1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
/*
* Elastic Binary Trees - macros and structures for operations on 32bit nodes.
* Version 6.0.6
* (C) 2002-2011 - Willy Tarreau <w@1wt.eu>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _EB32TREE_H
#define _EB32TREE_H
#include "ebtree.h"
/* Return the structure of type <type> whose member <member> points to <ptr> */
#define eb32_entry(ptr, type, member) container_of(ptr, type, member)
/*
* Exported functions and macros.
* Many of them are always inlined because they are extremely small, and
* are generally called at most once or twice in a program.
*/
/* Return leftmost node in the tree, or NULL if none */
static inline struct eb32_node *eb32_first(struct eb_root *root)
{
return eb32_entry(eb_first(root), struct eb32_node, node);
}
/* Return rightmost node in the tree, or NULL if none */
static inline struct eb32_node *eb32_last(struct eb_root *root)
{
return eb32_entry(eb_last(root), struct eb32_node, node);
}
/* Return next node in the tree, or NULL if none */
static inline struct eb32_node *eb32_next(struct eb32_node *eb32)
{
return eb32_entry(eb_next(&eb32->node), struct eb32_node, node);
}
/* Return previous node in the tree, or NULL if none */
static inline struct eb32_node *eb32_prev(struct eb32_node *eb32)
{
return eb32_entry(eb_prev(&eb32->node), struct eb32_node, node);
}
/* Return next leaf node within a duplicate sub-tree, or NULL if none. */
static inline struct eb32_node *eb32_next_dup(struct eb32_node *eb32)
{
return eb32_entry(eb_next_dup(&eb32->node), struct eb32_node, node);
}
/* Return previous leaf node within a duplicate sub-tree, or NULL if none. */
static inline struct eb32_node *eb32_prev_dup(struct eb32_node *eb32)
{
return eb32_entry(eb_prev_dup(&eb32->node), struct eb32_node, node);
}
/* Return next node in the tree, skipping duplicates, or NULL if none */
static inline struct eb32_node *eb32_next_unique(struct eb32_node *eb32)
{
return eb32_entry(eb_next_unique(&eb32->node), struct eb32_node, node);
}
/* Return previous node in the tree, skipping duplicates, or NULL if none */
static inline struct eb32_node *eb32_prev_unique(struct eb32_node *eb32)
{
return eb32_entry(eb_prev_unique(&eb32->node), struct eb32_node, node);
}
/* Delete node from the tree if it was linked in. Mark the node unused. Note
* that this function relies on a non-inlined generic function: eb_delete.
*/
static inline void eb32_delete(struct eb32_node *eb32)
{
eb_delete(&eb32->node);
}
/*
* The following functions are not inlined by default. They are declared
* in eb32tree.c, which simply relies on their inline version.
*/
struct eb32_node *eb32_lookup(struct eb_root *root, u32 x);
struct eb32_node *eb32i_lookup(struct eb_root *root, s32 x);
struct eb32_node *eb32_lookup_le(struct eb_root *root, u32 x);
struct eb32_node *eb32_lookup_ge(struct eb_root *root, u32 x);
struct eb32_node *eb32_insert(struct eb_root *root, struct eb32_node *new);
struct eb32_node *eb32i_insert(struct eb_root *root, struct eb32_node *new);
/*
* The following functions are less likely to be used directly, because their
* code is larger. The non-inlined version is preferred.
*/
/* Delete node from the tree if it was linked in. Mark the node unused. */
static forceinline void __eb32_delete(struct eb32_node *eb32)
{
__eb_delete(&eb32->node);
}
/*
* Find the first occurrence of a key in the tree <root>. If none can be
* found, return NULL.
*/
static forceinline struct eb32_node *__eb32_lookup(struct eb_root *root, u32 x)
{
struct eb32_node *node;
eb_troot_t *troot;
u32 y;
int node_bit;
troot = root->b[EB_LEFT];
if (unlikely(troot == NULL))
return NULL;
while (1) {
if ((eb_gettag(troot) == EB_LEAF)) {
node = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
if (node->key == x)
return node;
else
return NULL;
}
node = container_of(eb_untag(troot, EB_NODE),
struct eb32_node, node.branches);
node_bit = node->node.bit;
y = node->key ^ x;
if (!y) {
/* Either we found the node which holds the key, or
* we have a dup tree. In the later case, we have to
* walk it down left to get the first entry.
*/
if (node_bit < 0) {
troot = node->node.branches.b[EB_LEFT];
while (eb_gettag(troot) != EB_LEAF)
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
node = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
}
return node;
}
if ((y >> node_bit) >= EB_NODE_BRANCHES)
return NULL; /* no more common bits */
troot = node->node.branches.b[(x >> node_bit) & EB_NODE_BRANCH_MASK];
}
}
/*
* Find the first occurrence of a signed key in the tree <root>. If none can
* be found, return NULL.
*/
static forceinline struct eb32_node *__eb32i_lookup(struct eb_root *root, s32 x)
{
struct eb32_node *node;
eb_troot_t *troot;
u32 key = x ^ 0x80000000;
u32 y;
int node_bit;
troot = root->b[EB_LEFT];
if (unlikely(troot == NULL))
return NULL;
while (1) {
if ((eb_gettag(troot) == EB_LEAF)) {
node = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
if (node->key == (u32)x)
return node;
else
return NULL;
}
node = container_of(eb_untag(troot, EB_NODE),
struct eb32_node, node.branches);
node_bit = node->node.bit;
y = node->key ^ x;
if (!y) {
/* Either we found the node which holds the key, or
* we have a dup tree. In the later case, we have to
* walk it down left to get the first entry.
*/
if (node_bit < 0) {
troot = node->node.branches.b[EB_LEFT];
while (eb_gettag(troot) != EB_LEAF)
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
node = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
}
return node;
}
if ((y >> node_bit) >= EB_NODE_BRANCHES)
return NULL; /* no more common bits */
troot = node->node.branches.b[(key >> node_bit) & EB_NODE_BRANCH_MASK];
}
}
/* Insert eb32_node <new> into subtree starting at node root <root>.
* Only new->key needs be set with the key. The eb32_node is returned.
* If root->b[EB_RGHT]==1, the tree may only contain unique keys.
*/
static forceinline struct eb32_node *
__eb32_insert(struct eb_root *root, struct eb32_node *new) {
struct eb32_node *old;
unsigned int side;
eb_troot_t *troot, **up_ptr;
u32 newkey; /* caching the key saves approximately one cycle */
eb_troot_t *root_right;
eb_troot_t *new_left, *new_rght;
eb_troot_t *new_leaf;
int old_node_bit;
side = EB_LEFT;
troot = root->b[EB_LEFT];
root_right = root->b[EB_RGHT];
if (unlikely(troot == NULL)) {
/* Tree is empty, insert the leaf part below the left branch */
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
new->node.leaf_p = eb_dotag(root, EB_LEFT);
new->node.node_p = NULL; /* node part unused */
return new;
}
/* The tree descent is fairly easy :
* - first, check if we have reached a leaf node
* - second, check if we have gone too far
* - third, reiterate
* Everywhere, we use <new> for the node node we are inserting, <root>
* for the node we attach it to, and <old> for the node we are
* displacing below <new>. <troot> will always point to the future node
* (tagged with its type). <side> carries the side the node <new> is
* attached to below its parent, which is also where previous node
* was attached. <newkey> carries the key being inserted.
*/
newkey = new->key;
while (1) {
if (eb_gettag(troot) == EB_LEAF) {
/* insert above a leaf */
old = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
new->node.node_p = old->node.leaf_p;
up_ptr = &old->node.leaf_p;
break;
}
/* OK we're walking down this link */
old = container_of(eb_untag(troot, EB_NODE),
struct eb32_node, node.branches);
old_node_bit = old->node.bit;
/* Stop going down when we don't have common bits anymore. We
* also stop in front of a duplicates tree because it means we
* have to insert above.
*/
if ((old_node_bit < 0) || /* we're above a duplicate tree, stop here */
(((new->key ^ old->key) >> old_node_bit) >= EB_NODE_BRANCHES)) {
/* The tree did not contain the key, so we insert <new> before the node
* <old>, and set ->bit to designate the lowest bit position in <new>
* which applies to ->branches.b[].
*/
new->node.node_p = old->node.node_p;
up_ptr = &old->node.node_p;
break;
}
/* walk down */
root = &old->node.branches;
side = (newkey >> old_node_bit) & EB_NODE_BRANCH_MASK;
troot = root->b[side];
}
new_left = eb_dotag(&new->node.branches, EB_LEFT);
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
/* We need the common higher bits between new->key and old->key.
* What differences are there between new->key and the node here ?
* NOTE that bit(new) is always < bit(root) because highest
* bit of new->key and old->key are identical here (otherwise they
* would sit on different branches).
*/
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
new->node.bit = flsnz(new->key ^ old->key) - EB_NODE_BITS;
if (new->key == old->key) {
new->node.bit = -1; /* mark as new dup tree, just in case */
if (likely(eb_gettag(root_right))) {
/* we refuse to duplicate this key if the tree is
* tagged as containing only unique keys.
*/
return old;
}
if (eb_gettag(troot) != EB_LEAF) {
/* there was already a dup tree below */
struct eb_node *ret;
ret = eb_insert_dup(&old->node, &new->node);
return container_of(ret, struct eb32_node, node);
}
/* otherwise fall through */
}
if (new->key >= old->key) {
new->node.branches.b[EB_LEFT] = troot;
new->node.branches.b[EB_RGHT] = new_leaf;
new->node.leaf_p = new_rght;
*up_ptr = new_left;
}
else {
new->node.branches.b[EB_LEFT] = new_leaf;
new->node.branches.b[EB_RGHT] = troot;
new->node.leaf_p = new_left;
*up_ptr = new_rght;
}
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
* parent is already set to <new>, and the <root>'s branch is still in
* <side>. Update the root's leaf till we have it. Note that we can also
* find the side by checking the side of new->node.node_p.
*/
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
return new;
}
/* Insert eb32_node <new> into subtree starting at node root <root>, using
* signed keys. Only new->key needs be set with the key. The eb32_node
* is returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys.
*/
static forceinline struct eb32_node *
__eb32i_insert(struct eb_root *root, struct eb32_node *new) {
struct eb32_node *old;
unsigned int side;
eb_troot_t *troot, **up_ptr;
int newkey; /* caching the key saves approximately one cycle */
eb_troot_t *root_right;
eb_troot_t *new_left, *new_rght;
eb_troot_t *new_leaf;
int old_node_bit;
side = EB_LEFT;
troot = root->b[EB_LEFT];
root_right = root->b[EB_RGHT];
if (unlikely(troot == NULL)) {
/* Tree is empty, insert the leaf part below the left branch */
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
new->node.leaf_p = eb_dotag(root, EB_LEFT);
new->node.node_p = NULL; /* node part unused */
return new;
}
/* The tree descent is fairly easy :
* - first, check if we have reached a leaf node
* - second, check if we have gone too far
* - third, reiterate
* Everywhere, we use <new> for the node node we are inserting, <root>
* for the node we attach it to, and <old> for the node we are
* displacing below <new>. <troot> will always point to the future node
* (tagged with its type). <side> carries the side the node <new> is
* attached to below its parent, which is also where previous node
* was attached. <newkey> carries a high bit shift of the key being
* inserted in order to have negative keys stored before positive
* ones.
*/
newkey = new->key + 0x80000000;
while (1) {
if (eb_gettag(troot) == EB_LEAF) {
old = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
new->node.node_p = old->node.leaf_p;
up_ptr = &old->node.leaf_p;
break;
}
/* OK we're walking down this link */
old = container_of(eb_untag(troot, EB_NODE),
struct eb32_node, node.branches);
old_node_bit = old->node.bit;
/* Stop going down when we don't have common bits anymore. We
* also stop in front of a duplicates tree because it means we
* have to insert above.
*/
if ((old_node_bit < 0) || /* we're above a duplicate tree, stop here */
(((new->key ^ old->key) >> old_node_bit) >= EB_NODE_BRANCHES)) {
/* The tree did not contain the key, so we insert <new> before the node
* <old>, and set ->bit to designate the lowest bit position in <new>
* which applies to ->branches.b[].
*/
new->node.node_p = old->node.node_p;
up_ptr = &old->node.node_p;
break;
}
/* walk down */
root = &old->node.branches;
side = (newkey >> old_node_bit) & EB_NODE_BRANCH_MASK;
troot = root->b[side];
}
new_left = eb_dotag(&new->node.branches, EB_LEFT);
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
/* We need the common higher bits between new->key and old->key.
* What differences are there between new->key and the node here ?
* NOTE that bit(new) is always < bit(root) because highest
* bit of new->key and old->key are identical here (otherwise they
* would sit on different branches).
*/
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
new->node.bit = flsnz(new->key ^ old->key) - EB_NODE_BITS;
if (new->key == old->key) {
new->node.bit = -1; /* mark as new dup tree, just in case */
if (likely(eb_gettag(root_right))) {
/* we refuse to duplicate this key if the tree is
* tagged as containing only unique keys.
*/
return old;
}
if (eb_gettag(troot) != EB_LEAF) {
/* there was already a dup tree below */
struct eb_node *ret;
ret = eb_insert_dup(&old->node, &new->node);
return container_of(ret, struct eb32_node, node);
}
/* otherwise fall through */
}
if ((s32)new->key >= (s32)old->key) {
new->node.branches.b[EB_LEFT] = troot;
new->node.branches.b[EB_RGHT] = new_leaf;
new->node.leaf_p = new_rght;
*up_ptr = new_left;
}
else {
new->node.branches.b[EB_LEFT] = new_leaf;
new->node.branches.b[EB_RGHT] = troot;
new->node.leaf_p = new_left;
*up_ptr = new_rght;
}
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
* parent is already set to <new>, and the <root>'s branch is still in
* <side>. Update the root's leaf till we have it. Note that we can also
* find the side by checking the side of new->node.node_p.
*/
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
return new;
}
#endif /* _EB32_TREE_H */
|