summaryrefslogtreecommitdiffstats
path: root/src/fd.c
blob: 9d34315cbe708fbdd4085c75944ad6682f247fe1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
/*
 * File descriptors management functions.
 *
 * Copyright 2000-2014 Willy Tarreau <w@1wt.eu>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * There is no direct link between the FD and the updates list. There is only a
 * bit in the fdtab[] to indicate than a file descriptor is already present in
 * the updates list. Once an fd is present in the updates list, it will have to
 * be considered even if its changes are reverted in the middle or if the fd is
 * replaced.
 *
 * The event state for an FD, as found in fdtab[].state, is maintained for each
 * direction. The state field is built this way, with R bits in the low nibble
 * and W bits in the high nibble for ease of access and debugging :
 *
 *               7    6    5    4   3    2    1    0
 *             [ 0 |  0 | RW | AW | 0 |  0 | RR | AR ]
 *
 *                   A* = active     *R = read
 *                   R* = ready      *W = write
 *
 * An FD is marked "active" when there is a desire to use it.
 * An FD is marked "ready" when it has not faced a new EAGAIN since last wake-up
 * (it is a cache of the last EAGAIN regardless of polling changes). Each poller
 * has its own "polled" state for the same fd, as stored in the polled_mask.
 *
 * We have 4 possible states for each direction based on these 2 flags :
 *
 *   +---+---+----------+---------------------------------------------+
 *   | R | A | State    | Description                                 |
 *   +---+---+----------+---------------------------------------------+
 *   | 0 | 0 | DISABLED | No activity desired, not ready.             |
 *   | 0 | 1 | ACTIVE   | Activity desired.                           |
 *   | 1 | 0 | STOPPED  | End of activity.                            |
 *   | 1 | 1 | READY    | Activity desired and reported.              |
 *   +---+---+----------+---------------------------------------------+
 *
 * The transitions are pretty simple :
 *   - fd_want_*() : set flag A
 *   - fd_stop_*() : clear flag A
 *   - fd_cant_*() : clear flag R (when facing EAGAIN)
 *   - fd_may_*()  : set flag R (upon return from poll())
 *
 * Each poller then computes its own polled state :
 *     if (A) { if (!R) P := 1 } else { P := 0 }
 *
 * The state transitions look like the diagram below.
 *
 *     may  +----------+
 *     ,----| DISABLED |    (READY=0, ACTIVE=0)
 *     |    +----------+
 *     |  want |  ^
 *     |       |  |
 *     |       v  | stop
 *     |    +----------+
 *     |    |  ACTIVE  |    (READY=0, ACTIVE=1)
 *     |    +----------+
 *     |       |  ^
 *     |  may  |  |
 *     |       v  | EAGAIN (can't)
 *     |     +--------+
 *     |     | READY  |     (READY=1, ACTIVE=1)
 *     |     +--------+
 *     |  stop |  ^
 *     |       |  |
 *     |       v  | want
 *     |    +---------+
 *     `--->| STOPPED |     (READY=1, ACTIVE=0)
 *          +---------+
 */

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/uio.h>

#if defined(USE_POLL)
#include <poll.h>
#include <errno.h>
#endif

#include <haproxy/api.h>
#include <haproxy/activity.h>
#include <haproxy/cfgparse.h>
#include <haproxy/fd.h>
#include <haproxy/global.h>
#include <haproxy/log.h>
#include <haproxy/port_range.h>
#include <haproxy/ticks.h>
#include <haproxy/tools.h>


struct fdtab *fdtab             __read_mostly = NULL;  /* array of all the file descriptors */
struct polled_mask *polled_mask __read_mostly = NULL;  /* Array for the polled_mask of each fd */
struct fdinfo *fdinfo           __read_mostly = NULL;  /* less-often used infos for file descriptors */
int totalconn;                  /* total # of terminated sessions */
int actconn;                    /* # of active sessions */

struct poller pollers[MAX_POLLERS] __read_mostly;
struct poller cur_poller           __read_mostly;
int nbpollers = 0;

volatile struct fdlist update_list[MAX_TGROUPS]; // Global update list

THREAD_LOCAL int *fd_updt  = NULL;  // FD updates list
THREAD_LOCAL int  fd_nbupdt = 0;   // number of updates in the list
THREAD_LOCAL int poller_rd_pipe = -1; // Pipe to wake the thread
int poller_wr_pipe[MAX_THREADS] __read_mostly; // Pipe to wake the threads

volatile int ha_used_fds = 0; // Number of FD we're currently using
static struct fdtab *fdtab_addr;  /* address of the allocated area containing fdtab */

/* adds fd <fd> to fd list <list> if it was not yet in it */
void fd_add_to_fd_list(volatile struct fdlist *list, int fd)
{
	int next;
	int new;
	int old;
	int last;

redo_next:
	next = HA_ATOMIC_LOAD(&fdtab[fd].update.next);
	/* Check that we're not already in the cache, and if not, lock us. */
	if (next > -2)
		goto done;
	if (next == -2)
		goto redo_next;
	if (!_HA_ATOMIC_CAS(&fdtab[fd].update.next, &next, -2))
		goto redo_next;
	__ha_barrier_atomic_store();

	new = fd;
redo_last:
	/* First, insert in the linked list */
	last = list->last;
	old = -1;

	fdtab[fd].update.prev = -2;
	/* Make sure the "prev" store is visible before we update the last entry */
	__ha_barrier_store();

	if (unlikely(last == -1)) {
		/* list is empty, try to add ourselves alone so that list->last=fd */
		if (unlikely(!_HA_ATOMIC_CAS(&list->last, &old, new)))
			    goto redo_last;

		/* list->first was necessary -1, we're guaranteed to be alone here */
		list->first = fd;
	} else {
		/* adding ourselves past the last element
		 * The CAS will only succeed if its next is -1,
		 * which means it's in the cache, and the last element.
		 */
		if (unlikely(!_HA_ATOMIC_CAS(&fdtab[last].update.next, &old, new)))
			goto redo_last;

		/* Then, update the last entry */
		list->last = fd;
	}
	__ha_barrier_store();
	/* since we're alone at the end of the list and still locked(-2),
	 * we know no one tried to add past us. Mark the end of list.
	 */
	fdtab[fd].update.prev = last;
	fdtab[fd].update.next = -1;
	__ha_barrier_store();
done:
	return;
}

/* removes fd <fd> from fd list <list> */
void fd_rm_from_fd_list(volatile struct fdlist *list, int fd)
{
#if defined(HA_HAVE_CAS_DW) || defined(HA_CAS_IS_8B)
	volatile union {
		struct fdlist_entry ent;
		uint64_t u64;
		uint32_t u32[2];
	} cur_list, next_list;
#endif
	int old;
	int new = -2;
	int prev;
	int next;
	int last;
lock_self:
#if (defined(HA_CAS_IS_8B) || defined(HA_HAVE_CAS_DW))
	next_list.ent.next = next_list.ent.prev = -2;
	cur_list.ent = *(volatile typeof(fdtab->update)*)&fdtab[fd].update;
	/* First, attempt to lock our own entries */
	do {
		/* The FD is not in the FD cache, give up */
		if (unlikely(cur_list.ent.next <= -3))
			return;
		if (unlikely(cur_list.ent.prev == -2 || cur_list.ent.next == -2))
			goto lock_self;
	} while (
#ifdef HA_CAS_IS_8B
		 unlikely(!_HA_ATOMIC_CAS(((uint64_t *)&fdtab[fd].update), (uint64_t *)&cur_list.u64, next_list.u64))
#else
		 unlikely(!_HA_ATOMIC_DWCAS(((long *)&fdtab[fd].update), (uint32_t *)&cur_list.u32, (const uint32_t *)&next_list.u32))
#endif
	    );
	next = cur_list.ent.next;
	prev = cur_list.ent.prev;

#else
lock_self_next:
	next = HA_ATOMIC_LOAD(&fdtab[fd].update.next);
	if (next == -2)
		goto lock_self_next;
	if (next <= -3)
		goto done;
	if (unlikely(!_HA_ATOMIC_CAS(&fdtab[fd].update.next, &next, -2)))
		goto lock_self_next;
lock_self_prev:
	prev = HA_ATOMIC_LOAD(&fdtab[fd].update.prev);
	if (prev == -2)
		goto lock_self_prev;
	if (unlikely(!_HA_ATOMIC_CAS(&fdtab[fd].update.prev, &prev, -2)))
		goto lock_self_prev;
#endif
	__ha_barrier_atomic_store();

	/* Now, lock the entries of our neighbours */
	if (likely(prev != -1)) {
redo_prev:
		old = fd;

		if (unlikely(!_HA_ATOMIC_CAS(&fdtab[prev].update.next, &old, new))) {
			if (unlikely(old == -2)) {
				/* Neighbour already locked, give up and
				 * retry again once he's done
				 */
				fdtab[fd].update.prev = prev;
				__ha_barrier_store();
				fdtab[fd].update.next = next;
				__ha_barrier_store();
				goto lock_self;
			}
			goto redo_prev;
		}
	}
	if (likely(next != -1)) {
redo_next:
		old = fd;
		if (unlikely(!_HA_ATOMIC_CAS(&fdtab[next].update.prev, &old, new))) {
			if (unlikely(old == -2)) {
				/* Neighbour already locked, give up and
				 * retry again once he's done
				 */
				if (prev != -1) {
					fdtab[prev].update.next = fd;
					__ha_barrier_store();
				}
				fdtab[fd].update.prev = prev;
				__ha_barrier_store();
				fdtab[fd].update.next = next;
				__ha_barrier_store();
				goto lock_self;
			}
			goto redo_next;
		}
	}
	if (list->first == fd)
		list->first = next;
	__ha_barrier_store();
	last = list->last;
	while (unlikely(last == fd && (!_HA_ATOMIC_CAS(&list->last, &last, prev))))
		__ha_compiler_barrier();
	/* Make sure we let other threads know we're no longer in cache,
	 * before releasing our neighbours.
	 */
	__ha_barrier_store();
	if (likely(prev != -1))
		fdtab[prev].update.next = next;
	__ha_barrier_store();
	if (likely(next != -1))
		fdtab[next].update.prev = prev;
	__ha_barrier_store();
	/* Ok, now we're out of the fd cache */
	fdtab[fd].update.next = -(next + 4);
	__ha_barrier_store();
done:
	return;
}

/* deletes the FD once nobody uses it anymore, as detected by the caller by its
 * thread_mask being zero and its running mask turning to zero. There is no
 * protection against concurrent accesses, it's up to the caller to make sure
 * only the last thread will call it. If called under isolation, it is safe to
 * call this from another group than the FD's. This is only for internal use,
 * please use fd_delete() instead.
 */
void _fd_delete_orphan(int fd)
{
	int tgrp = fd_tgid(fd);
	uint fd_disown;

	fd_disown = fdtab[fd].state & FD_DISOWN;
	if (fdtab[fd].state & FD_LINGER_RISK) {
		/* this is generally set when connecting to servers */
		DISGUISE(setsockopt(fd, SOL_SOCKET, SO_LINGER,
			   (struct linger *) &nolinger, sizeof(struct linger)));
	}

	/* It's expected that a close() will result in the FD disappearing from
	 * pollers, but some pollers may have some internal bookkeeping to be
	 * done prior to the call (e.g. remove references from internal tables).
	 */
	if (cur_poller.clo)
		cur_poller.clo(fd);

	/* now we're about to reset some of this FD's fields. We don't want
	 * anyone to grab it anymore and we need to make sure those which could
	 * possibly have stumbled upon it right now are leaving before we
	 * proceed. This is done in two steps. First we reset the tgid so that
	 * fd_take_tgid() and fd_grab_tgid() fail, then we wait for existing
	 * ref counts to drop. Past this point we're alone dealing with the
	 * FD's thead/running/update/polled masks.
	 */
	fd_reset_tgid(fd);

	while (_HA_ATOMIC_LOAD(&fdtab[fd].refc_tgid) != 0) // refc==0 ?
		__ha_cpu_relax();

	/* we don't want this FD anymore in the global list */
	fd_rm_from_fd_list(&update_list[tgrp - 1], fd);

	/* no more updates on this FD are relevant anymore */
	HA_ATOMIC_STORE(&fdtab[fd].update_mask, 0);
	if (fd_nbupdt > 0 && fd_updt[fd_nbupdt - 1] == fd)
		fd_nbupdt--;

	port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port);
	polled_mask[fd].poll_recv = polled_mask[fd].poll_send = 0;

	fdtab[fd].state = 0;

#ifdef DEBUG_FD
	fdtab[fd].event_count = 0;
#endif
	fdinfo[fd].port_range = NULL;
	fdtab[fd].owner = NULL;

	/* perform the close() call last as it's what unlocks the instant reuse
	 * of this FD by any other thread.
	 */
	if (!fd_disown)
		close(fd);
	_HA_ATOMIC_DEC(&ha_used_fds);
}

/* Deletes an FD from the fdsets. The file descriptor is also closed, possibly
 * asynchronously. It is safe to call it from another thread from the same
 * group as the FD's or from a thread from a different group. However if called
 * from a thread from another group, there is an extra cost involved because
 * the operation is performed under thread isolation, so doing so must be
 * reserved for ultra-rare cases (e.g. stopping a listener).
 */
void fd_delete(int fd)
{
	/* This must never happen and would definitely indicate a bug, in
	 * addition to overwriting some unexpected memory areas.
	 */
	BUG_ON(fd < 0 || fd >= global.maxsock);

	/* NOTE: The master when going into reexec mode re-closes all FDs after
	 * they were already dispatched. But we know we didn't start the polling
	 * threads so we can still close them. The masks will probably not match
	 * however so we force the value and erase the refcount if any.
	 */
	if (unlikely(global.mode & MODE_STARTING))
		fdtab[fd].refc_tgid = ti->tgid;

	/* the tgid cannot change before a complete close so we should never
	 * face the situation where we try to close an fd that was reassigned.
	 * However there is one corner case where this happens, it's when an
	 * attempt to pause a listener fails (e.g. abns), leaving the listener
	 * in fault state and it is forcefully stopped. This needs to be done
	 * under isolation, and it's quite rare (i.e. once per such FD per
	 * process). Since we'll be isolated we can clear the thread mask and
	 * close the FD ourselves.
	 */
	if (unlikely(fd_tgid(fd) != ti->tgid)) {
		int must_isolate = !thread_isolated() && !(global.mode & MODE_STOPPING);

		if (must_isolate)
			thread_isolate();

		HA_ATOMIC_STORE(&fdtab[fd].thread_mask, 0);
		HA_ATOMIC_STORE(&fdtab[fd].running_mask, 0);
		_fd_delete_orphan(fd);

		if (must_isolate)
			thread_release();
		return;
	}

	/* we must postpone removal of an FD that may currently be in use
	 * by another thread. This can happen in the following two situations:
	 *   - after a takeover, the owning thread closes the connection but
	 *     the previous one just woke up from the poller and entered
	 *     the FD handler iocb. That thread holds an entry in running_mask
	 *     and requires removal protection.
	 *   - multiple threads are accepting connections on a listener, and
	 *     one of them (or even an separate one) decides to unbind the
	 *     listener under the listener's lock while other ones still hold
	 *     the running bit.
	 * In both situations the FD is marked as unused (thread_mask = 0) and
	 * will not take new bits in its running_mask so we have the guarantee
	 * that the last thread eliminating running_mask is the one allowed to
	 * safely delete the FD. Most of the time it will be the current thread.
	 * We still need to set and check the one-shot flag FD_MUST_CLOSE
	 * to take care of the rare cases where a thread wakes up on late I/O
	 * before the thread_mask is zero, and sets its bit in the running_mask
	 * just after the current thread finishes clearing its own bit, hence
	 * the two threads see themselves as last ones (which they really are).
	 */

	HA_ATOMIC_OR(&fdtab[fd].running_mask, ti->ltid_bit);
	HA_ATOMIC_OR(&fdtab[fd].state, FD_MUST_CLOSE);
	HA_ATOMIC_STORE(&fdtab[fd].thread_mask, 0);
	if (fd_clr_running(fd) == ti->ltid_bit) {
		if (HA_ATOMIC_BTR(&fdtab[fd].state, FD_MUST_CLOSE_BIT)) {
			_fd_delete_orphan(fd);
		}
	}
}

/* makes the new fd non-blocking and clears all other O_* flags; this is meant
 * to be used on new FDs. Returns -1 on failure. The result is disguised at the
 * end because some callers need to be able to ignore it regardless of the libc
 * attributes.
 */
int fd_set_nonblock(int fd)
{
	int ret = fcntl(fd, F_SETFL, O_NONBLOCK);

	return DISGUISE(ret);
}

/* sets the close-on-exec flag on fd; returns -1 on failure. The result is
 * disguised at the end because some callers need to be able to ignore it
 * regardless of the libc attributes.
 */
int fd_set_cloexec(int fd)
{
	int flags, ret;

	flags = fcntl(fd, F_GETFD);
	flags |= FD_CLOEXEC;
	ret = fcntl(fd, F_SETFD, flags);
	return DISGUISE(ret);
}

/* Migrate a FD to a new thread <new_tid>. It is explicitly permitted to
 * migrate to another thread group, the function takes the necessary locking
 * for this. It is even permitted to migrate from a foreign group to another,
 * but the calling thread must be certain that the FD is not about to close
 * when doing so, reason why it is highly recommended that only one of the
 * FD's owners performs this operation. The polling is completely disabled.
 * The operation never fails.
 */
void fd_migrate_on(int fd, uint new_tid)
{
	struct thread_info *new_ti = &ha_thread_info[new_tid];

	/* we must be alone to work on this idle FD. If not, it means that its
	 * poller is currently waking up and is about to use it, likely to
	 * close it on shut/error, but maybe also to process any unexpectedly
	 * pending data. It's also possible that the FD was closed and
	 * reassigned to another thread group, so let's be careful.
	 */
	fd_lock_tgid(fd, new_ti->tgid);

	/* now we have exclusive access to it. From now FD belongs to tid_bit
	 * for this tgid.
	 */
	HA_ATOMIC_STORE(&fdtab[fd].thread_mask, new_ti->ltid_bit);

	/* Make sure the FD doesn't have the active bit. It is possible that
	 * the fd is polled by the thread that used to own it, the new thread
	 * is supposed to call subscribe() later, to activate polling.
	 */
	fd_stop_both(fd);

	/* we're done with it. As soon as we unlock it, other threads from the
	 * target group can manipulate it. However it may only disappear once
	 * we drop the reference.
	 */
	fd_unlock_tgid(fd);
	fd_drop_tgid(fd);
}

/*
 * Take over a FD belonging to another thread.
 * unexpected_conn is the expected owner of the fd.
 * Returns 0 on success, and -1 on failure.
 */
int fd_takeover(int fd, void *expected_owner)
{
	unsigned long old;

	/* protect ourself against a delete then an insert for the same fd,
	 * if it happens, then the owner will no longer be the expected
	 * connection.
	 */
	if (fdtab[fd].owner != expected_owner)
		return -1;

	/* we must be alone to work on this idle FD. If not, it means that its
	 * poller is currently waking up and is about to use it, likely to
	 * close it on shut/error, but maybe also to process any unexpectedly
	 * pending data. It's also possible that the FD was closed and
	 * reassigned to another thread group, so let's be careful.
	 */
	if (unlikely(!fd_grab_tgid(fd, ti->tgid)))
		return -1;

	old = 0;
	if (!HA_ATOMIC_CAS(&fdtab[fd].running_mask, &old, ti->ltid_bit)) {
		fd_drop_tgid(fd);
		return -1;
	}

	/* success, from now on it's ours */
	HA_ATOMIC_STORE(&fdtab[fd].thread_mask, ti->ltid_bit);

	/* Make sure the FD doesn't have the active bit. It is possible that
	 * the fd is polled by the thread that used to own it, the new thread
	 * is supposed to call subscribe() later, to activate polling.
	 */
	fd_stop_recv(fd);

	/* we're done with it */
	HA_ATOMIC_AND(&fdtab[fd].running_mask, ~ti->ltid_bit);

	/* no more changes planned */
	fd_drop_tgid(fd);
	return 0;
}

void updt_fd_polling(const int fd)
{
	uint tgrp = fd_take_tgid(fd);

	/* closed ? may happen */
	if (!tgrp)
		return;

	if (unlikely(tgrp != tgid && tgrp <= MAX_TGROUPS)) {
		/* Hmmm delivered an update for another group... That may
		 * happen on suspend/resume of a listener for example when
		 * the FD was not even marked for running. Let's broadcast
		 * the update.
		 */
		unsigned long update_mask = fdtab[fd].update_mask;
		int thr;

		while (!_HA_ATOMIC_CAS(&fdtab[fd].update_mask, &update_mask,
		                       _HA_ATOMIC_LOAD(&ha_tgroup_info[tgrp - 1].threads_enabled)))
			__ha_cpu_relax();

		fd_add_to_fd_list(&update_list[tgrp - 1], fd);

		thr = one_among_mask(fdtab[fd].thread_mask & ha_tgroup_info[tgrp - 1].threads_enabled,
		                     statistical_prng_range(ha_tgroup_info[tgrp - 1].count));
		thr += ha_tgroup_info[tgrp - 1].base;
		wake_thread(thr);

		fd_drop_tgid(fd);
		return;
	}

	fd_drop_tgid(fd);

	if (tg->threads_enabled == 1UL || (fdtab[fd].thread_mask & tg->threads_enabled) == ti->ltid_bit) {
		if (HA_ATOMIC_BTS(&fdtab[fd].update_mask, ti->ltid))
			return;

		fd_updt[fd_nbupdt++] = fd;
	} else {
		unsigned long update_mask = fdtab[fd].update_mask;
		do {
			if (update_mask == fdtab[fd].thread_mask) // FIXME: this works only on thread-groups 1
				return;
		} while (!_HA_ATOMIC_CAS(&fdtab[fd].update_mask, &update_mask, fdtab[fd].thread_mask));

		fd_add_to_fd_list(&update_list[tgid - 1], fd);

		if (fd_active(fd) && !(fdtab[fd].thread_mask & ti->ltid_bit)) {
			/* we need to wake up another thread to handle it immediately, any will fit,
			 * so let's pick a random one so that it doesn't always end up on the same.
			 */
			int thr = one_among_mask(fdtab[fd].thread_mask & tg->threads_enabled,
			                         statistical_prng_range(tg->count));
			thr += tg->base;
			wake_thread(thr);
		}
	}
}

/* Update events seen for FD <fd> and its state if needed. This should be
 * called by the poller, passing FD_EV_*_{R,W,RW} in <evts>. FD_EV_ERR_*
 * doesn't need to also pass FD_EV_SHUT_*, it's implied. ERR and SHUT are
 * allowed to be reported regardless of R/W readiness. Returns one of
 * FD_UPDT_*.
 */
int fd_update_events(int fd, uint evts)
{
	unsigned long locked;
	uint old, new;
	uint new_flags, must_stop;
	ulong rmask, tmask;

	_HA_ATOMIC_AND(&th_ctx->flags, ~TH_FL_STUCK); // this thread is still running

	if (unlikely(!fd_grab_tgid(fd, ti->tgid))) {
		/* the FD changed to another tgid, we can't safely
		 * check it anymore. The bits in the masks are not
		 * ours anymore and we're not allowed to touch them.
		 * Ours have already been cleared and the FD was
		 * closed in between so we can safely leave now.
		 */
		activity[tid].poll_drop_fd++;
		return FD_UPDT_CLOSED;
	}

	/* Do not take running_mask if not strictly needed (will trigger a
	 * cosmetic BUG_ON() in fd_insert() anyway if done).
	 */
	tmask = _HA_ATOMIC_LOAD(&fdtab[fd].thread_mask);
	if (!(tmask & ti->ltid_bit))
		goto do_update;

	HA_ATOMIC_OR(&fdtab[fd].running_mask, ti->ltid_bit);

	/* From this point, our bit may possibly be in thread_mask, but it may
	 * still vanish, either because a takeover completed just before taking
	 * the bit above with the new owner deleting the FD, or because a
	 * takeover started just before taking the bit. In order to make sure a
	 * started takeover is complete, we need to verify that all bits of
	 * running_mask are present in thread_mask, since takeover first takes
	 * running then atomically replaces thread_mask. Once it's stable, if
	 * our bit remains there, no further takeover may happen because we
	 * hold running, but if our bit is not there it means we've lost the
	 * takeover race and have to decline touching the FD. Regarding the
	 * risk of deletion, our bit in running_mask prevents fd_delete() from
	 * finalizing the close, and the caller will leave the FD with a zero
	 * thread_mask and the FD_MUST_CLOSE flag set. It will then be our
	 * responsibility to close it.
	 */
	do {
		rmask = _HA_ATOMIC_LOAD(&fdtab[fd].running_mask);
		tmask = _HA_ATOMIC_LOAD(&fdtab[fd].thread_mask);
		rmask &= ~ti->ltid_bit;
	} while ((rmask & ~tmask) && (tmask & ti->ltid_bit));

	/* Now tmask is stable. Do nothing if the FD was taken over under us */

	if (!(tmask & ti->ltid_bit)) {
		/* a takeover has started */
		activity[tid].poll_skip_fd++;

		if (fd_clr_running(fd) == ti->ltid_bit)
			goto closed_or_migrated;

		goto do_update;
	}

	/* with running we're safe now, we can drop the reference */
	fd_drop_tgid(fd);

	locked = (tmask != ti->ltid_bit);

	/* OK now we are guaranteed that our thread_mask was present and
	 * that we're allowed to update the FD.
	 */

	new_flags =
	      ((evts & FD_EV_READY_R) ? FD_POLL_IN  : 0) |
	      ((evts & FD_EV_READY_W) ? FD_POLL_OUT : 0) |
	      ((evts & FD_EV_SHUT_R)  ? FD_POLL_HUP : 0) |
	      ((evts & FD_EV_ERR_RW)  ? FD_POLL_ERR : 0);

	/* SHUTW reported while FD was active for writes is an error */
	if ((fdtab[fd].state & FD_EV_ACTIVE_W) && (evts & FD_EV_SHUT_W))
		new_flags |= FD_POLL_ERR;

	/* compute the inactive events reported late that must be stopped */
	must_stop = 0;
	if (unlikely(!fd_active(fd))) {
		/* both sides stopped */
		must_stop = FD_POLL_IN | FD_POLL_OUT;
	}
	else if (unlikely(!fd_recv_active(fd) && (evts & (FD_EV_READY_R | FD_EV_SHUT_R | FD_EV_ERR_RW)))) {
		/* only send remains */
		must_stop = FD_POLL_IN;
	}
	else if (unlikely(!fd_send_active(fd) && (evts & (FD_EV_READY_W | FD_EV_SHUT_W | FD_EV_ERR_RW)))) {
		/* only recv remains */
		must_stop = FD_POLL_OUT;
	}

	if (new_flags & (FD_POLL_IN | FD_POLL_HUP | FD_POLL_ERR))
		new_flags |= FD_EV_READY_R;

	if (new_flags & (FD_POLL_OUT | FD_POLL_ERR))
		new_flags |= FD_EV_READY_W;

	old = fdtab[fd].state;
	new = (old & ~FD_POLL_UPDT_MASK) | new_flags;

	if (unlikely(locked)) {
		/* Locked FDs (those with more than 2 threads) are atomically updated */
		while (unlikely(new != old && !_HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)))
			new = (old & ~FD_POLL_UPDT_MASK) | new_flags;
	} else {
		if (new != old)
			fdtab[fd].state = new;
	}

	if (fdtab[fd].iocb && fd_active(fd)) {
		fdtab[fd].iocb(fd);
	}

	/*
	 * We entered iocb with running set and with the valid tgid.
	 * Since then, this is what could have happened:
	 *   - another thread tried to close the FD (e.g. timeout task from
	 *     another one that owns it). We still have running set, but not
	 *     tmask. We must call fd_clr_running() then _fd_delete_orphan()
	 *     if we were the last one.
	 *
	 *   - the iocb tried to close the FD => bit no more present in running,
	 *     nothing to do. If it managed to close it, the poller's ->clo()
	 *     has already been called.
	 *
	 *   - after we closed, the FD was reassigned to another thread in
	 *     another group => running not present, tgid differs, nothing to
	 *     do because if it got reassigned it indicates it was already
	 *     closed.
	 *
	 * There's no risk of takeover of the valid FD here during this period.
	 * Also if we still have running, immediately after we release it, the
	 * events above might instantly happen due to another thread taking
	 * over.
	 *
	 * As such, the only cases where the FD is still relevant are:
	 *   - tgid still set and running still set (most common)
	 *   - tgid still valid but running cleared due to fd_delete(): we may
	 *     still need to stop polling otherwise we may keep it enabled
	 *     while waiting for other threads to close it.
	 * And given that we may need to program a tentative update in case we
	 * don't immediately close, it's easier to grab the tgid during the
	 * whole check.
	 */

	if (!fd_grab_tgid(fd, tgid))
		return FD_UPDT_CLOSED;

	tmask = _HA_ATOMIC_LOAD(&fdtab[fd].thread_mask);

	/* another thread might have attempted to close this FD in the mean
	 * time (e.g. timeout task) striking on a previous thread and closing.
	 * This is detected by us being the last owners of a running_mask bit,
	 * and the thread_mask being zero. At the moment we release the running
	 * bit, a takeover may also happen, so in practice we check for our loss
	 * of the thread_mask bitboth thread_mask and running_mask being 0 after
	 * we remove ourselves last. There is no risk the FD gets reassigned
	 * to a different group since it's not released until the real close()
	 * in _fd_delete_orphan().
	 */
	if (fd_clr_running(fd) == ti->ltid_bit && !(tmask & ti->ltid_bit))
		goto closed_or_migrated;

	/* we had to stop this FD and it still must be stopped after the I/O
	 * cb's changes, so let's program an update for this.
	 */
	if (must_stop && !(fdtab[fd].update_mask & ti->ltid_bit)) {
		if (((must_stop & FD_POLL_IN)  && !fd_recv_active(fd)) ||
		    ((must_stop & FD_POLL_OUT) && !fd_send_active(fd)))
			if (!HA_ATOMIC_BTS(&fdtab[fd].update_mask, ti->ltid))
				fd_updt[fd_nbupdt++] = fd;
	}

	fd_drop_tgid(fd);
	return FD_UPDT_DONE;

 closed_or_migrated:
	/* We only come here once we've last dropped running and the FD is
	 * not for us as per !(tmask & tid_bit). It may imply we're
	 * responsible for closing it. Otherwise it's just a migration.
	 */
	if (HA_ATOMIC_BTR(&fdtab[fd].state, FD_MUST_CLOSE_BIT)) {
		fd_drop_tgid(fd);
		_fd_delete_orphan(fd);
		return FD_UPDT_CLOSED;
	}

	/* So we were alone, no close bit, at best the FD was migrated, at
	 * worst it's in the process of being closed by another thread. We must
	 * be ultra-careful as it can be re-inserted by yet another thread as
	 * the result of socket() or accept(). Let's just tell the poller the
	 * FD was lost. If it was closed it was already removed and this will
	 * only cost an update for nothing.
	 */

 do_update:
	/* The FD is not closed but we don't want the poller to wake up for
	 * it anymore.
	 */
	if (!HA_ATOMIC_BTS(&fdtab[fd].update_mask, ti->ltid))
		fd_updt[fd_nbupdt++] = fd;

	fd_drop_tgid(fd);
	return FD_UPDT_MIGRATED;
}

/* This is used by pollers at boot time to re-register desired events for
 * all FDs after new pollers have been created. It doesn't do much, it checks
 * that their thread group matches the one in argument, and that the thread
 * mask matches at least one of the bits in the mask, and if so, marks the FD
 * as updated.
 */
void fd_reregister_all(int tgrp, ulong mask)
{
	int fd;

	for (fd = 0; fd < global.maxsock; fd++) {
		if (!fdtab[fd].owner)
			continue;

		/* make sure we don't register other tgroups' FDs. We just
		 * avoid needlessly taking the lock if not needed.
		 */
		if (!(_HA_ATOMIC_LOAD(&fdtab[fd].thread_mask) & mask) ||
		    !fd_grab_tgid(fd, tgrp))
			continue;  // was not for us anyway

		if (_HA_ATOMIC_LOAD(&fdtab[fd].thread_mask) & mask)
			updt_fd_polling(fd);
		fd_drop_tgid(fd);
	}
}

/* Tries to send <npfx> parts from <prefix> followed by <nmsg> parts from <msg>
 * optionally followed by a newline if <nl> is non-null, to file descriptor
 * <fd>. The message is sent atomically using writev(). It may be truncated to
 * <maxlen> bytes if <maxlen> is non-null. There is no distinction between the
 * two lists, it's just a convenience to help the caller prepend some prefixes
 * when necessary. It takes the fd's lock to make sure no other thread will
 * write to the same fd in parallel. Returns the number of bytes sent, or <=0
 * on failure. A limit to 31 total non-empty segments is enforced. The caller
 * is responsible for taking care of making the fd non-blocking.
 */
ssize_t fd_write_frag_line(int fd, size_t maxlen, const struct ist pfx[], size_t npfx, const struct ist msg[], size_t nmsg, int nl)
{
	struct iovec iovec[32];
	size_t sent = 0;
	int vec = 0;
	int attempts = 0;

	if (!maxlen)
		maxlen = ~0;

	/* keep one char for a possible trailing '\n' in any case */
	maxlen--;

	/* make an iovec from the concatenation of all parts of the original
	 * message. Skip empty fields and truncate the whole message to maxlen,
	 * leaving one spare iovec for the '\n'.
	 */
	while (vec < (sizeof(iovec) / sizeof(iovec[0]) - 1)) {
		if (!npfx) {
			pfx = msg;
			npfx = nmsg;
			nmsg = 0;
			if (!npfx)
				break;
		}

		iovec[vec].iov_base = pfx->ptr;
		iovec[vec].iov_len  = MIN(maxlen, pfx->len);
		maxlen -= iovec[vec].iov_len;
		if (iovec[vec].iov_len)
			vec++;
		pfx++; npfx--;
	};

	if (nl) {
		iovec[vec].iov_base = "\n";
		iovec[vec].iov_len  = 1;
		vec++;
	}

	/* make sure we never interleave writes and we never block. This means
	 * we prefer to fail on collision than to block. But we don't want to
	 * lose too many logs so we just perform a few lock attempts then give
	 * up.
	 */

	while (HA_ATOMIC_BTS(&fdtab[fd].state, FD_EXCL_SYSCALL_BIT)) {
		if (++attempts >= 200) {
			/* so that the caller knows the message couldn't be delivered */
			sent = -1;
			errno = EAGAIN;
			goto leave;
		}
		ha_thread_relax();
	}

	if (unlikely(!(fdtab[fd].state & FD_INITIALIZED))) {
		HA_ATOMIC_OR(&fdtab[fd].state, FD_INITIALIZED);
		if (!isatty(fd))
			fd_set_nonblock(fd);
	}
	sent = writev(fd, iovec, vec);
	HA_ATOMIC_BTR(&fdtab[fd].state, FD_EXCL_SYSCALL_BIT);

 leave:
	/* sent > 0 if the message was delivered */
	return sent;
}

#if defined(USE_CLOSEFROM)
void my_closefrom(int start)
{
	closefrom(start);
}

#elif defined(USE_POLL)
/* This is a portable implementation of closefrom(). It closes all open file
 * descriptors starting at <start> and above. It relies on the fact that poll()
 * will return POLLNVAL for each invalid (hence close) file descriptor passed
 * in argument in order to skip them. It acts with batches of FDs and will
 * typically perform one poll() call per 1024 FDs so the overhead is low in
 * case all FDs have to be closed.
 */
void my_closefrom(int start)
{
	struct pollfd poll_events[1024];
	struct rlimit limit;
	int nbfds, fd, ret, idx;
	int step, next;

	if (getrlimit(RLIMIT_NOFILE, &limit) == 0)
		step = nbfds = limit.rlim_cur;
	else
		step = nbfds = 0;

	if (nbfds <= 0) {
		/* set safe limit */
		nbfds = 1024;
		step = 256;
	}

	if (step > sizeof(poll_events) / sizeof(poll_events[0]))
		step = sizeof(poll_events) / sizeof(poll_events[0]);

	while (start < nbfds) {
		next = (start / step + 1) * step;

		for (fd = start; fd < next && fd < nbfds; fd++) {
			poll_events[fd - start].fd = fd;
			poll_events[fd - start].events = 0;
		}

		do {
			ret = poll(poll_events, fd - start, 0);
			if (ret >= 0)
				break;
		} while (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINTR || errno == ENOMEM);

		if (ret)
			ret = fd - start;

		for (idx = 0; idx < ret; idx++) {
			if (poll_events[idx].revents & POLLNVAL)
				continue; /* already closed */

			fd = poll_events[idx].fd;
			close(fd);
		}
		start = next;
	}
}

#else // defined(USE_POLL)

/* This is a portable implementation of closefrom(). It closes all open file
 * descriptors starting at <start> and above. This is a naive version for use
 * when the operating system provides no alternative.
 */
void my_closefrom(int start)
{
	struct rlimit limit;
	int nbfds;

	if (getrlimit(RLIMIT_NOFILE, &limit) == 0)
		nbfds = limit.rlim_cur;
	else
		nbfds = 0;

	if (nbfds <= 0)
		nbfds = 1024; /* safe limit */

	while (start < nbfds)
		close(start++);
}
#endif // defined(USE_POLL)

/* Sets the RLIMIT_NOFILE setting to <new_limit> and returns the previous one
 * in <old_limit> if the pointer is not NULL, even if set_rlimit() fails. The
 * two pointers may point to the same variable as the copy happens after
 * setting the new value. The value is only changed if at least one of the new
 * limits is strictly higher than the current one, otherwise returns 0 without
 * changing anything. The getrlimit() or setrlimit() syscall return value is
 * returned and errno is preserved.
 */
int raise_rlim_nofile(struct rlimit *old_limit, struct rlimit *new_limit)
{
	struct rlimit limit = { };
	int ret = 0;

	ret = getrlimit(RLIMIT_NOFILE, &limit);

	if (ret == 0 &&
	    (limit.rlim_max < new_limit->rlim_max ||
	     limit.rlim_cur < new_limit->rlim_cur)) {
		ret = setrlimit(RLIMIT_NOFILE, new_limit);
	}

	if (old_limit)
		*old_limit = limit;

	return ret;
}

/* Computes the bounded poll() timeout based on the next expiration timer <next>
 * by bounding it to MAX_DELAY_MS. <next> may equal TICK_ETERNITY. The pollers
 * just needs to call this function right before polling to get their timeout
 * value. Timeouts that are already expired (possibly due to a pending event)
 * are accounted for in activity.poll_exp.
 */
int compute_poll_timeout(int next)
{
	int wait_time;

	if (!tick_isset(next))
		wait_time = MAX_DELAY_MS;
	else if (tick_is_expired(next, now_ms)) {
		activity[tid].poll_exp++;
		wait_time = 0;
	}
	else {
		wait_time = TICKS_TO_MS(tick_remain(now_ms, next)) + 1;
		if (wait_time > MAX_DELAY_MS)
			wait_time = MAX_DELAY_MS;
	}
	return wait_time;
}

/* Handle the return of the poller, which consists in calculating the idle
 * time, saving a few clocks, marking the thread harmful again etc. All that
 * is some boring stuff that all pollers have to do anyway.
 */
void fd_leaving_poll(int wait_time, int status)
{
	clock_leaving_poll(wait_time, status);

	thread_harmless_end();
	thread_idle_end();

	_HA_ATOMIC_AND(&th_ctx->flags, ~TH_FL_SLEEPING);
}

/* disable the specified poller */
void disable_poller(const char *poller_name)
{
	int p;

	for (p = 0; p < nbpollers; p++)
		if (strcmp(pollers[p].name, poller_name) == 0)
			pollers[p].pref = 0;
}

void poller_pipe_io_handler(int fd)
{
	char buf[1024];
	/* Flush the pipe */
	while (read(fd, buf, sizeof(buf)) > 0);
	fd_cant_recv(fd);
}

/* allocate the per-thread fd_updt thus needs to be called early after
 * thread creation.
 */
static int alloc_pollers_per_thread()
{
	fd_updt = calloc(global.maxsock, sizeof(*fd_updt));
	return fd_updt != NULL;
}

/* Initialize the pollers per thread.*/
static int init_pollers_per_thread()
{
	int mypipe[2];

	if (pipe(mypipe) < 0)
		return 0;

	poller_rd_pipe = mypipe[0];
	poller_wr_pipe[tid] = mypipe[1];
	fd_set_nonblock(poller_rd_pipe);
	fd_insert(poller_rd_pipe, poller_pipe_io_handler, poller_pipe_io_handler, tgid, ti->ltid_bit);
	fd_insert(poller_wr_pipe[tid], poller_pipe_io_handler, poller_pipe_io_handler, tgid, ti->ltid_bit);
	fd_want_recv(poller_rd_pipe);
	fd_stop_both(poller_wr_pipe[tid]);
	return 1;
}

/* Deinitialize the pollers per thread */
static void deinit_pollers_per_thread()
{
	/* rd and wr are init at the same place, but only rd is init to -1, so
	  we rely to rd to close.   */
	if (poller_rd_pipe > -1) {
		fd_delete(poller_rd_pipe);
		poller_rd_pipe = -1;
		fd_delete(poller_wr_pipe[tid]);
		poller_wr_pipe[tid] = -1;
	}
}

/* Release the pollers per thread, to be called late */
static void free_pollers_per_thread()
{
	fd_nbupdt = 0;
	ha_free(&fd_updt);
}

/*
 * Initialize the pollers till the best one is found.
 * If none works, returns 0, otherwise 1.
 */
int init_pollers()
{
	int p;
	struct poller *bp;

	if ((fdtab_addr = calloc(global.maxsock, sizeof(*fdtab) + 64)) == NULL) {
		ha_alert("Not enough memory to allocate %d entries for fdtab!\n", global.maxsock);
		goto fail_tab;
	}

	/* always provide an aligned fdtab */
	fdtab = (struct fdtab*)((((size_t)fdtab_addr) + 63) & -(size_t)64);

	if ((polled_mask = calloc(global.maxsock, sizeof(*polled_mask))) == NULL) {
		ha_alert("Not enough memory to allocate %d entries for polled_mask!\n", global.maxsock);
		goto fail_polledmask;
	}

	if ((fdinfo = calloc(global.maxsock, sizeof(*fdinfo))) == NULL) {
		ha_alert("Not enough memory to allocate %d entries for fdinfo!\n", global.maxsock);
		goto fail_info;
	}

	for (p = 0; p < MAX_TGROUPS; p++)
		update_list[p].first = update_list[p].last = -1;

	for (p = 0; p < global.maxsock; p++) {
		/* Mark the fd as out of the fd cache */
		fdtab[p].update.next = -3;
	}

	do {
		bp = NULL;
		for (p = 0; p < nbpollers; p++)
			if (!bp || (pollers[p].pref > bp->pref))
				bp = &pollers[p];

		if (!bp || bp->pref == 0)
			break;

		if (bp->init(bp)) {
			memcpy(&cur_poller, bp, sizeof(*bp));
			return 1;
		}
	} while (!bp || bp->pref == 0);

	free(fdinfo);
 fail_info:
	free(polled_mask);
 fail_polledmask:
	free(fdtab_addr);
 fail_tab:
	return 0;
}

/*
 * Deinitialize the pollers.
 */
void deinit_pollers() {

	struct poller *bp;
	int p;

	for (p = 0; p < nbpollers; p++) {
		bp = &pollers[p];

		if (bp && bp->pref)
			bp->term(bp);
	}

	ha_free(&fdinfo);
	ha_free(&fdtab_addr);
	ha_free(&polled_mask);
}

/*
 * Lists the known pollers on <out>.
 * Should be performed only before initialization.
 */
int list_pollers(FILE *out)
{
	int p;
	int last, next;
	int usable;
	struct poller *bp;

	fprintf(out, "Available polling systems :\n");

	usable = 0;
	bp = NULL;
	last = next = -1;
	while (1) {
		for (p = 0; p < nbpollers; p++) {
			if ((next < 0 || pollers[p].pref > next)
			    && (last < 0 || pollers[p].pref < last)) {
				next = pollers[p].pref;
				if (!bp || (pollers[p].pref > bp->pref))
					bp = &pollers[p];
			}
		}

		if (next == -1)
			break;

		for (p = 0; p < nbpollers; p++) {
			if (pollers[p].pref == next) {
				fprintf(out, " %10s : ", pollers[p].name);
				if (pollers[p].pref == 0)
					fprintf(out, "disabled, ");
				else
					fprintf(out, "pref=%3d, ", pollers[p].pref);
				if (pollers[p].test(&pollers[p])) {
					fprintf(out, " test result OK");
					if (next > 0)
						usable++;
				} else {
					fprintf(out, " test result FAILED");
					if (bp == &pollers[p])
						bp = NULL;
				}
				fprintf(out, "\n");
			}
		}
		last = next;
		next = -1;
	};
	fprintf(out, "Total: %d (%d usable), will use %s.\n", nbpollers, usable, bp ? bp->name : "none");
	return 0;
}

/*
 * Some pollers may lose their connection after a fork(). It may be necessary
 * to create initialize part of them again. Returns 0 in case of failure,
 * otherwise 1. The fork() function may be NULL if unused. In case of error,
 * the the current poller is destroyed and the caller is responsible for trying
 * another one by calling init_pollers() again.
 */
int fork_poller()
{
	int fd;
	for (fd = 0; fd < global.maxsock; fd++) {
		if (fdtab[fd].owner) {
			HA_ATOMIC_OR(&fdtab[fd].state, FD_CLONED);
		}
	}

	if (cur_poller.fork) {
		if (cur_poller.fork(&cur_poller))
			return 1;
		cur_poller.term(&cur_poller);
		return 0;
	}
	return 1;
}

/* config parser for global "tune.fd.edge-triggered", accepts "on" or "off" */
static int cfg_parse_tune_fd_edge_triggered(char **args, int section_type, struct proxy *curpx,
                                      const struct proxy *defpx, const char *file, int line,
                                      char **err)
{
	if (too_many_args(1, args, err, NULL))
		return -1;

	if (strcmp(args[1], "on") == 0)
		global.tune.options |= GTUNE_FD_ET;
	else if (strcmp(args[1], "off") == 0)
		global.tune.options &= ~GTUNE_FD_ET;
	else {
		memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
		return -1;
	}
	return 0;
}

/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
	{ CFG_GLOBAL, "tune.fd.edge-triggered", cfg_parse_tune_fd_edge_triggered, KWF_EXPERIMENTAL },
	{ 0, NULL, NULL }
}};

INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);

REGISTER_PER_THREAD_ALLOC(alloc_pollers_per_thread);
REGISTER_PER_THREAD_INIT(init_pollers_per_thread);
REGISTER_PER_THREAD_DEINIT(deinit_pollers_per_thread);
REGISTER_PER_THREAD_FREE(free_pollers_per_thread);

/*
 * Local variables:
 *  c-indent-level: 8
 *  c-basic-offset: 8
 * End:
 */