summaryrefslogtreecommitdiffstats
path: root/include/import/eb64tree.h
blob: d6e5db49c578a8ec6b4134ad91be9c547d6cc6aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/*
 * Elastic Binary Trees - macros and structures for operations on 64bit nodes.
 * Version 6.0.6
 * (C) 2002-2011 - Willy Tarreau <w@1wt.eu>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation, version 2.1
 * exclusively.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#ifndef _EB64TREE_H
#define _EB64TREE_H

#include "ebtree.h"


/* Return the structure of type <type> whose member <member> points to <ptr> */
#define eb64_entry(ptr, type, member) container_of(ptr, type, member)

/*
 * Exported functions and macros.
 * Many of them are always inlined because they are extremely small, and
 * are generally called at most once or twice in a program.
 */

/* Return leftmost node in the tree, or NULL if none */
static inline struct eb64_node *eb64_first(struct eb_root *root)
{
	return eb64_entry(eb_first(root), struct eb64_node, node);
}

/* Return rightmost node in the tree, or NULL if none */
static inline struct eb64_node *eb64_last(struct eb_root *root)
{
	return eb64_entry(eb_last(root), struct eb64_node, node);
}

/* Return next node in the tree, or NULL if none */
static inline struct eb64_node *eb64_next(struct eb64_node *eb64)
{
	return eb64_entry(eb_next(&eb64->node), struct eb64_node, node);
}

/* Return previous node in the tree, or NULL if none */
static inline struct eb64_node *eb64_prev(struct eb64_node *eb64)
{
	return eb64_entry(eb_prev(&eb64->node), struct eb64_node, node);
}

/* Return next leaf node within a duplicate sub-tree, or NULL if none. */
static inline struct eb64_node *eb64_next_dup(struct eb64_node *eb64)
{
	return eb64_entry(eb_next_dup(&eb64->node), struct eb64_node, node);
}

/* Return previous leaf node within a duplicate sub-tree, or NULL if none. */
static inline struct eb64_node *eb64_prev_dup(struct eb64_node *eb64)
{
	return eb64_entry(eb_prev_dup(&eb64->node), struct eb64_node, node);
}

/* Return next node in the tree, skipping duplicates, or NULL if none */
static inline struct eb64_node *eb64_next_unique(struct eb64_node *eb64)
{
	return eb64_entry(eb_next_unique(&eb64->node), struct eb64_node, node);
}

/* Return previous node in the tree, skipping duplicates, or NULL if none */
static inline struct eb64_node *eb64_prev_unique(struct eb64_node *eb64)
{
	return eb64_entry(eb_prev_unique(&eb64->node), struct eb64_node, node);
}

/* Delete node from the tree if it was linked in. Mark the node unused. Note
 * that this function relies on a non-inlined generic function: eb_delete.
 */
static inline void eb64_delete(struct eb64_node *eb64)
{
	eb_delete(&eb64->node);
}

/*
 * The following functions are not inlined by default. They are declared
 * in eb64tree.c, which simply relies on their inline version.
 */
struct eb64_node *eb64_lookup(struct eb_root *root, u64 x);
struct eb64_node *eb64i_lookup(struct eb_root *root, s64 x);
struct eb64_node *eb64_lookup_le(struct eb_root *root, u64 x);
struct eb64_node *eb64_lookup_ge(struct eb_root *root, u64 x);
struct eb64_node *eb64_insert(struct eb_root *root, struct eb64_node *new);
struct eb64_node *eb64i_insert(struct eb_root *root, struct eb64_node *new);

/*
 * The following functions are less likely to be used directly, because their
 * code is larger. The non-inlined version is preferred.
 */

/* Delete node from the tree if it was linked in. Mark the node unused. */
static forceinline void __eb64_delete(struct eb64_node *eb64)
{
	__eb_delete(&eb64->node);
}

/*
 * Find the first occurrence of a key in the tree <root>. If none can be
 * found, return NULL.
 */
static forceinline struct eb64_node *__eb64_lookup(struct eb_root *root, u64 x)
{
	struct eb64_node *node;
	eb_troot_t *troot;
	u64 y;

	troot = root->b[EB_LEFT];
	if (unlikely(troot == NULL))
		return NULL;

	while (1) {
		if ((eb_gettag(troot) == EB_LEAF)) {
			node = container_of(eb_untag(troot, EB_LEAF),
					    struct eb64_node, node.branches);
			if (node->key == x)
				return node;
			else
				return NULL;
		}
		node = container_of(eb_untag(troot, EB_NODE),
				    struct eb64_node, node.branches);

		y = node->key ^ x;
		if (!y) {
			/* Either we found the node which holds the key, or
			 * we have a dup tree. In the later case, we have to
			 * walk it down left to get the first entry.
			 */
			if (node->node.bit < 0) {
				troot = node->node.branches.b[EB_LEFT];
				while (eb_gettag(troot) != EB_LEAF)
					troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
				node = container_of(eb_untag(troot, EB_LEAF),
						    struct eb64_node, node.branches);
			}
			return node;
		}

		if ((y >> node->node.bit) >= EB_NODE_BRANCHES)
			return NULL; /* no more common bits */

		troot = node->node.branches.b[(x >> node->node.bit) & EB_NODE_BRANCH_MASK];
	}
}

/*
 * Find the first occurrence of a signed key in the tree <root>. If none can
 * be found, return NULL.
 */
static forceinline struct eb64_node *__eb64i_lookup(struct eb_root *root, s64 x)
{
	struct eb64_node *node;
	eb_troot_t *troot;
	u64 key = x ^ (1ULL << 63);
	u64 y;

	troot = root->b[EB_LEFT];
	if (unlikely(troot == NULL))
		return NULL;

	while (1) {
		if ((eb_gettag(troot) == EB_LEAF)) {
			node = container_of(eb_untag(troot, EB_LEAF),
					    struct eb64_node, node.branches);
			if (node->key == (u64)x)
				return node;
			else
				return NULL;
		}
		node = container_of(eb_untag(troot, EB_NODE),
				    struct eb64_node, node.branches);

		y = node->key ^ x;
		if (!y) {
			/* Either we found the node which holds the key, or
			 * we have a dup tree. In the later case, we have to
			 * walk it down left to get the first entry.
			 */
			if (node->node.bit < 0) {
				troot = node->node.branches.b[EB_LEFT];
				while (eb_gettag(troot) != EB_LEAF)
					troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
				node = container_of(eb_untag(troot, EB_LEAF),
						    struct eb64_node, node.branches);
			}
			return node;
		}

		if ((y >> node->node.bit) >= EB_NODE_BRANCHES)
			return NULL; /* no more common bits */

		troot = node->node.branches.b[(key >> node->node.bit) & EB_NODE_BRANCH_MASK];
	}
}

/* Insert eb64_node <new> into subtree starting at node root <root>.
 * Only new->key needs be set with the key. The eb64_node is returned.
 * If root->b[EB_RGHT]==1, the tree may only contain unique keys.
 */
static forceinline struct eb64_node *
__eb64_insert(struct eb_root *root, struct eb64_node *new) {
	struct eb64_node *old;
	unsigned int side;
	eb_troot_t *troot;
	u64 newkey; /* caching the key saves approximately one cycle */
	eb_troot_t *root_right;
	int old_node_bit;

	side = EB_LEFT;
	troot = root->b[EB_LEFT];
	root_right = root->b[EB_RGHT];
	if (unlikely(troot == NULL)) {
		/* Tree is empty, insert the leaf part below the left branch */
		root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
		new->node.leaf_p = eb_dotag(root, EB_LEFT);
		new->node.node_p = NULL; /* node part unused */
		return new;
	}

	/* The tree descent is fairly easy :
	 *  - first, check if we have reached a leaf node
	 *  - second, check if we have gone too far
	 *  - third, reiterate
	 * Everywhere, we use <new> for the node node we are inserting, <root>
	 * for the node we attach it to, and <old> for the node we are
	 * displacing below <new>. <troot> will always point to the future node
	 * (tagged with its type). <side> carries the side the node <new> is
	 * attached to below its parent, which is also where previous node
	 * was attached. <newkey> carries the key being inserted.
	 */
	newkey = new->key;

	while (1) {
		if (unlikely(eb_gettag(troot) == EB_LEAF)) {
			eb_troot_t *new_left, *new_rght;
			eb_troot_t *new_leaf, *old_leaf;

			old = container_of(eb_untag(troot, EB_LEAF),
					    struct eb64_node, node.branches);

			new_left = eb_dotag(&new->node.branches, EB_LEFT);
			new_rght = eb_dotag(&new->node.branches, EB_RGHT);
			new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
			old_leaf = eb_dotag(&old->node.branches, EB_LEAF);

			new->node.node_p = old->node.leaf_p;

			/* Right here, we have 3 possibilities :
			   - the tree does not contain the key, and we have
			     new->key < old->key. We insert new above old, on
			     the left ;

			   - the tree does not contain the key, and we have
			     new->key > old->key. We insert new above old, on
			     the right ;

			   - the tree does contain the key, which implies it
			     is alone. We add the new key next to it as a
			     first duplicate.

			   The last two cases can easily be partially merged.
			*/
			 
			if (new->key < old->key) {
				new->node.leaf_p = new_left;
				old->node.leaf_p = new_rght;
				new->node.branches.b[EB_LEFT] = new_leaf;
				new->node.branches.b[EB_RGHT] = old_leaf;
			} else {
				/* we may refuse to duplicate this key if the tree is
				 * tagged as containing only unique keys.
				 */
				if ((new->key == old->key) && eb_gettag(root_right))
					return old;

				/* new->key >= old->key, new goes the right */
				old->node.leaf_p = new_left;
				new->node.leaf_p = new_rght;
				new->node.branches.b[EB_LEFT] = old_leaf;
				new->node.branches.b[EB_RGHT] = new_leaf;

				if (new->key == old->key) {
					new->node.bit = -1;
					root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
					return new;
				}
			}
			break;
		}

		/* OK we're walking down this link */
		old = container_of(eb_untag(troot, EB_NODE),
				    struct eb64_node, node.branches);
		old_node_bit = old->node.bit;

		/* Stop going down when we don't have common bits anymore. We
		 * also stop in front of a duplicates tree because it means we
		 * have to insert above.
		 */

		if ((old_node_bit < 0) || /* we're above a duplicate tree, stop here */
		    (((new->key ^ old->key) >> old_node_bit) >= EB_NODE_BRANCHES)) {
			/* The tree did not contain the key, so we insert <new> before the node
			 * <old>, and set ->bit to designate the lowest bit position in <new>
			 * which applies to ->branches.b[].
			 */
			eb_troot_t *new_left, *new_rght;
			eb_troot_t *new_leaf, *old_node;

			new_left = eb_dotag(&new->node.branches, EB_LEFT);
			new_rght = eb_dotag(&new->node.branches, EB_RGHT);
			new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
			old_node = eb_dotag(&old->node.branches, EB_NODE);

			new->node.node_p = old->node.node_p;

			if (new->key < old->key) {
				new->node.leaf_p = new_left;
				old->node.node_p = new_rght;
				new->node.branches.b[EB_LEFT] = new_leaf;
				new->node.branches.b[EB_RGHT] = old_node;
			}
			else if (new->key > old->key) {
				old->node.node_p = new_left;
				new->node.leaf_p = new_rght;
				new->node.branches.b[EB_LEFT] = old_node;
				new->node.branches.b[EB_RGHT] = new_leaf;
			}
			else {
				struct eb_node *ret;
				ret = eb_insert_dup(&old->node, &new->node);
				return container_of(ret, struct eb64_node, node);
			}
			break;
		}

		/* walk down */
		root = &old->node.branches;

		if (sizeof(long) >= 8) {
			side = newkey >> old_node_bit;
		} else {
			/* note: provides the best code on low-register count archs
			 * such as i386.
			 */
			side = newkey;
			side >>= old_node_bit;
			if (old_node_bit >= 32) {
				side = newkey >> 32;
				side >>= old_node_bit & 0x1F;
			}
		}
		side &= EB_NODE_BRANCH_MASK;
		troot = root->b[side];
	}

	/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
	 * parent is already set to <new>, and the <root>'s branch is still in
	 * <side>. Update the root's leaf till we have it. Note that we can also
	 * find the side by checking the side of new->node.node_p.
	 */

	/* We need the common higher bits between new->key and old->key.
	 * What differences are there between new->key and the node here ?
	 * NOTE that bit(new) is always < bit(root) because highest
	 * bit of new->key and old->key are identical here (otherwise they
	 * would sit on different branches).
	 */
	// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
	new->node.bit = fls64(new->key ^ old->key) - EB_NODE_BITS;
	root->b[side] = eb_dotag(&new->node.branches, EB_NODE);

	return new;
}

/* Insert eb64_node <new> into subtree starting at node root <root>, using
 * signed keys. Only new->key needs be set with the key. The eb64_node
 * is returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys.
 */
static forceinline struct eb64_node *
__eb64i_insert(struct eb_root *root, struct eb64_node *new) {
	struct eb64_node *old;
	unsigned int side;
	eb_troot_t *troot;
	u64 newkey; /* caching the key saves approximately one cycle */
	eb_troot_t *root_right;
	int old_node_bit;

	side = EB_LEFT;
	troot = root->b[EB_LEFT];
	root_right = root->b[EB_RGHT];
	if (unlikely(troot == NULL)) {
		/* Tree is empty, insert the leaf part below the left branch */
		root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
		new->node.leaf_p = eb_dotag(root, EB_LEFT);
		new->node.node_p = NULL; /* node part unused */
		return new;
	}

	/* The tree descent is fairly easy :
	 *  - first, check if we have reached a leaf node
	 *  - second, check if we have gone too far
	 *  - third, reiterate
	 * Everywhere, we use <new> for the node node we are inserting, <root>
	 * for the node we attach it to, and <old> for the node we are
	 * displacing below <new>. <troot> will always point to the future node
	 * (tagged with its type). <side> carries the side the node <new> is
	 * attached to below its parent, which is also where previous node
	 * was attached. <newkey> carries a high bit shift of the key being
	 * inserted in order to have negative keys stored before positive
	 * ones.
	 */
	newkey = new->key ^ (1ULL << 63);

	while (1) {
		if (unlikely(eb_gettag(troot) == EB_LEAF)) {
			eb_troot_t *new_left, *new_rght;
			eb_troot_t *new_leaf, *old_leaf;

			old = container_of(eb_untag(troot, EB_LEAF),
					    struct eb64_node, node.branches);

			new_left = eb_dotag(&new->node.branches, EB_LEFT);
			new_rght = eb_dotag(&new->node.branches, EB_RGHT);
			new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
			old_leaf = eb_dotag(&old->node.branches, EB_LEAF);

			new->node.node_p = old->node.leaf_p;

			/* Right here, we have 3 possibilities :
			   - the tree does not contain the key, and we have
			     new->key < old->key. We insert new above old, on
			     the left ;

			   - the tree does not contain the key, and we have
			     new->key > old->key. We insert new above old, on
			     the right ;

			   - the tree does contain the key, which implies it
			     is alone. We add the new key next to it as a
			     first duplicate.

			   The last two cases can easily be partially merged.
			*/
			 
			if ((s64)new->key < (s64)old->key) {
				new->node.leaf_p = new_left;
				old->node.leaf_p = new_rght;
				new->node.branches.b[EB_LEFT] = new_leaf;
				new->node.branches.b[EB_RGHT] = old_leaf;
			} else {
				/* we may refuse to duplicate this key if the tree is
				 * tagged as containing only unique keys.
				 */
				if ((new->key == old->key) && eb_gettag(root_right))
					return old;

				/* new->key >= old->key, new goes the right */
				old->node.leaf_p = new_left;
				new->node.leaf_p = new_rght;
				new->node.branches.b[EB_LEFT] = old_leaf;
				new->node.branches.b[EB_RGHT] = new_leaf;

				if (new->key == old->key) {
					new->node.bit = -1;
					root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
					return new;
				}
			}
			break;
		}

		/* OK we're walking down this link */
		old = container_of(eb_untag(troot, EB_NODE),
				    struct eb64_node, node.branches);
		old_node_bit = old->node.bit;

		/* Stop going down when we don't have common bits anymore. We
		 * also stop in front of a duplicates tree because it means we
		 * have to insert above.
		 */

		if ((old_node_bit < 0) || /* we're above a duplicate tree, stop here */
		    (((new->key ^ old->key) >> old_node_bit) >= EB_NODE_BRANCHES)) {
			/* The tree did not contain the key, so we insert <new> before the node
			 * <old>, and set ->bit to designate the lowest bit position in <new>
			 * which applies to ->branches.b[].
			 */
			eb_troot_t *new_left, *new_rght;
			eb_troot_t *new_leaf, *old_node;

			new_left = eb_dotag(&new->node.branches, EB_LEFT);
			new_rght = eb_dotag(&new->node.branches, EB_RGHT);
			new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
			old_node = eb_dotag(&old->node.branches, EB_NODE);

			new->node.node_p = old->node.node_p;

			if ((s64)new->key < (s64)old->key) {
				new->node.leaf_p = new_left;
				old->node.node_p = new_rght;
				new->node.branches.b[EB_LEFT] = new_leaf;
				new->node.branches.b[EB_RGHT] = old_node;
			}
			else if ((s64)new->key > (s64)old->key) {
				old->node.node_p = new_left;
				new->node.leaf_p = new_rght;
				new->node.branches.b[EB_LEFT] = old_node;
				new->node.branches.b[EB_RGHT] = new_leaf;
			}
			else {
				struct eb_node *ret;
				ret = eb_insert_dup(&old->node, &new->node);
				return container_of(ret, struct eb64_node, node);
			}
			break;
		}

		/* walk down */
		root = &old->node.branches;

		if (sizeof(long) >= 8) {
			side = newkey >> old_node_bit;
		} else {
			/* note: provides the best code on low-register count archs
			 * such as i386.
			 */
			side = newkey;
			side >>= old_node_bit;
			if (old_node_bit >= 32) {
				side = newkey >> 32;
				side >>= old_node_bit & 0x1F;
			}
		}
		side &= EB_NODE_BRANCH_MASK;
		troot = root->b[side];
	}

	/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
	 * parent is already set to <new>, and the <root>'s branch is still in
	 * <side>. Update the root's leaf till we have it. Note that we can also
	 * find the side by checking the side of new->node.node_p.
	 */

	/* We need the common higher bits between new->key and old->key.
	 * What differences are there between new->key and the node here ?
	 * NOTE that bit(new) is always < bit(root) because highest
	 * bit of new->key and old->key are identical here (otherwise they
	 * would sit on different branches).
	 */
	// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
	new->node.bit = fls64(new->key ^ old->key) - EB_NODE_BITS;
	root->b[side] = eb_dotag(&new->node.branches, EB_NODE);

	return new;
}

#endif /* _EB64_TREE_H */