1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
|
/*
* Ring buffer management
*
* Copyright (C) 2000-2019 Willy Tarreau - w@1wt.eu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdlib.h>
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/buf.h>
#include <haproxy/cfgparse.h>
#include <haproxy/cli.h>
#include <haproxy/ring.h>
#include <haproxy/sc_strm.h>
#include <haproxy/stconn.h>
#include <haproxy/thread.h>
#include <haproxy/vecpair.h>
/* context used to dump the contents of a ring via "show events" or "show errors" */
struct show_ring_ctx {
struct ring *ring; /* ring to be dumped */
size_t ofs; /* storage offset to restart from; ~0=oldest */
uint flags; /* set of RING_WF_* */
};
/* Initialize a pre-allocated ring with the buffer area of size <size>.
* Makes the storage point to the indicated area and adjusts the declared
* ring size according to the position of the area in the storage. If <reset>
* is non-zero, the storage area is reset, otherwise it's left intact (except
* for the area origin pointer which is updated so that the area can come from
* an mmap()).
*/
void ring_init(struct ring *ring, void *area, size_t size, int reset)
{
MT_LIST_INIT(&ring->waiters);
ring->readers_count = 0;
ring->flags = 0;
ring->storage = area;
ring->pending = 0;
ring->waking = 0;
memset(&ring->queue, 0, sizeof(ring->queue));
if (reset) {
ring->storage->size = size - sizeof(*ring->storage);
ring->storage->rsvd = sizeof(*ring->storage);
ring->storage->head = 0;
ring->storage->tail = 0;
/* write the initial RC byte */
*ring->storage->area = 0;
ring->storage->tail = 1;
}
}
/* Creates a ring and its storage area at address <area> for <size> bytes.
* If <area> is null, then it's allocated of the requested size. The ring
* storage struct is part of the area so the usable area is slightly reduced.
* However the storage is immediately adjacent to the struct so that the ring
* remains consistent on-disk. ring_free() will ignore such ring storages and
* will only release the ring part, so the caller is responsible for releasing
* them. If <reset> is non-zero, the storage area is reset, otherwise it's left
* intact.
*/
struct ring *ring_make_from_area(void *area, size_t size, int reset)
{
struct ring *ring = NULL;
uint flags = 0;
if (size < sizeof(*ring->storage) + 2)
return NULL;
ring = malloc(sizeof(*ring));
if (!ring)
goto fail;
if (!area)
area = malloc(size);
else
flags |= RING_FL_MAPPED;
if (!area)
goto fail;
ring_init(ring, area, size, reset);
ring->flags |= flags;
return ring;
fail:
free(ring);
return NULL;
}
/* Creates and returns a ring buffer of size <size> bytes. Returns NULL on
* allocation failure. The size is the area size, not the usable size.
*/
struct ring *ring_new(size_t size)
{
return ring_make_from_area(NULL, size, 1);
}
/* Resizes existing ring <ring> to <size> which must be larger, without losing
* its contents. The new size must be at least as large as the previous one or
* no change will be performed. The pointer to the ring is returned on success,
* or NULL on allocation failure. This will lock the ring for writes. The size
* is the allocated area size, and includes the ring_storage header.
*/
struct ring *ring_resize(struct ring *ring, size_t size)
{
struct ring_storage *old, *new;
if (size <= ring_data(ring) + sizeof(*ring->storage))
return ring;
old = ring->storage;
new = malloc(size);
if (!new)
return NULL;
thread_isolate();
/* recheck the ring's size, it may have changed during the malloc */
if (size > ring_data(ring) + sizeof(*ring->storage)) {
/* copy old contents */
struct ist v1, v2;
size_t len;
vp_ring_to_data(&v1, &v2, old->area, old->size, old->head, old->tail);
len = vp_size(v1, v2);
vp_peek_ofs(v1, v2, 0, new->area, len);
new->size = size - sizeof(*ring->storage);
new->rsvd = sizeof(*ring->storage);
new->head = 0;
new->tail = len;
new = HA_ATOMIC_XCHG(&ring->storage, new);
}
thread_release();
/* free the unused one */
free(new);
return ring;
}
/* destroys and frees ring <ring> */
void ring_free(struct ring *ring)
{
if (!ring)
return;
/* make sure it was not allocated by ring_make_from_area */
if (!(ring->flags & RING_FL_MAPPED))
free(ring->storage);
free(ring);
}
/* Tries to send <npfx> parts from <prefix> followed by <nmsg> parts from <msg>
* to ring <ring>. The message is sent atomically. It may be truncated to
* <maxlen> bytes if <maxlen> is non-null. There is no distinction between the
* two lists, it's just a convenience to help the caller prepend some prefixes
* when necessary. It takes the ring's write lock to make sure no other thread
* will touch the buffer during the update. Returns the number of bytes sent,
* or <=0 on failure.
*/
ssize_t ring_write(struct ring *ring, size_t maxlen, const struct ist pfx[], size_t npfx, const struct ist msg[], size_t nmsg)
{
struct ring_wait_cell **ring_queue_ptr = DISGUISE(&ring->queue[ti->ring_queue].ptr);
struct ring_wait_cell cell, *next_cell, *curr_cell;
size_t *tail_ptr = &ring->storage->tail;
size_t head_ofs, tail_ofs, new_tail_ofs;
size_t ring_size;
char *ring_area;
struct ist v1, v2;
size_t msglen = 0;
size_t lenlen;
size_t needed;
uint64_t dellen;
int dellenlen;
uint8_t *lock_ptr;
uint8_t readers;
ssize_t sent = 0;
int i;
/* we have to find some room to add our message (the buffer is
* never empty and at least contains the previous counter) and
* to update both the buffer contents and heads at the same
* time (it's doable using atomic ops but not worth the
* trouble, let's just lock). For this we first need to know
* the total message's length. We cannot measure it while
* copying due to the varint encoding of the length.
*/
for (i = 0; i < npfx; i++)
msglen += pfx[i].len;
for (i = 0; i < nmsg; i++)
msglen += msg[i].len;
if (msglen > maxlen)
msglen = maxlen;
lenlen = varint_bytes(msglen);
/* We need:
* - lenlen bytes for the size encoding
* - msglen for the message
* - one byte for the new marker
*
* Note that we'll also reserve one extra byte to make sure we never
* leave a full buffer (the vec-to-ring conversion cannot be done if
* both areas are of size 0).
*/
needed = lenlen + msglen + 1;
/* these ones do not change under us (only resize affects them and it
* must be done under thread isolation).
*/
ring_area = ring->storage->area;
ring_size = ring->storage->size;
if (needed + 1 > ring_size)
goto leave;
cell.to_send_self = needed;
cell.needed_tot = 0; // only when non-zero the cell is considered ready.
cell.maxlen = msglen;
cell.pfx = pfx;
cell.npfx = npfx;
cell.msg = msg;
cell.nmsg = nmsg;
/* insert our cell into the queue before the previous one. We may have
* to wait a bit if the queue's leader is attempting an election to win
* the tail, hence the busy value (should be rare enough).
*/
next_cell = HA_ATOMIC_XCHG(ring_queue_ptr, &cell);
/* let's add the cumulated size of pending messages to ours */
cell.next = next_cell;
if (next_cell) {
size_t next_needed;
while ((next_needed = HA_ATOMIC_LOAD(&next_cell->needed_tot)) == 0)
__ha_cpu_relax_for_read();
needed += next_needed;
}
/* now <needed> will represent the size to store *all* messages. The
* atomic store may unlock a subsequent thread waiting for this one.
*/
HA_ATOMIC_STORE(&cell.needed_tot, needed);
/* OK now we're the queue leader, it's our job to try to get ownership
* of the tail, if we succeeded above, we don't even enter the loop. If
* we failed, we set ourselves at the top the queue, waiting for the
* tail to be unlocked again. We stop doing that if another thread
* comes in and becomes the leader in turn.
*/
/* Wait for another thread to take the lead or for the tail to
* be available again. It's critical to be read-only in this
* loop so as not to lose time synchronizing cache lines. Also,
* we must detect a new leader ASAP so that the fewest possible
* threads check the tail.
*/
while (1) {
if ((curr_cell = HA_ATOMIC_LOAD(ring_queue_ptr)) != &cell)
goto wait_for_flush;
__ha_cpu_relax_for_read();
#if !defined(__ARM_FEATURE_ATOMICS)
/* ARMv8.1-a has a true atomic OR and doesn't need the preliminary read */
if ((tail_ofs = HA_ATOMIC_LOAD(tail_ptr)) & RING_TAIL_LOCK) {
__ha_cpu_relax_for_read();
continue;
}
#endif
/* OK the queue is locked, let's attempt to get the tail lock */
tail_ofs = HA_ATOMIC_FETCH_OR(tail_ptr, RING_TAIL_LOCK);
/* did we get it ? */
if (!(tail_ofs & RING_TAIL_LOCK)) {
/* Here we own the tail. We can go on if we're still the leader,
* which we'll confirm by trying to reset the queue. If we're
* still the leader, we're done.
*/
if (HA_ATOMIC_CAS(ring_queue_ptr, &curr_cell, NULL))
break; // Won!
/* oops, no, let's give it back to another thread and wait.
* This does not happen often enough to warrant more complex
* approaches (tried already).
*/
HA_ATOMIC_STORE(tail_ptr, tail_ofs);
goto wait_for_flush;
}
__ha_cpu_relax_for_read();
}
head_ofs = HA_ATOMIC_LOAD(&ring->storage->head);
/* this is the byte before tail, it contains the users count */
lock_ptr = (uint8_t*)ring_area + (tail_ofs > 0 ? tail_ofs - 1 : ring_size - 1);
/* Take the lock on the area. We're guaranteed to be the only writer
* here.
*/
readers = HA_ATOMIC_XCHG(lock_ptr, RING_WRITING_SIZE);
vp_ring_to_data(&v1, &v2, ring_area, ring_size, head_ofs, tail_ofs);
while (vp_size(v1, v2) > ring_size - needed - 1 - 1) {
/* we need to delete the oldest message (from the end),
* and we have to stop if there's a reader stuck there.
* Unless there's corruption in the buffer it's guaranteed
* that we have enough data to find 1 counter byte, a
* varint-encoded length (1 byte min) and the message
* payload (0 bytes min).
*/
if (*_vp_head(v1, v2))
break;
dellenlen = vp_peek_varint_ofs(v1, v2, 1, &dellen);
if (!dellenlen)
break;
BUG_ON_HOT(vp_size(v1, v2) < 1 + dellenlen + dellen);
vp_skip(&v1, &v2, 1 + dellenlen + dellen);
}
/* now let's update the buffer with the new tail if our message will fit */
new_tail_ofs = tail_ofs;
if (vp_size(v1, v2) <= ring_size - needed - 1 - 1) {
vp_data_to_ring(v1, v2, ring_area, ring_size, &head_ofs, &tail_ofs);
/* update the new space in the buffer */
HA_ATOMIC_STORE(&ring->storage->head, head_ofs);
/* calculate next tail pointer */
new_tail_ofs += needed;
if (new_tail_ofs >= ring_size)
new_tail_ofs -= ring_size;
/* reset next read counter before releasing writers */
HA_ATOMIC_STORE(ring_area + (new_tail_ofs > 0 ? new_tail_ofs - 1 : ring_size - 1), 0);
}
else {
/* release readers right now, before writing the tail, so as
* not to expose the readers count byte to another writer.
*/
HA_ATOMIC_STORE(lock_ptr, readers);
}
/* and release other writers */
HA_ATOMIC_STORE(tail_ptr, new_tail_ofs);
vp_ring_to_room(&v1, &v2, ring_area, ring_size, (new_tail_ofs > 0 ? new_tail_ofs - 1 : ring_size - 1), tail_ofs);
if (likely(tail_ofs != new_tail_ofs)) {
/* the list stops on a NULL */
for (curr_cell = &cell; curr_cell; curr_cell = HA_ATOMIC_LOAD(&curr_cell->next)) {
maxlen = curr_cell->maxlen;
pfx = curr_cell->pfx;
npfx = curr_cell->npfx;
msg = curr_cell->msg;
nmsg = curr_cell->nmsg;
/* let's write the message size */
vp_put_varint(&v1, &v2, maxlen);
/* then write the messages */
msglen = 0;
for (i = 0; i < npfx; i++) {
size_t len = pfx[i].len;
if (len + msglen > maxlen)
len = maxlen - msglen;
if (len)
vp_putblk(&v1, &v2, pfx[i].ptr, len);
msglen += len;
}
for (i = 0; i < nmsg; i++) {
size_t len = msg[i].len;
if (len + msglen > maxlen)
len = maxlen - msglen;
if (len)
vp_putblk(&v1, &v2, msg[i].ptr, len);
msglen += len;
}
/* for all but the last message we need to write the
* readers count byte.
*/
if (curr_cell->next)
vp_putchr(&v1, &v2, 0);
}
/* now release */
for (curr_cell = &cell; curr_cell; curr_cell = next_cell) {
next_cell = HA_ATOMIC_LOAD(&curr_cell->next);
_HA_ATOMIC_STORE(&curr_cell->next, curr_cell);
}
/* unlock the message area */
HA_ATOMIC_STORE(lock_ptr, readers);
} else {
/* messages were dropped, notify about this and release them */
for (curr_cell = &cell; curr_cell; curr_cell = next_cell) {
next_cell = HA_ATOMIC_LOAD(&curr_cell->next);
HA_ATOMIC_STORE(&curr_cell->to_send_self, 0);
_HA_ATOMIC_STORE(&curr_cell->next, curr_cell);
}
}
/* we must not write the trailing read counter, it was already done,
* plus we could ruin the one of the next writer. And the front was
* unlocked either at the top if the ring was full, or just above if it
* could be properly filled.
*/
sent = cell.to_send_self;
/* notify potential readers */
if (sent && HA_ATOMIC_LOAD(&ring->readers_count)) {
HA_ATOMIC_INC(&ring->pending);
while (HA_ATOMIC_LOAD(&ring->pending) && HA_ATOMIC_XCHG(&ring->waking, 1) == 0) {
struct mt_list *elt1, elt2;
struct appctx *appctx;
HA_ATOMIC_STORE(&ring->pending, 0);
mt_list_for_each_entry_safe(appctx, &ring->waiters, wait_entry, elt1, elt2)
appctx_wakeup(appctx);
HA_ATOMIC_STORE(&ring->waking, 0);
}
}
leave:
return sent;
wait_for_flush:
/* if we arrive here, it means we found another leader */
/* The leader will write our own pointer in the cell's next to
* mark it as released. Let's wait for this.
*/
do {
next_cell = HA_ATOMIC_LOAD(&cell.next);
} while (next_cell != &cell && __ha_cpu_relax_for_read());
/* OK our message was queued. Retrieving the sent size in the ring cell
* allows another leader thread to zero it if it finally couldn't send
* it (should only happen when using too small ring buffers to store
* all competing threads' messages at once).
*/
return HA_ATOMIC_LOAD(&cell.to_send_self);
}
/* Tries to attach appctx <appctx> as a new reader on ring <ring>. This is
* meant to be used by low level appctx code such as CLI or ring forwarding.
* For higher level functions, please see the relevant parts in appctx or CLI.
* It returns non-zero on success or zero on failure if too many users are
* already attached. On success, the caller MUST call ring_detach_appctx()
* to detach itself, even if it was never woken up.
*/
int ring_attach(struct ring *ring)
{
int users = ring->readers_count;
do {
if (users >= RING_MAX_READERS)
return 0;
} while (!_HA_ATOMIC_CAS(&ring->readers_count, &users, users + 1));
return 1;
}
/* detach an appctx from a ring. The appctx is expected to be waiting at offset
* <ofs> relative to the beginning of the storage, or ~0 if not waiting yet.
* Nothing is done if <ring> is NULL.
*/
void ring_detach_appctx(struct ring *ring, struct appctx *appctx, size_t ofs)
{
if (!ring)
return;
HA_ATOMIC_DEC(&ring->readers_count);
if (ofs != ~0) {
/* reader was still attached */
uint8_t *area = (uint8_t *)ring_area(ring);
uint8_t readers;
BUG_ON(ofs >= ring_size(ring));
MT_LIST_DELETE(&appctx->wait_entry);
/* dec readers count */
do {
readers = _HA_ATOMIC_LOAD(area + ofs);
} while ((readers > RING_MAX_READERS ||
!_HA_ATOMIC_CAS(area + ofs, &readers, readers - 1)) && __ha_cpu_relax());
}
}
/* Tries to attach CLI handler <appctx> as a new reader on ring <ring>. This is
* meant to be used when registering a CLI function to dump a buffer, so it
* returns zero on success, or non-zero on failure with a message in the appctx
* CLI context. It automatically sets the io_handler and io_release callbacks if
* they were not set. The <flags> take a combination of RING_WF_*.
*/
int ring_attach_cli(struct ring *ring, struct appctx *appctx, uint flags)
{
struct show_ring_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
if (!ring_attach(ring))
return cli_err(appctx,
"Sorry, too many watchers (" TOSTR(RING_MAX_READERS) ") on this ring buffer. "
"What could it have so interesting to attract so many watchers ?");
if (!appctx->io_handler)
appctx->io_handler = cli_io_handler_show_ring;
if (!appctx->io_release)
appctx->io_release = cli_io_release_show_ring;
memset(ctx, 0, sizeof(*ctx));
ctx->ring = ring;
ctx->ofs = ~0; // start from the oldest event
ctx->flags = flags;
return 0;
}
/* parses as many messages as possible from ring <ring>, starting at the offset
* stored at *ofs_ptr, with RING_WF_* flags in <flags>, and passes them to
* the message handler <msg_handler>. If <last_of_ptr> is not NULL, a copy of
* the last known tail pointer will be copied there so that the caller may use
* this to detect new data have arrived since we left the function. Returns 0
* if it needs to pause, 1 once finished.
*/
int ring_dispatch_messages(struct ring *ring, void *ctx, size_t *ofs_ptr, size_t *last_ofs_ptr, uint flags,
ssize_t (*msg_handler)(void *ctx, struct ist v1, struct ist v2, size_t ofs, size_t len))
{
size_t head_ofs, tail_ofs, prev_ofs;
size_t ring_size;
uint8_t *ring_area;
struct ist v1, v2;
uint64_t msg_len;
size_t len, cnt;
ssize_t copied;
uint8_t readers;
int ret;
ring_area = (uint8_t *)ring->storage->area;
ring_size = ring->storage->size;
/* explanation for the initialization below: it would be better to do
* this in the parsing function but this would occasionally result in
* dropped events because we'd take a reference on the oldest message
* and keep it while being scheduled. Thus instead let's take it the
* first time we enter here so that we have a chance to pass many
* existing messages before grabbing a reference to a location. This
* value cannot be produced after initialization. The first offset
* needs to be taken under isolation as it must not move while we're
* trying to catch it.
*/
if (unlikely(*ofs_ptr == ~0)) {
thread_isolate();
head_ofs = HA_ATOMIC_LOAD(&ring->storage->head);
tail_ofs = ring_tail(ring);
if (flags & RING_WF_SEEK_NEW) {
/* going to the end means looking at tail-1 */
head_ofs = tail_ofs + ring_size - 1;
if (head_ofs >= ring_size)
head_ofs -= ring_size;
}
/* reserve our slot here (inc readers count) */
do {
readers = _HA_ATOMIC_LOAD(ring_area + head_ofs);
} while ((readers > RING_MAX_READERS ||
!_HA_ATOMIC_CAS(ring_area + head_ofs, &readers, readers + 1)) && __ha_cpu_relax());
thread_release();
/* store this precious offset in our context, and we're done */
*ofs_ptr = head_ofs;
}
/* we have the guarantee we can restart from our own head */
head_ofs = *ofs_ptr;
BUG_ON(head_ofs >= ring_size);
/* the tail will continue to move but we're getting a safe value
* here that will continue to work.
*/
tail_ofs = ring_tail(ring);
/* we keep track of where we were and we don't release it before
* we've protected the next place.
*/
prev_ofs = head_ofs;
/* in this loop, head_ofs always points to the counter byte that precedes
* the message so that we can take our reference there if we have to
* stop before the end (ret=0). The reference is relative to the ring's
* origin, while pos is relative to the ring's head.
*/
ret = 1;
vp_ring_to_data(&v1, &v2, (char *)ring_area, ring_size, head_ofs, tail_ofs);
while (1) {
if (vp_size(v1, v2) <= 1) {
/* no more data */
break;
}
readers = _HA_ATOMIC_LOAD(_vp_addr(v1, v2, 0));
if (readers > RING_MAX_READERS) {
/* we just met a writer which hasn't finished */
break;
}
cnt = 1;
len = vp_peek_varint_ofs(v1, v2, cnt, &msg_len);
if (!len)
break;
cnt += len;
BUG_ON(msg_len + cnt + 1 > vp_size(v1, v2));
copied = msg_handler(ctx, v1, v2, cnt, msg_len);
if (copied == -2) {
/* too large a message to ever fit, let's skip it */
goto skip;
}
else if (copied == -1) {
/* output full */
ret = 0;
break;
}
skip:
vp_skip(&v1, &v2, cnt + msg_len);
}
vp_data_to_ring(v1, v2, (char *)ring_area, ring_size, &head_ofs, &tail_ofs);
if (head_ofs != prev_ofs) {
/* inc readers count on new place */
do {
readers = _HA_ATOMIC_LOAD(ring_area + head_ofs);
} while ((readers > RING_MAX_READERS ||
!_HA_ATOMIC_CAS(ring_area + head_ofs, &readers, readers + 1)) && __ha_cpu_relax());
/* dec readers count on old place */
do {
readers = _HA_ATOMIC_LOAD(ring_area + prev_ofs);
} while ((readers > RING_MAX_READERS ||
!_HA_ATOMIC_CAS(ring_area + prev_ofs, &readers, readers - 1)) && __ha_cpu_relax());
}
if (last_ofs_ptr)
*last_ofs_ptr = tail_ofs;
*ofs_ptr = head_ofs;
return ret;
}
/* This function dumps all events from the ring whose pointer is in <p0> into
* the appctx's output buffer, and takes from <o0> the seek offset into the
* buffer's history (0 for oldest known event). It looks at <i0> for boolean
* options: bit0 means it must wait for new data or any key to be pressed. Bit1
* means it must seek directly to the end to wait for new contents. It returns
* 0 if the output buffer or events are missing is full and it needs to be
* called again, otherwise non-zero. It is meant to be used with
* cli_release_show_ring() to clean up.
*/
int cli_io_handler_show_ring(struct appctx *appctx)
{
struct show_ring_ctx *ctx = appctx->svcctx;
struct stconn *sc = appctx_sc(appctx);
struct ring *ring = ctx->ring;
size_t last_ofs;
size_t ofs;
int ret;
MT_LIST_DELETE(&appctx->wait_entry);
ret = ring_dispatch_messages(ring, appctx, &ctx->ofs, &last_ofs, ctx->flags, applet_append_line);
if (ret && (ctx->flags & RING_WF_WAIT_MODE)) {
/* we've drained everything and are configured to wait for more
* data or an event (keypress, close)
*/
if (!sc_oc(sc)->output && !(sc->flags & SC_FL_SHUT_DONE)) {
/* let's be woken up once new data arrive */
MT_LIST_APPEND(&ring->waiters, &appctx->wait_entry);
ofs = ring_tail(ring);
if (ofs != last_ofs) {
/* more data was added into the ring between the
* unlock and the lock, and the writer might not
* have seen us. We need to reschedule a read.
*/
applet_have_more_data(appctx);
} else
applet_have_no_more_data(appctx);
ret = 0;
}
/* always drain all the request */
co_skip(sc_oc(sc), sc_oc(sc)->output);
}
applet_expect_no_data(appctx);
return ret;
}
/* must be called after cli_io_handler_show_ring() above */
void cli_io_release_show_ring(struct appctx *appctx)
{
struct show_ring_ctx *ctx = appctx->svcctx;
struct ring *ring = ctx->ring;
size_t ofs = ctx->ofs;
ring_detach_appctx(ring, appctx, ofs);
}
/* Returns the MAXIMUM payload len that could theoretically fit into the ring
* based on ring buffer size.
*
* Computation logic relies on implementation details from 'ring-t.h'.
*/
size_t ring_max_payload(const struct ring *ring)
{
size_t max;
/* initial max = bufsize - 1 (initial RC) - 1 (payload RC) */
max = ring_size(ring) - 1 - 1;
/* subtract payload VI (varint-encoded size) */
max -= varint_bytes(max);
return max;
}
/* config parser for global "tune.ring.queues", accepts a number from 0 to RING_WAIT_QUEUES */
static int cfg_parse_tune_ring_queues(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
int queues;
if (too_many_args(1, args, err, NULL))
return -1;
queues = atoi(args[1]);
if (queues < 0 || queues > RING_WAIT_QUEUES) {
memprintf(err, "'%s' expects a number between 0 and %d but got '%s'.", args[0], RING_WAIT_QUEUES, args[1]);
return -1;
}
global.tune.ring_queues = queues;
return 0;
}
/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
{ CFG_GLOBAL, "tune.ring.queues", cfg_parse_tune_ring_queues },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/
|