &qel->tls_ctx :
		version == qc->negotiated_version ? qc->nictx : &qel->tls_ctx;
}

/* Reset all members of <ctx> to default values, ->hp_key[] excepted */
static inline void quic_tls_ctx_reset(struct quic_tls_ctx *ctx)
{
	ctx->rx.ctx = NULL;
	ctx->rx.aead = NULL;
	ctx->rx.md = NULL;
	ctx->rx.hp_ctx = NULL;
	ctx->rx.hp = NULL;
	ctx->rx.secret = NULL;
	ctx->rx.secretlen = 0;
	ctx->rx.iv = NULL;
	ctx->rx.ivlen = 0;
	ctx->rx.key = NULL;
	ctx->rx.keylen = 0;
	ctx->rx.pn = 0;

	ctx->tx.ctx = NULL;
	ctx->tx.aead = NULL;
	ctx->tx.md = NULL;
	ctx->tx.hp_ctx = NULL;
	ctx->tx.hp = NULL;
	ctx->tx.secret = NULL;
	ctx->tx.secretlen = 0;
	ctx->tx.iv = NULL;
	ctx->tx.ivlen = 0;
	ctx->tx.key = NULL;
	ctx->tx.keylen = 0;
	/* Not used on the TX path. */
	ctx->tx.pn = 0;

	ctx->flags = 0;
}

/* Erase and free the secrets for a QUIC encryption level with <ctx> as
 * context.
 * Always succeeds.
 */
static inline void quic_tls_ctx_secs_free(struct quic_tls_ctx *ctx)
{
	if (!ctx)
		return;

	if (ctx->rx.iv) {
		memset(ctx->rx.iv, 0, ctx->rx.ivlen);
		ctx->rx.ivlen = 0;
	}
	if (ctx->rx.key) {
		memset(ctx->rx.key, 0, ctx->rx.keylen);
		ctx->rx.keylen = 0;
	}
	if (ctx->tx.iv) {
		memset(ctx->tx.iv, 0, ctx->tx.ivlen);
		ctx->tx.ivlen = 0;
	}
	if (ctx->tx.key) {
		memset(ctx->tx.key, 0, ctx->tx.keylen);
		ctx->tx.keylen = 0;
	}

	/* RX HP protection */
	EVP_CIPHER_CTX_free(ctx->rx.hp_ctx);
	/* RX AEAD decryption */
	EVP_CIPHER_CTX_free(ctx->rx.ctx);
	pool_free(pool_head_quic_tls_iv,  ctx->rx.iv);
	pool_free(pool_head_quic_tls_key, ctx->rx.key);

	/* TX HP protection */
	EVP_CIPHER_CTX_free(ctx->tx.hp_ctx);
	/* TX AEAD encryption */
	EVP_CIPHER_CTX_free(ctx->tx.ctx);
	pool_free(pool_head_quic_tls_iv,  ctx->tx.iv);
	pool_free(pool_head_quic_tls_key, ctx->tx.key);

	quic_tls_ctx_reset(ctx);
}

/* Allocate the secrete keys for a QUIC encryption level with <ctx> as context.
 * Returns 1 if succeeded, 0 if not.
 */
static inline int quic_tls_ctx_keys_alloc(struct quic_tls_ctx *ctx)
{
	if (ctx->rx.key)
		goto write;

	if (!(ctx->rx.iv = pool_alloc(pool_head_quic_tls_iv)) ||
	    !(ctx->rx.key = pool_alloc(pool_head_quic_tls_key)))
		goto err;

 write:
	if (ctx->tx.key)
		goto out;

	if (!(ctx->tx.iv = pool_alloc(pool_head_quic_tls_iv)) ||
	    !(ctx->tx.key = pool_alloc(pool_head_quic_tls_key)))
		goto err;

	ctx->rx.ivlen = ctx->tx.ivlen = QUIC_TLS_IV_LEN;
	ctx->rx.keylen = ctx->tx.keylen = QUIC_TLS_KEY_LEN;
out:
	return 1;

 err:
	quic_tls_ctx_secs_free(ctx);
	return 0;
}

/* Release the memory allocated for <secs> secrets */
static inline void quic_tls_secrets_keys_free(struct quic_tls_secrets *secs)
{
	if (secs->iv) {
		memset(secs->iv, 0, secs->ivlen);
		secs->ivlen = 0;
	}

	if (secs->key) {
		memset(secs->key, 0, secs->keylen);
		secs->keylen = 0;
	}

	/* HP protection */
	EVP_CIPHER_CTX_free(secs->hp_ctx);
	/* AEAD decryption */
	EVP_CIPHER_CTX_free(secs->ctx);
	pool_free(pool_head_quic_tls_iv,  secs->iv);
	pool_free(pool_head_quic_tls_key, secs->key);

	secs->iv = secs->key = NULL;
}

/* Allocate the memory for the <secs> secrets.
 * Return 1 if succeeded, 0 if not.
 */
static inline int quic_tls_secrets_keys_alloc(struct quic_tls_secrets *secs)
{
	if (!(secs->iv = pool_alloc(pool_head_quic_tls_iv)) ||
	    !(secs->key = pool_alloc(pool_head_quic_tls_key)))
		goto err;

	secs->ivlen = QUIC_TLS_IV_LEN;
	secs->keylen = QUIC_TLS_KEY_LEN;

	return 1;

 err:
	quic_tls_secrets_keys_free(secs);
	return 0;
}

/* Release the memory allocated for the negotiated Initial QUIC TLS context
 * attached to <qc> connection.
 */
static inline void quic_nictx_free(struct quic_conn *qc)
{
	quic_tls_ctx_secs_free(qc->nictx);
	pool_free(pool_head_quic_tls_ctx, qc->nictx);
	qc->nictx = NULL;
}

/* Initialize a TLS cryptographic context for the Initial encryption level. */
static inline int quic_initial_tls_ctx_init(struct quic_tls_ctx *ctx)
{
	ctx->rx.aead = ctx->tx.aead = EVP_aes_128_gcm();
	ctx->rx.md   = ctx->tx.md   = EVP_sha256();
	ctx->rx.hp   = ctx->tx.hp   = EVP_aes_128_ctr();

	ctx->rx.iv   = NULL;
	ctx->rx.ivlen = 0;
	ctx->rx.key  = NULL;
	ctx->rx.keylen = 0;
	ctx->rx.secret = NULL;
	ctx->rx.secretlen = 0;

	ctx->tx.iv   = NULL;
	ctx->tx.ivlen = 0;
	ctx->tx.key  = NULL;
	ctx->tx.keylen = 0;
	ctx->tx.secret = NULL;
	ctx->tx.secretlen = 0;

	return quic_tls_ctx_keys_alloc(ctx);
}

static inline int quic_tls_level_pkt_type(enum quic_tls_enc_level level)
{
	switch (level) {
	case QUIC_TLS_ENC_LEVEL_INITIAL:
		return QUIC_PACKET_TYPE_INITIAL;
	case QUIC_TLS_ENC_LEVEL_EARLY_DATA:
		return QUIC_PACKET_TYPE_0RTT;
	case QUIC_TLS_ENC_LEVEL_HANDSHAKE:
		return QUIC_PACKET_TYPE_HANDSHAKE;
	case QUIC_TLS_ENC_LEVEL_APP:
		return QUIC_PACKET_TYPE_SHORT;
	default:
		return -1;
	}
}

/* Return the packet type associated to <qel> encryption for <qc> QUIC connection,
 * or -1 if not found.
 */
static inline enum quic_pkt_type quic_enc_level_pkt_type(struct quic_conn *qc,
                                                         struct quic_enc_level *qel)
{
	if (qel == qc->iel)
		return QUIC_PACKET_TYPE_INITIAL;
	else if (qel == qc->hel)
		return QUIC_PACKET_TYPE_HANDSHAKE;
	else if (qel == qc->eel)
		return QUIC_PACKET_TYPE_0RTT;
	else if (qel == qc->ael)
		return QUIC_PACKET_TYPE_SHORT;
	else
		return -1;
}

/* Derive the initial secrets with <ctx> as QUIC TLS context which is the
 * cryptographic context for the first encryption level (Initial) from
 * <cid> connection ID with <cidlen> as length (in bytes) for a server or not
 * depending on <server> boolean value.
 * Return 1 if succeeded or 0 if not.
 */
static inline int qc_new_isecs(struct quic_conn *qc,
                               struct quic_tls_ctx *ctx, const struct quic_version *ver,
                               const unsigned char *cid, size_t cidlen, int server)
{
	unsigned char initial_secret[32];
	/* Initial secret to be derived for incoming packets */
	unsigned char rx_init_sec[32];
	/* Initial secret to be derived for outgoing packets */
	unsigned char tx_init_sec[32];
	struct quic_tls_secrets *rx_ctx, *tx_ctx;

	TRACE_ENTER(QUIC_EV_CONN_ISEC);
	if (!quic_initial_tls_ctx_init(ctx))
		goto err;

	if (!quic_derive_initial_secret(ctx->rx.md,
	                                ver->initial_salt, ver->initial_salt_len,
	                                initial_secret, sizeof initial_secret,
	                                cid, cidlen))
		goto err;

	if (!quic_tls_derive_initial_secrets(ctx->rx.md,
	                                     rx_init_sec, sizeof rx_init_sec,
	                                     tx_init_sec, sizeof tx_init_sec,
	                                     initial_secret, sizeof initial_secret, server))
		goto err;

	rx_ctx = &ctx->rx;
	tx_ctx = &ctx->tx;
	if (!quic_tls_derive_keys(ctx->rx.aead, ctx->rx.hp, ctx->rx.md, ver,
	                          rx_ctx->key, rx_ctx->keylen,
	                          rx_ctx->iv, rx_ctx->ivlen,
	                          rx_ctx->hp_key, sizeof rx_ctx->hp_key,
	                          rx_init_sec, sizeof rx_init_sec))
		goto err;

	if (!quic_tls_rx_ctx_init(&rx_ctx->ctx, rx_ctx->aead, rx_ctx->key))
		goto err;

	if (!quic_tls_enc_aes_ctx_init(&rx_ctx->hp_ctx, rx_ctx->hp, rx_ctx->hp_key))
		goto err;

	if (!quic_tls_derive_keys(ctx->tx.aead, ctx->tx.hp, ctx->tx.md, ver,
	                          tx_ctx->key, tx_ctx->keylen,
	                          tx_ctx->iv, tx_ctx->ivlen,
	                          tx_ctx->hp_key, sizeof tx_ctx->hp_key,
	                          tx_init_sec, sizeof tx_init_sec))
		goto err;

	if (!quic_tls_tx_ctx_init(&tx_ctx->ctx, tx_ctx->aead, tx_ctx->key))
		goto err;

	if (!quic_tls_enc_aes_ctx_init(&tx_ctx->hp_ctx, tx_ctx->hp, tx_ctx->hp_key))
		goto err;

	TRACE_LEAVE(QUIC_EV_CONN_ISEC, qc, rx_init_sec, tx_init_sec);

	return 1;

 err:
	TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ISEC);
	return 0;
}

/* Reset all members of <tls_kp> to default values. */
static inline void quic_tls_ku_reset(struct quic_tls_kp *tls_kp)
{
	tls_kp->ctx = NULL;
	tls_kp->secret = NULL;
	tls_kp->iv = NULL;
	tls_kp->key = NULL;
}

/* Release the memory allocated for all the key update key phase
 * structures for <qc> QUIC connection.
 * Always succeeds.
 */
static inline void quic_tls_ku_free(struct quic_conn *qc)
{
	EVP_CIPHER_CTX_free(qc->ku.prv_rx.ctx);
	pool_free(pool_head_quic_tls_secret, qc->ku.prv_rx.secret);
	pool_free(pool_head_quic_tls_iv,     qc->ku.prv_rx.iv);
	pool_free(pool_head_quic_tls_key,    qc->ku.prv_rx.key);
	quic_tls_ku_reset(&qc->ku.prv_rx);
	EVP_CIPHER_CTX_free(qc->ku.nxt_rx.ctx);
	pool_free(pool_head_quic_tls_secret, qc->ku.nxt_rx.secret);
	pool_free(pool_head_quic_tls_iv,     qc->ku.nxt_rx.iv);
	pool_free(pool_head_quic_tls_key,    qc->ku.nxt_rx.key);
	quic_tls_ku_reset(&qc->ku.nxt_rx);
	EVP_CIPHER_CTX_free(qc->ku.nxt_tx.ctx);
	pool_free(pool_head_quic_tls_secret, qc->ku.nxt_tx.secret);
	pool_free(pool_head_quic_tls_iv,     qc->ku.nxt_tx.iv);
	pool_free(pool_head_quic_tls_key,    qc->ku.nxt_tx.key);
	quic_tls_ku_reset(&qc->ku.nxt_tx);
}

/* Initialize <kp> key update secrets, allocating the required memory.
 * Return 1 if all the secrets could be allocated, 0 if not.
 * This is the responsibility of the caller to release the memory
 * allocated by this function in case of failure.
 */
static inline int quic_tls_kp_init(struct quic_tls_kp *kp)
{
	kp->count = 0;
	kp->pn = 0;
	kp->flags = 0;
	kp->secret = pool_alloc(pool_head_quic_tls_secret);
	kp->secretlen = QUIC_TLS_SECRET_LEN;
	kp->iv = pool_alloc(pool_head_quic_tls_iv);
	kp->ivlen = QUIC_TLS_IV_LEN;
	kp->key = pool_alloc(pool_head_quic_tls_key);
	kp->keylen = QUIC_TLS_KEY_LEN;

	return kp->secret && kp->iv && kp->key;
}

/* Initialize all the key update key phase structures for <qc>
 * QUIC connection, allocating the required memory.
 *
 * Returns 1 if succeeded, 0 if not. The caller is responsible to use
 * quic_tls_ku_free() on error to cleanup partially allocated content.
 */
static inline int quic_tls_ku_init(struct quic_conn *qc)
{
	struct quic_tls_kp *prv_rx = &qc->ku.prv_rx;
	struct quic_tls_kp *nxt_rx = &qc->ku.nxt_rx;
	struct quic_tls_kp *nxt_tx = &qc->ku.nxt_tx;

	if (!quic_tls_kp_init(prv_rx) ||
	    !quic_tls_kp_init(nxt_rx) ||
	    !quic_tls_kp_init(nxt_tx))
		goto err;

	return 1;

 err:
	return 0;
}

/* Return 1 if <qel> has RX secrets, 0 if not. */
static inline int quic_tls_has_rx_sec(const struct quic_enc_level *qel)
{
	return qel && !!qel->tls_ctx.rx.key;
}

/* Return 1 if <qel> has TX secrets, 0 if not. */
static inline int quic_tls_has_tx_sec(const struct quic_enc_level *qel)
{
	return qel && !!qel->tls_ctx.tx.key;
}

/* Return 1 if there is RX packets for <qel> QUIC encryption level, 0 if not */
static inline int qc_el_rx_pkts(struct quic_enc_level *qel)
{
	int ret;

	ret = !eb_is_empty(&qel->rx.pkts);

	return ret;
}

/* Delete all RX packets for <qel> QUIC encryption level */
static inline void qc_el_rx_pkts_del(struct quic_enc_level *qel)
{
	struct eb64_node *node;

	node = eb64_first(&qel->rx.pkts);
	while (node) {
		struct quic_rx_packet *pkt =
			eb64_entry(node, struct quic_rx_packet, pn_node);

		node = eb64_next(node);
		eb64_delete(&pkt->pn_node);
		quic_rx_packet_refdec(pkt);
	}
}

static inline void qc_list_qel_rx_pkts(struct quic_enc_level *qel)
{
	struct eb64_node *node;

	node = eb64_first(&qel->rx.pkts);
	while (node) {
		struct quic_rx_packet *pkt;

		pkt = eb64_entry(node, struct quic_rx_packet, pn_node);
		fprintf(stderr, "pkt@%p type=%d pn=%llu\n",
		        pkt, pkt->type, (ull)pkt->pn_node.key);
		node = eb64_next(node);
	}
}

/* Returns a boolean if <qc> needs to emit frames for <qel> encryption level. */
static inline int qc_need_sending(struct quic_conn *qc, struct quic_enc_level *qel)
{
	return (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) ||
	       (qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) ||
	       qel->pktns->tx.pto_probe ||
	       !LIST_ISEMPTY(&qel->pktns->tx.frms);
}

/* Return 1 if <qc> connection may probe the Initial packet number space, 0 if not.
 * This is not the case if the remote peer address is not validated and if
 * it cannot send at least QUIC_INITIAL_PACKET_MINLEN bytes.
 */
static inline int qc_may_probe_ipktns(struct quic_conn *qc)
{
	return quic_peer_validated_addr(qc) ||
		quic_may_send_bytes(qc) >= QUIC_INITIAL_PACKET_MINLEN;
}



#endif /* USE_QUIC */
#endif /* _PROTO_QUIC_TLS_H */