1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
/*
* Consistent Hash implementation
* Please consult this very well detailed article for more information :
* http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-consistent-hashing/
*
* Our implementation has to support both weighted hashing and weighted round
* robin because we'll use it to replace the previous map-based implementation
* which offered both algorithms.
*
* Copyright 2000-2010 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <import/eb32tree.h>
#include <haproxy/api.h>
#include <haproxy/backend.h>
#include <haproxy/errors.h>
#include <haproxy/queue.h>
#include <haproxy/server-t.h>
#include <haproxy/tools.h>
/* Return next tree node after <node> which must still be in the tree, or be
* NULL. Lookup wraps around the end to the beginning. If the next node is the
* same node, return NULL. This is designed to find a valid next node before
* deleting one from the tree.
*/
static inline struct eb32_node *chash_skip_node(struct eb_root *root, struct eb32_node *node)
{
struct eb32_node *stop = node;
if (!node)
return NULL;
node = eb32_next(node);
if (!node)
node = eb32_first(root);
if (node == stop)
return NULL;
return node;
}
/* Remove all of a server's entries from its tree. This may be used when
* setting a server down.
*/
static inline void chash_dequeue_srv(struct server *s)
{
while (s->lb_nodes_now > 0) {
if (s->lb_nodes_now >= s->lb_nodes_tot) // should always be false anyway
s->lb_nodes_now = s->lb_nodes_tot;
s->lb_nodes_now--;
if (s->proxy->lbprm.chash.last == &s->lb_nodes[s->lb_nodes_now].node)
s->proxy->lbprm.chash.last = chash_skip_node(s->lb_tree, s->proxy->lbprm.chash.last);
eb32_delete(&s->lb_nodes[s->lb_nodes_now].node);
}
}
/* Adjust the number of entries of a server in its tree. The server must appear
* as many times as its weight indicates it. If it's there too often, we remove
* the last occurrences. If it's not there enough, we add more occurrences. To
* remove a server from the tree, normally call this with eweight=0.
*
* The server's lock and the lbprm's lock must be held.
*/
static inline void chash_queue_dequeue_srv(struct server *s)
{
while (s->lb_nodes_now > s->next_eweight) {
if (s->lb_nodes_now >= s->lb_nodes_tot) // should always be false anyway
s->lb_nodes_now = s->lb_nodes_tot;
s->lb_nodes_now--;
if (s->proxy->lbprm.chash.last == &s->lb_nodes[s->lb_nodes_now].node)
s->proxy->lbprm.chash.last = chash_skip_node(s->lb_tree, s->proxy->lbprm.chash.last);
eb32_delete(&s->lb_nodes[s->lb_nodes_now].node);
}
/* Attempt to increase the total number of nodes, if the user
* increased the weight beyond the original weight
*/
if (s->lb_nodes_tot < s->next_eweight) {
struct tree_occ *new_nodes;
/* First we need to remove all server's entries from its tree
* because the realloc will change all nodes pointers */
chash_dequeue_srv(s);
new_nodes = realloc(s->lb_nodes, s->next_eweight * sizeof(*new_nodes));
if (new_nodes) {
unsigned int j;
s->lb_nodes = new_nodes;
memset(&s->lb_nodes[s->lb_nodes_tot], 0,
(s->next_eweight - s->lb_nodes_tot) * sizeof(*s->lb_nodes));
for (j = s->lb_nodes_tot; j < s->next_eweight; j++) {
s->lb_nodes[j].server = s;
s->lb_nodes[j].node.key = full_hash(s->puid * SRV_EWGHT_RANGE + j);
}
s->lb_nodes_tot = s->next_eweight;
}
}
while (s->lb_nodes_now < s->next_eweight) {
if (s->lb_nodes_now >= s->lb_nodes_tot) // should always be false anyway
break;
if (s->proxy->lbprm.chash.last == &s->lb_nodes[s->lb_nodes_now].node)
s->proxy->lbprm.chash.last = chash_skip_node(s->lb_tree, s->proxy->lbprm.chash.last);
eb32_insert(s->lb_tree, &s->lb_nodes[s->lb_nodes_now].node);
s->lb_nodes_now++;
}
}
/* This function updates the server trees according to server <srv>'s new
* state. It should be called when server <srv>'s status changes to down.
* It is not important whether the server was already down or not. It is not
* important either that the new state is completely down (the caller may not
* know all the variables of a server's state).
*
* The server's lock must be held. The lbprm lock will be used.
*/
static void chash_set_server_status_down(struct server *srv)
{
struct proxy *p = srv->proxy;
if (!srv_lb_status_changed(srv))
return;
HA_RWLOCK_WRLOCK(LBPRM_LOCK, &p->lbprm.lock);
if (srv_willbe_usable(srv))
goto out_update_state;
if (!srv_currently_usable(srv))
/* server was already down */
goto out_update_backend;
if (srv->flags & SRV_F_BACKUP) {
p->lbprm.tot_wbck -= srv->cur_eweight;
p->srv_bck--;
if (srv == p->lbprm.fbck) {
/* we lost the first backup server in a single-backup
* configuration, we must search another one.
*/
struct server *srv2 = p->lbprm.fbck;
do {
srv2 = srv2->next;
} while (srv2 &&
!((srv2->flags & SRV_F_BACKUP) &&
srv_willbe_usable(srv2)));
p->lbprm.fbck = srv2;
}
} else {
p->lbprm.tot_wact -= srv->cur_eweight;
p->srv_act--;
}
chash_dequeue_srv(srv);
out_update_backend:
/* check/update tot_used, tot_weight */
update_backend_weight(p);
out_update_state:
srv_lb_commit_status(srv);
HA_RWLOCK_WRUNLOCK(LBPRM_LOCK, &p->lbprm.lock);
}
/* This function updates the server trees according to server <srv>'s new
* state. It should be called when server <srv>'s status changes to up.
* It is not important whether the server was already down or not. It is not
* important either that the new state is completely UP (the caller may not
* know all the variables of a server's state). This function will not change
* the weight of a server which was already up.
*
* The server's lock must be held. The lbprm lock will be used.
*/
static void chash_set_server_status_up(struct server *srv)
{
struct proxy *p = srv->proxy;
if (!srv_lb_status_changed(srv))
return;
HA_RWLOCK_WRLOCK(LBPRM_LOCK, &p->lbprm.lock);
if (!srv_willbe_usable(srv))
goto out_update_state;
if (srv_currently_usable(srv))
/* server was already up */
goto out_update_backend;
if (srv->flags & SRV_F_BACKUP) {
p->lbprm.tot_wbck += srv->next_eweight;
p->srv_bck++;
if (!(p->options & PR_O_USE_ALL_BK)) {
if (!p->lbprm.fbck) {
/* there was no backup server anymore */
p->lbprm.fbck = srv;
} else {
/* we may have restored a backup server prior to fbck,
* in which case it should replace it.
*/
struct server *srv2 = srv;
do {
srv2 = srv2->next;
} while (srv2 && (srv2 != p->lbprm.fbck));
if (srv2)
p->lbprm.fbck = srv;
}
}
} else {
p->lbprm.tot_wact += srv->next_eweight;
p->srv_act++;
}
/* note that eweight cannot be 0 here */
chash_queue_dequeue_srv(srv);
out_update_backend:
/* check/update tot_used, tot_weight */
update_backend_weight(p);
out_update_state:
srv_lb_commit_status(srv);
HA_RWLOCK_WRUNLOCK(LBPRM_LOCK, &p->lbprm.lock);
}
/* This function must be called after an update to server <srv>'s effective
* weight. It may be called after a state change too.
*
* The server's lock must be held. The lbprm lock may be used.
*/
static void chash_update_server_weight(struct server *srv)
{
int old_state, new_state;
struct proxy *p = srv->proxy;
if (!srv_lb_status_changed(srv))
return;
/* If changing the server's weight changes its state, we simply apply
* the procedures we already have for status change. If the state
* remains down, the server is not in any tree, so it's as easy as
* updating its values. If the state remains up with different weights,
* there are some computations to perform to find a new place and
* possibly a new tree for this server.
*/
old_state = srv_currently_usable(srv);
new_state = srv_willbe_usable(srv);
if (!old_state && !new_state) {
srv_lb_commit_status(srv);
return;
}
else if (!old_state && new_state) {
chash_set_server_status_up(srv);
return;
}
else if (old_state && !new_state) {
chash_set_server_status_down(srv);
return;
}
HA_RWLOCK_WRLOCK(LBPRM_LOCK, &p->lbprm.lock);
/* only adjust the server's presence in the tree */
chash_queue_dequeue_srv(srv);
if (srv->flags & SRV_F_BACKUP)
p->lbprm.tot_wbck += srv->next_eweight - srv->cur_eweight;
else
p->lbprm.tot_wact += srv->next_eweight - srv->cur_eweight;
update_backend_weight(p);
srv_lb_commit_status(srv);
HA_RWLOCK_WRUNLOCK(LBPRM_LOCK, &p->lbprm.lock);
}
/*
* This function implements the "Consistent Hashing with Bounded Loads" algorithm
* of Mirrokni, Thorup, and Zadimoghaddam (arxiv:1608.01350), adapted for use with
* unequal server weights.
*/
int chash_server_is_eligible(struct server *s)
{
/* The total number of slots to allocate is the total number of outstanding requests
* (including the one we're about to make) times the load-balance-factor, rounded up.
*/
unsigned tot_slots = ((s->proxy->served + 1) * s->proxy->lbprm.hash_balance_factor + 99) / 100;
unsigned slots_per_weight = tot_slots / s->proxy->lbprm.tot_weight;
unsigned remainder = tot_slots % s->proxy->lbprm.tot_weight;
/* Allocate a whole number of slots per weight unit... */
unsigned slots = s->cur_eweight * slots_per_weight;
/* And then distribute the rest among servers proportionally to their weight. */
slots += ((s->cumulative_weight + s->cur_eweight) * remainder) / s->proxy->lbprm.tot_weight
- (s->cumulative_weight * remainder) / s->proxy->lbprm.tot_weight;
/* But never leave a server with 0. */
if (slots == 0)
slots = 1;
return s->served < slots;
}
/*
* This function returns the running server from the CHASH tree, which is at
* the closest distance from the value of <hash>. Doing so ensures that even
* with a well imbalanced hash, if some servers are close to each other, they
* will still both receive traffic. If any server is found, it will be returned.
* It will also skip server <avoid> if the hash result ends on this one.
* If no valid server is found, NULL is returned.
*
* The lbprm's lock will be used in R/O mode. The server's lock is not used.
*/
struct server *chash_get_server_hash(struct proxy *p, unsigned int hash, const struct server *avoid)
{
struct eb32_node *next, *prev;
struct server *nsrv, *psrv;
struct eb_root *root;
unsigned int dn, dp;
int loop;
HA_RWLOCK_RDLOCK(LBPRM_LOCK, &p->lbprm.lock);
if (p->srv_act)
root = &p->lbprm.chash.act;
else if (p->lbprm.fbck) {
nsrv = p->lbprm.fbck;
goto out;
}
else if (p->srv_bck)
root = &p->lbprm.chash.bck;
else {
nsrv = NULL;
goto out;
}
/* find the node after and the node before */
next = eb32_lookup_ge(root, hash);
if (!next)
next = eb32_first(root);
if (!next) {
nsrv = NULL; /* tree is empty */
goto out;
}
prev = eb32_prev(next);
if (!prev)
prev = eb32_last(root);
nsrv = eb32_entry(next, struct tree_occ, node)->server;
psrv = eb32_entry(prev, struct tree_occ, node)->server;
/* OK we're located between two servers, let's
* compare distances between hash and the two servers
* and select the closest server.
*/
dp = hash - prev->key;
dn = next->key - hash;
if (dp <= dn) {
next = prev;
nsrv = psrv;
}
loop = 0;
while (nsrv == avoid || (p->lbprm.hash_balance_factor && !chash_server_is_eligible(nsrv))) {
next = eb32_next(next);
if (!next) {
next = eb32_first(root);
if (++loop > 1) // protection against accidental loop
break;
}
nsrv = eb32_entry(next, struct tree_occ, node)->server;
}
out:
HA_RWLOCK_RDUNLOCK(LBPRM_LOCK, &p->lbprm.lock);
return nsrv;
}
/* Return next server from the CHASH tree in backend <p>. If the tree is empty,
* return NULL. Saturated servers are skipped.
*
* The lbprm's lock will be used in R/W mode. The server's lock is not used.
*/
struct server *chash_get_next_server(struct proxy *p, struct server *srvtoavoid)
{
struct server *srv, *avoided;
struct eb32_node *node, *stop, *avoided_node;
struct eb_root *root;
srv = avoided = NULL;
avoided_node = NULL;
HA_RWLOCK_WRLOCK(LBPRM_LOCK, &p->lbprm.lock);
if (p->srv_act)
root = &p->lbprm.chash.act;
else if (p->lbprm.fbck) {
srv = p->lbprm.fbck;
goto out;
}
else if (p->srv_bck)
root = &p->lbprm.chash.bck;
else {
srv = NULL;
goto out;
}
stop = node = p->lbprm.chash.last;
do {
struct server *s;
if (node)
node = eb32_next(node);
if (!node)
node = eb32_first(root);
p->lbprm.chash.last = node;
if (!node) {
/* no node is available */
srv = NULL;
goto out;
}
/* Note: if we came here after a down/up cycle with no last
* pointer, and after a redispatch (srvtoavoid is set), we
* must set stop to non-null otherwise we can loop forever.
*/
if (!stop)
stop = node;
/* OK, we have a server. However, it may be saturated, in which
* case we don't want to reconsider it for now, so we'll simply
* skip it. Same if it's the server we try to avoid, in which
* case we simply remember it for later use if needed.
*/
s = eb32_entry(node, struct tree_occ, node)->server;
if (!s->maxconn || (!s->queue.length && s->served < srv_dynamic_maxconn(s))) {
if (s != srvtoavoid) {
srv = s;
break;
}
avoided = s;
avoided_node = node;
}
} while (node != stop);
if (!srv) {
srv = avoided;
p->lbprm.chash.last = avoided_node;
}
out:
HA_RWLOCK_WRUNLOCK(LBPRM_LOCK, &p->lbprm.lock);
return srv;
}
/* This function is responsible for building the active and backup trees for
* consistent hashing. The servers receive an array of initialized nodes
* with their assigned keys. It also sets p->lbprm.wdiv to the eweight to
* uweight ratio.
* Return 0 in case of success, -1 in case of allocation failure.
*/
int chash_init_server_tree(struct proxy *p)
{
struct server *srv;
struct eb_root init_head = EB_ROOT;
int node;
p->lbprm.set_server_status_up = chash_set_server_status_up;
p->lbprm.set_server_status_down = chash_set_server_status_down;
p->lbprm.update_server_eweight = chash_update_server_weight;
p->lbprm.server_take_conn = NULL;
p->lbprm.server_drop_conn = NULL;
p->lbprm.wdiv = BE_WEIGHT_SCALE;
for (srv = p->srv; srv; srv = srv->next) {
srv->next_eweight = (srv->uweight * p->lbprm.wdiv + p->lbprm.wmult - 1) / p->lbprm.wmult;
srv_lb_commit_status(srv);
}
recount_servers(p);
update_backend_weight(p);
p->lbprm.chash.act = init_head;
p->lbprm.chash.bck = init_head;
p->lbprm.chash.last = NULL;
/* queue active and backup servers in two distinct groups */
for (srv = p->srv; srv; srv = srv->next) {
srv->lb_tree = (srv->flags & SRV_F_BACKUP) ? &p->lbprm.chash.bck : &p->lbprm.chash.act;
srv->lb_nodes_tot = srv->uweight * BE_WEIGHT_SCALE;
srv->lb_nodes_now = 0;
srv->lb_nodes = calloc(srv->lb_nodes_tot,
sizeof(*srv->lb_nodes));
if (!srv->lb_nodes) {
ha_alert("failed to allocate lb_nodes for server %s.\n", srv->id);
return -1;
}
for (node = 0; node < srv->lb_nodes_tot; node++) {
srv->lb_nodes[node].server = srv;
srv->lb_nodes[node].node.key = full_hash(srv->puid * SRV_EWGHT_RANGE + node);
}
if (srv_currently_usable(srv))
chash_queue_dequeue_srv(srv);
}
return 0;
}
|