summaryrefslogtreecommitdiffstats
path: root/src/quic_cc_cubic.c
blob: 76a62acd0653d2a0686f4e9da79ab7c3e3f51e6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#include <haproxy/quic_cc.h>
#include <haproxy/quic_trace.h>
#include <haproxy/ticks.h>
#include <haproxy/trace.h>

/* IMPORTANT NOTE about the units defined by the RFC 9438
 * (CUBIC for Fast and Long-Distance Networks):
 *
 * RFC 9438 4.1. Definitions:
 * The unit of all window sizes in this document is segments of the SMSS, and
 * the unit of all times is seconds. Implementations can use bytes to express
 * window sizes, which would require factoring in the SMSS wherever necessary
 * and replacing segments_acked (Figure 4) with the number of acknowledged
 * bytes.
 */

/* So, this is the reason why here in this implementation each time a number
 * of segments is used (typically a congestion window value), its value is
 * multiplied by the MTU value.
 */

/* This source file is highly inspired from Linux kernel source file
 * implementation for TCP Cubic. In fact, we have no choice if we do
 * not want to use any floating point operations to be fast!
 * (See net/ipv4/tcp_cubic.c)
 */

/* Constants definitions:
 * CUBIC_BETA_SCALED refers to the scaled value of RFC 9438 beta_cubic variable.
 * CUBIC_C_SCALED    refers to the scaled value of RFC 9438 C variable.
 */

/* The right shifting value to apply to scaled values to get its real value. */
#define CUBIC_SCALE_FACTOR_SHIFT     10

/* CUBIC multiplicative decrease factor as described in RFC 9438 section 4.6 */
#define CUBIC_BETA_SCALED           717  /* beta_cubic = 0.7 (constant) */

/* CUBIC C constant that determines the aggressiveness of CUBIC in competing
 * with other congestion control algorithms in high-BDP networks.
 */
#define CUBIC_C_SCALED              410  /* RFC 9438 C = 0.4 segment/seconds^3
                                          * or 410 mB/s^3 in this implementation.
                                          */

/* The scaled value of 1 */
#define CUBIC_ONE_SCALED  (1 << CUBIC_SCALE_FACTOR_SHIFT)

/* The maximum time value which may be cubed and multiplied by CUBIC_C_SCALED */
#define CUBIC_TIME_LIMIT    355535ULL  /* ms */

/* By connection CUBIC algorithm state. Note that the current congestion window
 * value is not stored in this structure.
 */
struct cubic {
	/* QUIC_CC_ST_* state values. */
	uint32_t state;
	/* Slow start threshold (in bytes) */
	uint32_t ssthresh;
	/* Remaining number of acknowledged bytes between two ACK for CUBIC congestion
	 * control window (in bytes).
	 */
	uint32_t remaining_inc;
	/* Start time of at which the current avoidance stage started (in ms). */
	uint32_t t_epoch;
	/* The window to reach for each recovery period during a concave region (in bytes). */
	uint32_t W_target;
	/* The time period to reach W_target during a concave region (in ms). */
	uint32_t K;
	/* The last window maximum reached (in bytes). */
	uint32_t last_w_max;
	/* Estimated value of the Reno congestion window in the TCP-friendly region (in bytes). */
	uint32_t W_est;
	/* Remaining number of acknowledged bytes between two ACKs for estimated
	 * TCP-Reno congestion control window (in bytes).
	 */
	uint32_t remaining_W_est_inc;
	/* Start time of recovery period (used to avoid re-entering this state, if already
	 * in recovery period) (in ms).
	 */
	uint32_t recovery_start_time;
};

static void quic_cc_cubic_reset(struct quic_cc *cc)
{
	struct cubic *c = quic_cc_priv(cc);

	TRACE_ENTER(QUIC_EV_CONN_CC, cc->qc);
	c->state = QUIC_CC_ST_SS;
	c->ssthresh = QUIC_CC_INFINITE_SSTHESH;
	c->remaining_inc = 0;
	c->remaining_W_est_inc = 0;
	c->t_epoch = 0;
	c->W_target = 0;
	c->K = 0;
	c->last_w_max = 0;
	c->W_est = 0;
	c->recovery_start_time = 0;
	TRACE_LEAVE(QUIC_EV_CONN_CC, cc->qc);
}

static int quic_cc_cubic_init(struct quic_cc *cc)
{
	quic_cc_cubic_reset(cc);
	return 1;
}

/* Cubic root.
 * Highly inspired from Linux kernel sources.
 * See net/ipv4/tcp_cubic.c
 */
static uint32_t cubic_root(uint64_t val)
{
	uint32_t x, b, shift;

	static const uint8_t v[] = {
		  0,   54,   54,   54,  118,  118,  118,  118,
		123,  129,  134,  138,  143,  147,  151,  156,
		157,  161,  164,  168,  170,  173,  176,  179,
		181,  185,  187,  190,  192,  194,  197,  199,
		200,  202,  204,  206,  209,  211,  213,  215,
		217,  219,  221,  222,  224,  225,  227,  229,
		231,  232,  234,  236,  237,  239,  240,  242,
		244,  245,  246,  248,  250,  251,  252,  254,
	};

	if (!val || (b = my_flsl(val)) < 7) {
		/* val in [0..63] */
		return ((uint32_t)v[(uint32_t)val] + 35) >> 6;
	}

	b = ((b * 84) >> 8) - 1;
	shift = (val >> (b * 3));

	x = ((uint32_t)(((uint32_t)v[shift] + 10) << b)) >> 6;

	x = 2 * x + (uint32_t)(val / ((uint64_t)x * (uint64_t)(x - 1)));
	x = ((x * 341) >> 10);

	return x;
}

/*
 * RFC 9438 3.1. Principle 1 for the CUBIC Increase Function
 *
 * For better network utilization and stability, CUBIC [HRX08] uses a cubic
 * window increase function in terms of the elapsed time from the last
 * congestion event. While most congestion control algorithms that provide
 * alternatives to Reno increase the congestion window using convex functions,
 * CUBIC uses both the concave and convex profiles of a cubic function for
 * window growth.
 *
 * After a window reduction in response to a congestion event detected by
 * duplicate acknowledgments (ACKs), Explicit Congestion Notification-Echo
 * (ECN-Echo (ECE)) ACKs [RFC3168], RACK-TLP for TCP [RFC8985], or QUIC loss
 * detection [RFC9002], CUBIC remembers the congestion window size at which it
 * received the congestion event and performs a multiplicative decrease of the
 * congestion window. When CUBIC enters into congestion avoidance, it starts to
 * increase the congestion window using the concave profile of the cubic
 * function. The cubic function is set to have its plateau at the remembered
 * congestion window size, so that the concave window increase continues until
 * then. After that, the cubic function turns into a convex profile and the
 * convex window increase begins.
 *
 *  W_cubic(time) (bytes)
 *          ^                                            convex region
 *          |                                      <------------------------->
 *          |                                      .                         +
 *          |                                      .                         +
 *          |                                      .                         +
 *          |                                      .                        +
 *          |                                      .                      + ^
 *          |                                      .                   +    | W_cubic_t
 *          |                                      .               +        |
 *          |                                      .         +              |
 * W_target |-----------+--------------------------+------------------------+
 * (W_max)  |          +.                +         .                        t
 *          |         + .          +               .
 *          |       +   .      +                   .
 *          |    +      .   +                      .
 *          | +         . +                        .
 *          |           .+                         .
 *          |           +                          .
 *          |           +                          .
 *          |           +                          .
 *          |           .                          .
 *          |           .                          .
 *          |           .                          .
 *          +-----------+--------------------------+-+------------------------> time (s)
 *        0          t_epoch                 (t_epoch + K)
 *                      <-------------------------->
 *                      .      concave region
 *                      .
 *                  congestion
 *                    event
 *
 * RFC 9438 4.2. Window Increase Function:
 *
 *     W_cubic(t) = C*(t-K)^3 + W_max         (Figure 1)
 *     K = cubic_root((W_max - cwnd_epoch)/C) (Figure 2)
 *
 *     +--------------------------------------------------------------------+
 *     |     RFC 9438 definitions      |        Code variables              |
 *     +--------------------------------------------------------------------+
 *     |        C (segments/s^3)       |   CUBIC_C_SCALED (mB/s^3)          |
 *     +--------------------------------------------------------------------+
 *     |       W_max (segments)        | c->last_w_max - path->cwnd (bytes) |
 *     +--------------------------------------------------------------------+
 *     |           K (s)               |         c->K (ms)                  |
 *     +--------------------------------------------------------------------+
 *     |    beta_cubic (constant)      |   CUBIC_BETA_SCALED (constant)     |
 *     +--------------------------------------------------------------------+
 */
static inline void quic_cubic_update(struct quic_cc *cc, uint32_t acked)
{
	struct cubic *c = quic_cc_priv(cc);
	struct quic_cc_path *path = container_of(cc, struct quic_cc_path, cc);
	/* The elapsed time since the start of the congestion event. */
	uint32_t elapsed_time;
	/* Target value of the congestion window. */
	uint32_t target;
	/* The time at which the congestion window will be computed based
	 * on the cubic increase function.
	 */
	uint64_t t;
	/* The computed value of the congestion window at time t based on the cubic
	 * increase function.
	 */
	uint64_t W_cubic_t;
	uint32_t inc, inc_diff;

	TRACE_ENTER(QUIC_EV_CONN_CC, cc->qc);
	if (!c->t_epoch) {
		c->t_epoch = now_ms;
		if (c->last_w_max <= path->cwnd) {
			c->K = 0;
			c->W_target = path->cwnd;
		}
		else {
			/* K value computing (in seconds):
			 * K = cubic_root((W_max - cwnd_epoch)/C) (Figure 2)
			 * Note that K is stored in milliseconds.
			 */
			c->K = cubic_root(((c->last_w_max - path->cwnd) << CUBIC_SCALE_FACTOR_SHIFT) / (CUBIC_C_SCALED * path->mtu));
			/* Convert to miliseconds. */
			c->K *= 1000;
			c->W_target = c->last_w_max;
		}

		c->W_est = path->cwnd;
		c->remaining_inc = 0;
		c->remaining_W_est_inc = 0;
	}

	elapsed_time = now_ms + path->loss.rtt_min - c->t_epoch;
	if (elapsed_time < c->K) {
		t = c->K - elapsed_time;
	}
	else {
		t = elapsed_time - c->K;
	}

	if (t > CUBIC_TIME_LIMIT) {
		/* TODO : should not happen if we handle the case
		 * of very late acks receipt. This must be handled as a congestion
		 * control event: a very late ack should trigger a congestion
		 * control algorithm reset.
		 */
		quic_cc_cubic_reset(cc);
		goto leave;
	}

	/* Compute W_cubic_t at t time. */
	W_cubic_t = CUBIC_C_SCALED * path->mtu;
	W_cubic_t = (W_cubic_t * t) / 1000;
	W_cubic_t = (W_cubic_t * t) / 1000;
	W_cubic_t = (W_cubic_t * t) / 1000;
	W_cubic_t >>= CUBIC_SCALE_FACTOR_SHIFT;
	if (elapsed_time < c->K)
		target = c->W_target - W_cubic_t;
	else
		target = c->W_target + W_cubic_t;

	if (target > path->cwnd) {
		/* Concave region */

		/* RFC 9438 4.4. Concave Region
		 *
		 * When receiving a new ACK in congestion avoidance, if CUBIC is not in
		 * the Reno-friendly region and cwnd is less than Wmax, then CUBIC is
		 * in the concave region. In this region, cwnd MUST be incremented by
		 * (target - cwnd) / cwnd.
		 */
		inc_diff = c->remaining_inc + path->mtu * (target - path->cwnd);
		c->remaining_inc = inc_diff % path->cwnd;
		inc = inc_diff / path->cwnd;
	}
	else {
		/* Convex region: very small increment */

		/* RFC 9438  4.5. Convex Region
		 *
		 * When receiving a new ACK in congestion avoidance, if CUBIC is not in
		 * the Reno-friendly region and cwnd is larger than or equal to Wmax,
		 * then CUBIC is in the convex region.The convex region indicates that
		 * the network conditions might have changed since the last congestion
		 * event, possibly implying more available bandwidth after some flow
		 * departures. Since the Internet is highly asynchronous, some amount
		 * of perturbation is always possible without causing a major change in
		 * available bandwidth.Unless the cwnd is overridden by the AIMD window
		 * increase, CUBIC will behave cautiously when operating in this region.
		 * The convex profile aims to increase the window very slowly at the
		 * beginning when cwnd is around Wmax and then gradually increases its
		 * rate of increase. This region is also called the "maximum probing
		 * phase", since CUBIC is searching for a new Wmax.  In this region,
		 * cwnd MUST be incremented by (target - cwnd) / cwnd) for each received
		 * new ACK, where target is calculated as described in Section 4.2.
		 */
		inc_diff = c->remaining_inc + path->mtu;
		c->remaining_inc = inc_diff % (100 * path->cwnd);
		inc = inc_diff / (100 * path->cwnd);
	}

	inc_diff = c->remaining_W_est_inc + path->mtu * acked;
	c->W_est += inc_diff / path->cwnd;
	c->remaining_W_est_inc = inc_diff % path->cwnd;

	/* TCP friendliness :
	 * RFC 9438 4.3.  Reno-Friendly Region
	 *
	 * Reno performs well in certain types of networks -- for example, under
	 * short RTTs and small bandwidths (or small BDPs). In these networks,
	 * CUBIC remains in the Reno-friendly region to achieve at least the same
	 * throughput as Reno.
	 *
	 * When receiving a new ACK in congestion avoidance (where cwnd could be
	 * greater than or less than Wmax), CUBIC checks whether Wcubic(t) is less
	 * than West.  If so, CUBIC is in the Reno-friendly region and cwnd SHOULD
	 * be set to West at each reception of a new ACK.
	 *
	 * West is set equal to cwnd_epoch at the start of the congestion avoidance
	 * stage. After that, on every new ACK, West is updated using Figure 4.
	 * Note that this equation uses segments_acked and cwnd is measured in
	 * segments. An implementation that measures cwnd in bytes should adjust the
	 * equation accordingly using the number of acknowledged bytes and the SMSS.
	 * Also note that this equation works for connections with enabled or
	 * disabled delayed ACKs [RFC5681], as segments_acked will be different based
	 * on the segments actually acknowledged by a new ACK.
	 *
	 * Figure 4 : West = West + alpha_cubic * (segments_acked / cwnd)
	 *
	 * Once West has grown to reach the cwnd at the time of most recently
	 * setting ssthresh -- that is, West >= cwndprior -- the sender SHOULD set
	 * alpha_cubic to 1 to ensure that it can achieve the same congestion window
	 * increment rate as Reno, which uses AIMD(1, 0.5).
	 */
	if (c->W_est > path->cwnd) {
		uint32_t W_est_inc = path->mtu * (c->W_est - path->cwnd) / path->cwnd;
		if (W_est_inc > inc)
			inc = W_est_inc;
	}

	path->cwnd += inc;
	path->cwnd = QUIC_MIN(path->max_cwnd, path->cwnd);
	path->mcwnd = QUIC_MAX(path->cwnd, path->mcwnd);
 leave:
	TRACE_LEAVE(QUIC_EV_CONN_CC, cc->qc);
}

static void quic_cc_cubic_slow_start(struct quic_cc *cc)
{
	TRACE_ENTER(QUIC_EV_CONN_CC, cc->qc);
	quic_cc_cubic_reset(cc);
	TRACE_LEAVE(QUIC_EV_CONN_CC, cc->qc);
}

static void quic_enter_recovery(struct quic_cc *cc)
{
	struct quic_cc_path *path = container_of(cc, struct quic_cc_path, cc);
	struct cubic *c = quic_cc_priv(cc);
	/* Current cwnd as number of packets */

	TRACE_ENTER(QUIC_EV_CONN_CC, cc->qc);
	c->t_epoch = 0;
	c->recovery_start_time = now_ms;

	/* RFC 9438 4.7.  Fast Convergence
	 *
	 * To improve convergence speed, CUBIC uses a heuristic. When a new flow
	 * joins the network, existing flows need to give up some of their bandwidth
	 * to allow the new flow some room for growth if the existing flows have
	 * been using all the network bandwidth. To speed up this bandwidth release
	 * by existing flows, the following fast convergence mechanism SHOULD be
	 * implemented.With fast convergence, when a congestion event occurs, Wmax
	 * is updated as follows, before the window reduction described in Section
	 * 4.6.
	 *
	 *       if cwnd < Wmax and fast convergence enabled, further reduce Wax:
	 *              Wmax = cwnd * (1 + beta_cubic)
	 *       otherwise, remember cwn before reduction:
	 *              Wmax = cwnd
	 */
	if (path->cwnd < c->last_w_max) {
		/* (1 + beta_cubic) * path->cwnd / 2 */
		c->last_w_max = (path->cwnd * (CUBIC_ONE_SCALED + CUBIC_BETA_SCALED) / 2) >> CUBIC_SCALE_FACTOR_SHIFT;
	}
	else {
		c->last_w_max = path->cwnd;
	}

	c->ssthresh = (CUBIC_BETA_SCALED * path->cwnd) >> CUBIC_SCALE_FACTOR_SHIFT;
	path->cwnd =  QUIC_MAX(c->ssthresh, (uint32_t)path->min_cwnd);
	c->state = QUIC_CC_ST_RP;
	TRACE_LEAVE(QUIC_EV_CONN_CC, cc->qc, NULL, cc);
}

/* Congestion slow-start callback. */
static void quic_cc_cubic_ss_cb(struct quic_cc *cc, struct quic_cc_event *ev)
{
	struct quic_cc_path *path = container_of(cc, struct quic_cc_path, cc);
	struct cubic *c = quic_cc_priv(cc);

	TRACE_ENTER(QUIC_EV_CONN_CC, cc->qc);
	TRACE_PROTO("CC cubic", QUIC_EV_CONN_CC, cc->qc, ev);
	switch (ev->type) {
	case QUIC_CC_EVT_ACK:
		if (path->cwnd < QUIC_CC_INFINITE_SSTHESH - ev->ack.acked) {
			path->cwnd += ev->ack.acked;
			path->cwnd = QUIC_MIN(path->max_cwnd, path->cwnd);
		}
		/* Exit to congestion avoidance if slow start threshold is reached. */
		if (path->cwnd >= c->ssthresh)
			c->state = QUIC_CC_ST_CA;
		path->mcwnd = QUIC_MAX(path->cwnd, path->mcwnd);
		break;

	case QUIC_CC_EVT_LOSS:
		quic_enter_recovery(cc);
		break;

	case QUIC_CC_EVT_ECN_CE:
		/* TODO */
		break;
	}

 out:
	TRACE_PROTO("CC cubic", QUIC_EV_CONN_CC, cc->qc, NULL, cc);
	TRACE_LEAVE(QUIC_EV_CONN_CC, cc->qc);
}

/* Congestion avoidance callback. */
static void quic_cc_cubic_ca_cb(struct quic_cc *cc, struct quic_cc_event *ev)
{
	TRACE_ENTER(QUIC_EV_CONN_CC, cc->qc);
	TRACE_PROTO("CC cubic", QUIC_EV_CONN_CC, cc->qc, ev);
	switch (ev->type) {
	case QUIC_CC_EVT_ACK:
		quic_cubic_update(cc, ev->ack.acked);
		break;
	case QUIC_CC_EVT_LOSS:
		quic_enter_recovery(cc);
		break;
	case QUIC_CC_EVT_ECN_CE:
		/* TODO */
		break;
	}

 out:
	TRACE_PROTO("CC cubic", QUIC_EV_CONN_CC, cc->qc, NULL, cc);
	TRACE_LEAVE(QUIC_EV_CONN_CC, cc->qc);
}

/* Recovery period callback */
static void quic_cc_cubic_rp_cb(struct quic_cc *cc, struct quic_cc_event *ev)
{
	struct cubic *c = quic_cc_priv(cc);

	TRACE_ENTER(QUIC_EV_CONN_CC, cc->qc, ev);
	TRACE_PROTO("CC cubic", QUIC_EV_CONN_CC, cc->qc, ev, cc);

	switch (ev->type) {
	case QUIC_CC_EVT_ACK:
		/* RFC 9002 7.3.2. Recovery
		 * A recovery period ends and the sender enters congestion avoidance when a
		 * packet sent during the recovery period is acknowledged.
		 */
		if (tick_is_le(ev->ack.time_sent, c->recovery_start_time)) {
			TRACE_PROTO("CC cubic (still in recov. period)", QUIC_EV_CONN_CC, cc->qc);
			goto leave;
		}

		c->state = QUIC_CC_ST_CA;
		c->recovery_start_time = TICK_ETERNITY;
		break;
	case QUIC_CC_EVT_LOSS:
		break;
	case QUIC_CC_EVT_ECN_CE:
		/* TODO */
		break;
	}

 leave:
	TRACE_PROTO("CC cubic", QUIC_EV_CONN_CC, cc->qc, NULL, cc);
	TRACE_LEAVE(QUIC_EV_CONN_CC, cc->qc, NULL, cc);
}

static void (*quic_cc_cubic_state_cbs[])(struct quic_cc *cc,
                                      struct quic_cc_event *ev) = {
	[QUIC_CC_ST_SS] = quic_cc_cubic_ss_cb,
	[QUIC_CC_ST_CA] = quic_cc_cubic_ca_cb,
	[QUIC_CC_ST_RP] = quic_cc_cubic_rp_cb,
};

static void quic_cc_cubic_event(struct quic_cc *cc, struct quic_cc_event *ev)
{
	struct cubic *c = quic_cc_priv(cc);

	return quic_cc_cubic_state_cbs[c->state](cc, ev);
}

static void quic_cc_cubic_state_trace(struct buffer *buf, const struct quic_cc *cc)
{
	struct quic_cc_path *path;
	struct cubic *c = quic_cc_priv(cc);

	path = container_of(cc, struct quic_cc_path, cc);
	chunk_appendf(buf, " state=%s cwnd=%llu mcwnd=%llu ssthresh=%d rpst=%dms",
	              quic_cc_state_str(c->state),
	              (unsigned long long)path->cwnd,
	              (unsigned long long)path->mcwnd,
	              (int)c->ssthresh,
	              !tick_isset(c->recovery_start_time) ? -1 :
	              TICKS_TO_MS(tick_remain(c->recovery_start_time, now_ms)));
}

struct quic_cc_algo quic_cc_algo_cubic = {
	.type        = QUIC_CC_ALGO_TP_CUBIC,
	.init        = quic_cc_cubic_init,
	.event       = quic_cc_cubic_event,
	.slow_start  = quic_cc_cubic_slow_start,
	.state_trace = quic_cc_cubic_state_trace,
};