1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
|
/*
* stream connector management functions
*
* Copyright 2021 Christopher Faulet <cfaulet@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/connection.h>
#include <haproxy/check.h>
#include <haproxy/filters.h>
#include <haproxy/http_ana.h>
#include <haproxy/pipe.h>
#include <haproxy/pool.h>
#include <haproxy/sample.h>
#include <haproxy/sc_strm.h>
#include <haproxy/stconn.h>
#include <haproxy/xref.h>
DECLARE_POOL(pool_head_connstream, "stconn", sizeof(struct stconn));
DECLARE_POOL(pool_head_sedesc, "sedesc", sizeof(struct sedesc));
/* functions used by default on a detached stream connector */
static void sc_app_abort(struct stconn *sc);
static void sc_app_shut(struct stconn *sc);
static void sc_app_chk_rcv(struct stconn *sc);
static void sc_app_chk_snd(struct stconn *sc);
/* functions used on a mux-based stream connector */
static void sc_app_abort_conn(struct stconn *sc);
static void sc_app_shut_conn(struct stconn *sc);
static void sc_app_chk_rcv_conn(struct stconn *sc);
static void sc_app_chk_snd_conn(struct stconn *sc);
/* functions used on an applet-based stream connector */
static void sc_app_abort_applet(struct stconn *sc);
static void sc_app_shut_applet(struct stconn *sc);
static void sc_app_chk_rcv_applet(struct stconn *sc);
static void sc_app_chk_snd_applet(struct stconn *sc);
static int sc_conn_process(struct stconn *sc);
static int sc_conn_recv(struct stconn *sc);
static int sc_conn_send(struct stconn *sc);
static int sc_applet_process(struct stconn *sc);
/* stream connector operations for connections */
struct sc_app_ops sc_app_conn_ops = {
.chk_rcv = sc_app_chk_rcv_conn,
.chk_snd = sc_app_chk_snd_conn,
.abort = sc_app_abort_conn,
.shutdown= sc_app_shut_conn,
.wake = sc_conn_process,
.name = "STRM",
};
/* stream connector operations for embedded tasks */
struct sc_app_ops sc_app_embedded_ops = {
.chk_rcv = sc_app_chk_rcv,
.chk_snd = sc_app_chk_snd,
.abort = sc_app_abort,
.shutdown= sc_app_shut,
.wake = NULL, /* may never be used */
.name = "NONE", /* may never be used */
};
/* stream connector operations for applets */
struct sc_app_ops sc_app_applet_ops = {
.chk_rcv = sc_app_chk_rcv_applet,
.chk_snd = sc_app_chk_snd_applet,
.abort = sc_app_abort_applet,
.shutdown= sc_app_shut_applet,
.wake = sc_applet_process,
.name = "STRM",
};
/* stream connector for health checks on connections */
struct sc_app_ops sc_app_check_ops = {
.chk_rcv = NULL,
.chk_snd = NULL,
.abort = NULL,
.shutdown= NULL,
.wake = wake_srv_chk,
.name = "CHCK",
};
/* Initializes an endpoint */
void sedesc_init(struct sedesc *sedesc)
{
sedesc->se = NULL;
sedesc->conn = NULL;
sedesc->sc = NULL;
sedesc->lra = TICK_ETERNITY;
sedesc->fsb = TICK_ETERNITY;
sedesc->xref.peer = NULL;
se_fl_setall(sedesc, SE_FL_NONE);
sedesc->abort_info.info = 0;
sedesc->abort_info.code = 0;
sedesc->iobuf.pipe = NULL;
sedesc->iobuf.buf = NULL;
sedesc->iobuf.offset = sedesc->iobuf.data = 0;
sedesc->iobuf.flags = IOBUF_FL_NONE;
}
/* Tries to alloc an endpoint and initialize it. Returns NULL on failure. */
struct sedesc *sedesc_new()
{
struct sedesc *sedesc;
sedesc = pool_alloc(pool_head_sedesc);
if (unlikely(!sedesc))
return NULL;
sedesc_init(sedesc);
return sedesc;
}
/* Releases an endpoint. It is the caller responsibility to be sure it is safe
* and it is not shared with another entity
*/
void sedesc_free(struct sedesc *sedesc)
{
if (sedesc) {
if (sedesc->iobuf.pipe)
put_pipe(sedesc->iobuf.pipe);
pool_free(pool_head_sedesc, sedesc);
}
}
/* Performs a shutdown on the endpoint. This function deals with connection and
* applet endpoints. It is responsible to set SE flags corresponding to the
* given shut modes and to call right shutdown functions of the endpoint. It is
* called from the .abort and .shut app_ops callback functions at the SC level.
*/
void se_shutdown(struct sedesc *sedesc, enum se_shut_mode mode)
{
if (se_fl_test(sedesc, SE_FL_T_MUX)) {
const struct mux_ops *mux = (sedesc->conn ? sedesc->conn->mux : NULL);
unsigned int flags = 0;
if ((mode & (SE_SHW_SILENT|SE_SHW_NORMAL)) && !se_fl_test(sedesc, SE_FL_SHW))
flags |= (mode & SE_SHW_NORMAL) ? SE_FL_SHWN : SE_FL_SHWS;
if ((mode & (SE_SHR_RESET|SE_SHR_DRAIN)) && !se_fl_test(sedesc, SE_FL_SHR))
flags |= (mode & SE_SHR_DRAIN) ? SE_FL_SHRD : SE_FL_SHRR;
if (flags) {
if (mux && mux->shut) {
struct se_abort_info *reason = NULL;
struct xref *peer = xref_get_peer_and_lock(&sedesc->xref);
if (peer) {
struct sedesc *sdo = container_of(peer, struct sedesc, xref);
reason = &sdo->abort_info;
xref_unlock(&sedesc->xref, peer);
}
mux->shut(sedesc->sc, mode, reason);
}
se_fl_set(sedesc, flags);
}
}
else if (se_fl_test(sedesc, SE_FL_T_APPLET)) {
if ((mode & (SE_SHW_SILENT|SE_SHW_NORMAL)) && !se_fl_test(sedesc, SE_FL_SHW))
se_fl_set(sedesc, SE_FL_SHWN);
if ((mode & (SE_SHR_RESET|SE_SHR_DRAIN)) && !se_fl_test(sedesc, SE_FL_SHR))
se_fl_set(sedesc, SE_FL_SHRR);
if (se_fl_test(sedesc, SE_FL_SHR) && se_fl_test(sedesc, SE_FL_SHW))
appctx_shut(sedesc->se);
}
}
/* Tries to allocate a new stconn and initialize its main fields. On
* failure, nothing is allocated and NULL is returned. It is an internal
* function. The caller must, at least, set the SE_FL_ORPHAN or SE_FL_DETACHED
* flag.
*/
static struct stconn *sc_new(struct sedesc *sedesc)
{
struct stconn *sc;
sc = pool_alloc(pool_head_connstream);
if (unlikely(!sc))
goto alloc_error;
sc->obj_type = OBJ_TYPE_SC;
sc->flags = SC_FL_NONE;
sc->state = SC_ST_INI;
sc->ioto = TICK_ETERNITY;
sc->room_needed = 0;
sc->app = NULL;
sc->app_ops = NULL;
sc->src = NULL;
sc->dst = NULL;
sc->wait_event.tasklet = NULL;
sc->wait_event.events = 0;
/* If there is no endpoint, allocate a new one now */
if (!sedesc) {
sedesc = sedesc_new();
if (unlikely(!sedesc))
goto alloc_error;
}
sc->sedesc = sedesc;
sedesc->sc = sc;
return sc;
alloc_error:
pool_free(pool_head_connstream, sc);
return NULL;
}
/* Creates a new stream connector and its associated stream from a mux. <sd> must
* be defined. It returns NULL on error. On success, the new stream connector is
* returned. In this case, SE_FL_ORPHAN flag is removed.
*/
struct stconn *sc_new_from_endp(struct sedesc *sd, struct session *sess, struct buffer *input)
{
struct stconn *sc;
sc = sc_new(sd);
if (unlikely(!sc))
return NULL;
if (unlikely(!stream_new(sess, sc, input))) {
sd->sc = NULL;
if (sc->sedesc != sd) {
/* none was provided so sc_new() allocated one */
sedesc_free(sc->sedesc);
}
pool_free(pool_head_connstream, sc);
se_fl_set(sd, SE_FL_ORPHAN);
return NULL;
}
se_fl_clr(sd, SE_FL_ORPHAN);
return sc;
}
/* Creates a new stream connector from an stream. There is no endpoint here, thus it
* will be created by sc_new(). So the SE_FL_DETACHED flag is set. It returns
* NULL on error. On success, the new stream connector is returned.
*/
struct stconn *sc_new_from_strm(struct stream *strm, unsigned int flags)
{
struct stconn *sc;
sc = sc_new(NULL);
if (unlikely(!sc))
return NULL;
sc->flags |= flags;
sc_ep_set(sc, SE_FL_DETACHED);
sc->app = &strm->obj_type;
sc->app_ops = &sc_app_embedded_ops;
return sc;
}
/* Creates a new stream connector from an health-check. There is no endpoint here,
* thus it will be created by sc_new(). So the SE_FL_DETACHED flag is set. It
* returns NULL on error. On success, the new stream connector is returned.
*/
struct stconn *sc_new_from_check(struct check *check, unsigned int flags)
{
struct stconn *sc;
sc = sc_new(NULL);
if (unlikely(!sc))
return NULL;
sc->flags |= flags;
sc_ep_set(sc, SE_FL_DETACHED);
sc->app = &check->obj_type;
sc->app_ops = &sc_app_check_ops;
return sc;
}
/* Releases a stconn previously allocated by sc_new(), as well as its
* endpoint, if it exists. This function is called internally or on error path.
*/
void sc_free(struct stconn *sc)
{
sockaddr_free(&sc->src);
sockaddr_free(&sc->dst);
if (sc->sedesc) {
BUG_ON(!sc_ep_test(sc, SE_FL_DETACHED));
sedesc_free(sc->sedesc);
}
tasklet_free(sc->wait_event.tasklet);
pool_free(pool_head_connstream, sc);
}
/* Conditionally removes a stream connector if it is detached and if there is no app
* layer defined. Except on error path, this one must be used. if release, the
* pointer on the SC is set to NULL.
*/
static void sc_free_cond(struct stconn **scp)
{
struct stconn *sc = *scp;
if (!sc->app && (!sc->sedesc || sc_ep_test(sc, SE_FL_DETACHED))) {
sc_free(sc);
*scp = NULL;
}
}
/* Attaches a stconn to a mux endpoint and sets the endpoint ctx. Returns
* -1 on error and 0 on success. SE_FL_DETACHED flag is removed. This function is
* called from a mux when it is attached to a stream or a health-check.
*/
int sc_attach_mux(struct stconn *sc, void *sd, void *ctx)
{
struct connection *conn = ctx;
struct sedesc *sedesc = sc->sedesc;
if (sc_strm(sc)) {
if (!sc->wait_event.tasklet) {
sc->wait_event.tasklet = tasklet_new();
if (!sc->wait_event.tasklet)
return -1;
sc->wait_event.tasklet->process = sc_conn_io_cb;
sc->wait_event.tasklet->context = sc;
sc->wait_event.events = 0;
}
sc->app_ops = &sc_app_conn_ops;
xref_create(&sc->sedesc->xref, &sc_opposite(sc)->sedesc->xref);
}
else if (sc_check(sc)) {
if (!sc->wait_event.tasklet) {
sc->wait_event.tasklet = tasklet_new();
if (!sc->wait_event.tasklet)
return -1;
sc->wait_event.tasklet->process = srv_chk_io_cb;
sc->wait_event.tasklet->context = sc;
sc->wait_event.events = 0;
}
sc->app_ops = &sc_app_check_ops;
}
sedesc->se = sd;
sedesc->conn = ctx;
se_fl_set(sedesc, SE_FL_T_MUX);
se_fl_clr(sedesc, SE_FL_DETACHED);
if (!conn->ctx)
conn->ctx = sc;
return 0;
}
/* Attaches a stconn to an applet endpoint and sets the endpoint
* ctx. Returns -1 on error and 0 on success. SE_FL_DETACHED flag is
* removed. This function is called by a stream when a backend applet is
* registered.
*/
static int sc_attach_applet(struct stconn *sc, struct appctx *appctx)
{
sc->sedesc->se = appctx;
sc_ep_set(sc, SE_FL_T_APPLET);
sc_ep_clr(sc, SE_FL_DETACHED);
if (sc_strm(sc)) {
sc->app_ops = &sc_app_applet_ops;
xref_create(&sc->sedesc->xref, &sc_opposite(sc)->sedesc->xref);
}
return 0;
}
/* Attaches a stconn to a app layer and sets the relevant
* callbacks. Returns -1 on error and 0 on success. SE_FL_ORPHAN flag is
* removed. This function is called by a stream when it is created to attach it
* on the stream connector on the client side.
*/
int sc_attach_strm(struct stconn *sc, struct stream *strm)
{
sc->app = &strm->obj_type;
sc_ep_clr(sc, SE_FL_ORPHAN);
sc_ep_report_read_activity(sc);
if (sc_ep_test(sc, SE_FL_T_MUX)) {
sc->wait_event.tasklet = tasklet_new();
if (!sc->wait_event.tasklet)
return -1;
sc->wait_event.tasklet->process = sc_conn_io_cb;
sc->wait_event.tasklet->context = sc;
sc->wait_event.events = 0;
sc->app_ops = &sc_app_conn_ops;
}
else if (sc_ep_test(sc, SE_FL_T_APPLET)) {
sc->app_ops = &sc_app_applet_ops;
}
else {
sc->app_ops = &sc_app_embedded_ops;
}
return 0;
}
/* Detaches the stconn from the endpoint, if any. For a connecrion, if a
* mux owns the connection ->detach() callback is called. Otherwise, it means
* the stream connector owns the connection. In this case the connection is closed
* and released. For an applet, the appctx is released. If still allocated, the
* endpoint is reset and flag as detached. If the app layer is also detached,
* the stream connector is released.
*/
static void sc_detach_endp(struct stconn **scp)
{
struct stconn *sc = *scp;
struct xref *peer;
if (!sc)
return;
/* Remove my link in the original objects. */
peer = xref_get_peer_and_lock(&sc->sedesc->xref);
if (peer)
xref_disconnect(&sc->sedesc->xref, peer);
if (sc_ep_test(sc, SE_FL_T_MUX)) {
struct connection *conn = __sc_conn(sc);
struct sedesc *sedesc = sc->sedesc;
if (conn->mux) {
if (sc->wait_event.events != 0)
conn->mux->unsubscribe(sc, sc->wait_event.events, &sc->wait_event);
se_fl_set(sedesc, SE_FL_ORPHAN);
sedesc->sc = NULL;
sc->sedesc = NULL;
conn->mux->detach(sedesc);
}
else {
/* It's too early to have a mux, let's just destroy
* the connection
*/
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
}
else if (sc_ep_test(sc, SE_FL_T_APPLET)) {
struct appctx *appctx = __sc_appctx(sc);
sc_ep_set(sc, SE_FL_ORPHAN);
sc->sedesc->sc = NULL;
sc->sedesc = NULL;
se_shutdown(appctx->sedesc, SE_SHR_RESET|SE_SHW_NORMAL);
appctx_free(appctx);
}
if (sc->sedesc) {
/* the SD wasn't used and can be recycled */
sc->sedesc->se = NULL;
sc->sedesc->conn = NULL;
sc->sedesc->flags = 0;
sc_ep_set(sc, SE_FL_DETACHED);
}
/* FIXME: Rest SC for now but must be reviewed. SC flags are only
* connection related for now but this will evolved
*/
sc->flags &= SC_FL_ISBACK;
if (sc_strm(sc))
sc->app_ops = &sc_app_embedded_ops;
else
sc->app_ops = NULL;
sc_free_cond(scp);
}
/* Detaches the stconn from the app layer. If there is no endpoint attached
* to the stconn
*/
static void sc_detach_app(struct stconn **scp)
{
struct stconn *sc = *scp;
if (!sc)
return;
sc->app = NULL;
sc->app_ops = NULL;
sockaddr_free(&sc->src);
sockaddr_free(&sc->dst);
tasklet_free(sc->wait_event.tasklet);
sc->wait_event.tasklet = NULL;
sc->wait_event.events = 0;
sc_free_cond(scp);
}
/* Destroy the stconn. It is detached from its endpoint and its
* application. After this call, the stconn must be considered as released.
*/
void sc_destroy(struct stconn *sc)
{
sc_detach_endp(&sc);
sc_detach_app(&sc);
BUG_ON_HOT(sc);
}
/* Resets the stream connector endpoint. It happens when the app layer want to renew
* its endpoint. For a connection retry for instance. If a mux or an applet is
* attached, a new endpoint is created. Returns -1 on error and 0 on success.
*/
int sc_reset_endp(struct stconn *sc)
{
struct sedesc *new_sd;
BUG_ON(!sc->app);
if (!__sc_endp(sc)) {
/* endpoint not attached or attached to a mux with no
* target. Thus the endpoint will not be release but just
* reset. The app is still attached, the sc will not be
* released.
*/
sc_detach_endp(&sc);
return 0;
}
/* allocate the new endpoint first to be able to set error if it
* fails */
new_sd = sedesc_new();
if (!unlikely(new_sd))
return -1;
/* The app is still attached, the sc will not be released */
sc_detach_endp(&sc);
BUG_ON(!sc);
BUG_ON(sc->sedesc);
sc->sedesc = new_sd;
sc->sedesc->sc = sc;
sc_ep_set(sc, SE_FL_DETACHED);
return 0;
}
/* Create an applet to handle a stream connector as a new appctx. The SC will
* wake it up every time it is solicited. The appctx must be deleted by the task
* handler using sc_detach_endp(), possibly from within the function itself.
* It also pre-initializes the applet's context and returns it (or NULL in case
* it could not be allocated).
*/
struct appctx *sc_applet_create(struct stconn *sc, struct applet *app)
{
struct appctx *appctx;
appctx = appctx_new_here(app, sc->sedesc);
if (!appctx)
return NULL;
if (sc_attach_applet(sc, appctx) == -1) {
appctx_free_on_early_error(appctx);
return NULL;
}
appctx->t->nice = __sc_strm(sc)->task->nice;
applet_need_more_data(appctx);
appctx_wakeup(appctx);
sc->state = SC_ST_RDY;
return appctx;
}
/* Conditionally forward the close to the write side. It return 1 if it can be
* forwarded. It is the caller responsibility to forward the close to the write
* side. Otherwise, 0 is returned. In this case, SC_FL_SHUT_WANTED flag may be set on
* the consumer SC if we are only waiting for the outgoing data to be flushed.
*/
static inline int sc_cond_forward_shut(struct stconn *sc)
{
/* The close must not be forwarded */
if (!(sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) || !(sc->flags & SC_FL_NOHALF))
return 0;
if ((co_data(sc_ic(sc)) || sc_ep_have_ff_data(sc_opposite(sc))) && !(sc_ic(sc)->flags & CF_WRITE_TIMEOUT)) {
/* the shutdown cannot be forwarded now because
* we should flush outgoing data first. But instruct the output
* channel it should be done ASAP.
*/
sc_schedule_shutdown(sc);
return 0;
}
/* the close can be immediately forwarded to the write side */
return 1;
}
static inline int sc_is_fastfwd_supported(struct stconn *sc)
{
return (!(global.tune.no_zero_copy_fwd & NO_ZERO_COPY_FWD) &&
sc_ep_test(sc, SE_FL_MAY_FASTFWD_PROD) &&
sc_ep_test(sc_opposite(sc), SE_FL_MAY_FASTFWD_CONS) &&
sc_ic(sc)->to_forward);
}
/*
* This function performs a shutdown-read on a detached stream connector in a
* connected or init state (it does nothing for other states). It either shuts
* the read side or marks itself as closed. The buffer flags are updated to
* reflect the new state. If the stream connector has SC_FL_NOHALF, we also
* forward the close to the write side. The owner task is woken up if it exists.
*/
static void sc_app_abort(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
sc->flags |= SC_FL_ABRT_DONE;
ic->flags |= CF_READ_EVENT;
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (sc->flags & SC_FL_SHUT_DONE) {
sc->state = SC_ST_DIS;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
else if (sc_cond_forward_shut(sc))
return sc_app_shut(sc);
/* note that if the task exists, it must unregister itself once it runs */
if (!(sc->flags & SC_FL_DONT_WAKE))
task_wakeup(sc_strm_task(sc), TASK_WOKEN_IO);
}
/*
* This function performs a shutdown-write on a detached stream connector in a
* connected or init state (it does nothing for other states). It either shuts
* the write side or marks itself as closed. The buffer flags are updated to
* reflect the new state. It does also close everything if the SC was marked as
* being in error state. The owner task is woken up if it exists.
*/
static void sc_app_shut(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
struct channel *oc = sc_oc(sc);
sc->flags &= ~SC_FL_SHUT_WANTED;
if (sc->flags & SC_FL_SHUT_DONE)
return;
sc->flags |= SC_FL_SHUT_DONE;
oc->flags |= CF_WRITE_EVENT;
sc_set_hcto(sc);
switch (sc->state) {
case SC_ST_RDY:
case SC_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if SC_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (!(sc->flags & (SC_FL_ERROR|SC_FL_NOLINGER|SC_FL_EOS|SC_FL_ABRT_DONE)) &&
!(ic->flags & CF_DONT_READ))
return;
sc->state = SC_ST_DIS;
break;
case SC_ST_CON:
case SC_ST_CER:
case SC_ST_QUE:
case SC_ST_TAR:
/* Note that none of these states may happen with applets */
sc->state = SC_ST_DIS;
break;
default:
break;
}
sc->flags &= ~SC_FL_NOLINGER;
sc->flags |= SC_FL_ABRT_DONE;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
/* note that if the task exists, it must unregister itself once it runs */
if (!(sc->flags & SC_FL_DONT_WAKE))
task_wakeup(sc_strm_task(sc), TASK_WOKEN_IO);
}
/* default chk_rcv function for scheduled tasks */
static void sc_app_chk_rcv(struct stconn *sc)
{
if (sc_ep_have_ff_data(sc_opposite(sc))) {
/* stop reading */
sc_need_room(sc, -1);
}
else {
/* (re)start reading */
if (!(sc->flags & SC_FL_DONT_WAKE))
task_wakeup(sc_strm_task(sc), TASK_WOKEN_IO);
}
}
/* default chk_snd function for scheduled tasks */
static void sc_app_chk_snd(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
if (unlikely(sc->state != SC_ST_EST || (sc->flags & SC_FL_SHUT_DONE)))
return;
if (!sc_ep_test(sc, SE_FL_WAIT_DATA) || /* not waiting for data */
(!co_data(oc) && !sc_ep_have_ff_data(sc))) /* called with nothing to send ! */
return;
/* Otherwise there are remaining data to be sent in the buffer,
* so we tell the handler.
*/
sc_ep_clr(sc, SE_FL_WAIT_DATA);
if (!(sc->flags & SC_FL_DONT_WAKE))
task_wakeup(sc_strm_task(sc), TASK_WOKEN_IO);
}
/*
* This function performs a shutdown-read on a stream connector attached to
* a connection in a connected or init state (it does nothing for other
* states). It either shuts the read side or marks itself as closed. The buffer
* flags are updated to reflect the new state. If the stream connector has
* SC_FL_NOHALF, we also forward the close to the write side. If a control
* layer is defined, then it is supposed to be a socket layer and file
* descriptors are then shutdown or closed accordingly. The function
* automatically disables polling if needed.
*/
static void sc_app_abort_conn(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_conn(sc));
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
sc->flags |= SC_FL_ABRT_DONE;
ic->flags |= CF_READ_EVENT;
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (sc->flags & SC_FL_SHUT_DONE) {
se_shutdown(sc->sedesc, SE_SHR_RESET|SE_SHW_SILENT);
sc->state = SC_ST_DIS;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
else if (sc_cond_forward_shut(sc))
return sc_app_shut_conn(sc);
}
/*
* This function performs a shutdown-write on a stream connector attached to
* a connection in a connected or init state (it does nothing for other
* states). It either shuts the write side or marks itself as closed. The
* buffer flags are updated to reflect the new state. It does also close
* everything if the SC was marked as being in error state. If there is a
* data-layer shutdown, it is called.
*/
static void sc_app_shut_conn(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
struct channel *oc = sc_oc(sc);
BUG_ON(!sc_conn(sc));
sc->flags &= ~SC_FL_SHUT_WANTED;
if (sc->flags & SC_FL_SHUT_DONE)
return;
sc->flags |= SC_FL_SHUT_DONE;
oc->flags |= CF_WRITE_EVENT;
sc_set_hcto(sc);
switch (sc->state) {
case SC_ST_RDY:
case SC_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if SC_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (!(sc->flags & (SC_FL_NOLINGER|SC_FL_EOS|SC_FL_ABRT_DONE)) && !(ic->flags & CF_DONT_READ)) {
se_shutdown(sc->sedesc, SE_SHW_NORMAL);
return;
}
se_shutdown(sc->sedesc, SE_SHR_RESET|((sc->flags & SC_FL_NOLINGER) ? SE_SHW_SILENT : SE_SHW_NORMAL));
sc->state = SC_ST_DIS;
break;
case SC_ST_CON:
/* we may have to close a pending connection, and mark the
* response buffer as abort
*/
se_shutdown(sc->sedesc, SE_SHR_RESET|SE_SHW_SILENT);
sc->state = SC_ST_DIS;
break;
case SC_ST_CER:
case SC_ST_QUE:
case SC_ST_TAR:
sc->state = SC_ST_DIS;
break;
default:
break;
}
sc->flags &= ~SC_FL_NOLINGER;
sc->flags |= SC_FL_ABRT_DONE;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
/* This function is used for inter-stream connector calls. It is called by the
* consumer to inform the producer side that it may be interested in checking
* for free space in the buffer. Note that it intentionally does not update
* timeouts, so that we can still check them later at wake-up. This function is
* dedicated to connection-based stream connectors.
*/
static void sc_app_chk_rcv_conn(struct stconn *sc)
{
BUG_ON(!sc_conn(sc));
/* (re)start reading */
if (sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
tasklet_wakeup(sc->wait_event.tasklet);
}
/* This function is used for inter-stream connector calls. It is called by the
* producer to inform the consumer side that it may be interested in checking
* for data in the buffer. Note that it intentionally does not update timeouts,
* so that we can still check them later at wake-up.
*/
static void sc_app_chk_snd_conn(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
BUG_ON(!sc_conn(sc));
if (unlikely(!sc_state_in(sc->state, SC_SB_RDY|SC_SB_EST) ||
(sc->flags & SC_FL_SHUT_DONE)))
return;
if (unlikely(!co_data(oc) && !sc_ep_have_ff_data(sc))) /* called with nothing to send ! */
return;
if (!sc_ep_have_ff_data(sc) && /* data wants to be fast-forwarded ASAP */
!sc_ep_test(sc, SE_FL_WAIT_DATA)) /* not waiting for data */
return;
if (!(sc->wait_event.events & SUB_RETRY_SEND))
sc_conn_send(sc);
if (sc_ep_test(sc, SE_FL_ERROR | SE_FL_ERR_PENDING) || sc_is_conn_error(sc)) {
/* Write error on the file descriptor */
BUG_ON(sc_ep_test(sc, SE_FL_EOS|SE_FL_ERROR|SE_FL_ERR_PENDING) == (SE_FL_EOS|SE_FL_ERR_PENDING));
goto out_wakeup;
}
/* OK, so now we know that some data might have been sent, and that we may
* have to poll first. We have to do that too if the buffer is not empty.
*/
if (!co_data(oc)) {
/* the connection is established but we can't write. Either the
* buffer is empty, or we just refrain from sending because the
* ->o limit was reached. Maybe we just wrote the last
* chunk and need to close.
*/
if ((oc->flags & CF_AUTO_CLOSE) &&
((sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) == SC_FL_SHUT_WANTED) &&
sc_state_in(sc->state, SC_SB_RDY|SC_SB_EST)) {
sc_shutdown(sc);
goto out_wakeup;
}
if ((sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) == 0)
sc_ep_set(sc, SE_FL_WAIT_DATA);
}
else {
/* Otherwise there are remaining data to be sent in the buffer,
* which means we have to poll before doing so.
*/
sc_ep_clr(sc, SE_FL_WAIT_DATA);
}
/* in case of special condition (error, shutdown, end of write...), we
* have to notify the task.
*/
if (likely((sc->flags & SC_FL_SHUT_DONE) ||
((oc->flags & CF_WRITE_EVENT) && sc->state < SC_ST_EST) ||
((oc->flags & CF_WAKE_WRITE) &&
((!co_data(oc) && !oc->to_forward) ||
!sc_state_in(sc->state, SC_SB_EST))))) {
out_wakeup:
if (!(sc->flags & SC_FL_DONT_WAKE))
task_wakeup(sc_strm_task(sc), TASK_WOKEN_IO);
}
}
/*
* This function performs a shutdown-read on a stream connector attached to an
* applet in a connected or init state (it does nothing for other states). It
* either shuts the read side or marks itself as closed. The buffer flags are
* updated to reflect the new state. If the stream connector has SC_FL_NOHALF,
* we also forward the close to the write side. The owner task is woken up if
* it exists.
*/
static void sc_app_abort_applet(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_appctx(sc));
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
sc->flags |= SC_FL_ABRT_DONE;
ic->flags |= CF_READ_EVENT;
/* Note: on abort, we don't call the applet */
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (sc->flags & SC_FL_SHUT_DONE) {
se_shutdown(sc->sedesc, SE_SHR_RESET|SE_SHW_NORMAL);
sc->state = SC_ST_DIS;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
else if (sc_cond_forward_shut(sc))
return sc_app_shut_applet(sc);
}
/*
* This function performs a shutdown-write on a stream connector attached to an
* applet in a connected or init state (it does nothing for other states). It
* either shuts the write side or marks itself as closed. The buffer flags are
* updated to reflect the new state. It does also close everything if the SI
* was marked as being in error state. The owner task is woken up if it exists.
*/
static void sc_app_shut_applet(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
struct channel *oc = sc_oc(sc);
BUG_ON(!sc_appctx(sc));
sc->flags &= ~SC_FL_SHUT_WANTED;
if (sc->flags & SC_FL_SHUT_DONE)
return;
sc->flags |= SC_FL_SHUT_DONE;
oc->flags |= CF_WRITE_EVENT;
sc_set_hcto(sc);
/* on shutw we always wake the applet up */
appctx_wakeup(__sc_appctx(sc));
switch (sc->state) {
case SC_ST_RDY:
case SC_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if SC_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (!(sc->flags & (SC_FL_ERROR|SC_FL_NOLINGER|SC_FL_EOS|SC_FL_ABRT_DONE)) &&
!(ic->flags & CF_DONT_READ)) {
se_shutdown(sc->sedesc, SE_SHW_NORMAL);
return;
}
se_shutdown(sc->sedesc, SE_SHR_RESET|SE_SHW_NORMAL);
sc->state = SC_ST_DIS;
break;
case SC_ST_CON:
case SC_ST_CER:
case SC_ST_QUE:
case SC_ST_TAR:
/* Note that none of these states may happen with applets */
se_shutdown(sc->sedesc, SE_SHR_RESET|SE_SHW_NORMAL);
sc->state = SC_ST_DIS;
break;
default:
break;
}
sc->flags &= ~SC_FL_NOLINGER;
sc->flags |= SC_FL_ABRT_DONE;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
/* chk_rcv function for applets */
static void sc_app_chk_rcv_applet(struct stconn *sc)
{
BUG_ON(!sc_appctx(sc));
if (!sc_ep_have_ff_data(sc_opposite(sc))) {
/* (re)start reading */
appctx_wakeup(__sc_appctx(sc));
}
}
/* chk_snd function for applets */
static void sc_app_chk_snd_applet(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
BUG_ON(!sc_appctx(sc));
if (unlikely(sc->state != SC_ST_EST || (sc->flags & SC_FL_SHUT_DONE)))
return;
/* we only wake the applet up if it was waiting for some data and is ready to consume it */
if (!sc_ep_test(sc, SE_FL_WAIT_DATA|SE_FL_WONT_CONSUME))
return;
if (co_data(oc) || sc_ep_have_ff_data(sc)) {
/* (re)start sending */
appctx_wakeup(__sc_appctx(sc));
}
}
/* This function is designed to be called from within the stream handler to
* update the input channel's expiration timer and the stream connector's
* Rx flags based on the channel's flags. It needs to be called only once
* after the channel's flags have settled down, and before they are cleared,
* though it doesn't harm to call it as often as desired (it just slightly
* hurts performance). It must not be called from outside of the stream
* handler, as what it does will be used to compute the stream task's
* expiration.
*/
void sc_update_rx(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
/* Unblock the SC if it needs room and the free space is large enough (0
* means it can always be unblocked). Do not unblock it if -1 was
* specified.
*/
if (!sc->room_needed || (sc->room_needed > 0 && channel_recv_max(ic) >= sc->room_needed))
sc_have_room(sc);
/* Read not closed, update FD status and timeout for reads */
if (ic->flags & CF_DONT_READ)
sc_wont_read(sc);
else
sc_will_read(sc);
sc_chk_rcv(sc);
}
/* This function is designed to be called from within the stream handler to
* update the output channel's expiration timer and the stream connector's
* Tx flags based on the channel's flags. It needs to be called only once
* after the channel's flags have settled down, and before they are cleared,
* though it doesn't harm to call it as often as desired (it just slightly
* hurts performance). It must not be called from outside of the stream
* handler, as what it does will be used to compute the stream task's
* expiration.
*/
void sc_update_tx(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
if (sc->flags & SC_FL_SHUT_DONE)
return;
/* Write not closed, update FD status and timeout for writes */
if (!co_data(oc)) {
/* stop writing */
if (!sc_ep_test(sc, SE_FL_WAIT_DATA)) {
if ((sc->flags & SC_FL_SHUT_WANTED) == 0)
sc_ep_set(sc, SE_FL_WAIT_DATA);
}
return;
}
/* (re)start writing */
sc_ep_clr(sc, SE_FL_WAIT_DATA);
}
/* This function is the equivalent to sc_update() except that it's
* designed to be called from outside the stream handlers, typically the lower
* layers (applets, connections) after I/O completion. After updating the stream
* interface and timeouts, it will try to forward what can be forwarded, then to
* wake the associated task up if an important event requires special handling.
* It may update SE_FL_WAIT_DATA and/or SC_FL_NEED_ROOM, that the callers are
* encouraged to watch to take appropriate action.
* It should not be called from within the stream itself, sc_update()
* is designed for this. Please do not statify this function, it's often
* present in backtraces, it's useful to recognize it.
*/
void sc_notify(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
struct channel *oc = sc_oc(sc);
struct stconn *sco = sc_opposite(sc);
struct task *task = sc_strm_task(sc);
/* process consumer side */
if (!co_data(oc) && !sc_ep_have_ff_data(sco)) {
struct connection *conn = sc_conn(sc);
if (((sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) == SC_FL_SHUT_WANTED) &&
(sc->state == SC_ST_EST) && (!conn || !(conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS))))
sc_shutdown(sc);
}
/* indicate that we may be waiting for data from the output channel or
* we're about to close and can't expect more data if SC_FL_SHUT_WANTED is there.
*/
if (!(sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)))
sc_ep_set(sc, SE_FL_WAIT_DATA);
else if ((sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) == SC_FL_SHUT_WANTED)
sc_ep_clr(sc, SE_FL_WAIT_DATA);
if (oc->flags & CF_DONT_READ)
sc_wont_read(sco);
else
sc_will_read(sco);
/* Notify the other side when we've injected data into the IC that
* needs to be forwarded. We can do fast-forwarding as soon as there
* are output data, but we avoid doing this if some of the data are
* not yet scheduled for being forwarded, because it is very likely
* that it will be done again immediately afterwards once the following
* data are parsed (eg: HTTP chunking). We only clear SC_FL_NEED_ROOM
* once we've emptied *some* of the output buffer, and not just when
* there is available room, because applets are often forced to stop
* before the buffer is full. We must not stop based on input data
* alone because an HTTP parser might need more data to complete the
* parsing.
*/
if (sc_ep_have_ff_data(sc_opposite(sc)) ||
(co_data(ic) && sc_ep_test(sco, SE_FL_WAIT_DATA) &&
(!HAS_DATA_FILTERS(__sc_strm(sc), ic) || channel_input_data(ic) == 0) &&
(!(sc->flags & SC_FL_SND_EXP_MORE) || channel_full(ic, co_data(ic)) || channel_input_data(ic) == 0))) {
int new_len, last_len;
last_len = co_data(ic) + sc_ep_ff_data(sco);
sc_chk_snd(sco);
new_len = co_data(ic) + sc_ep_ff_data(sco);
/* check if the consumer has freed some space either in the
* buffer or in the pipe.
*/
if (!sc->room_needed || (new_len < last_len && (sc->room_needed < 0 || channel_recv_max(ic) >= sc->room_needed)))
sc_have_room(sc);
}
if (!(ic->flags & CF_DONT_READ))
sc_will_read(sc);
sc_chk_rcv(sc);
sc_chk_rcv(sco);
/* wake the task up only when needed */
if (/* changes on the production side that must be handled:
* - An error on receipt: SC_FL_ERROR
* - A read event: shutdown for reads (CF_READ_EVENT + EOS/ABRT_DONE)
* end of input (CF_READ_EVENT + SC_FL_EOI)
* data received and no fast-forwarding (CF_READ_EVENT + !to_forward)
* read event while consumer side is not established (CF_READ_EVENT + sco->state != SC_ST_EST)
*/
((ic->flags & CF_READ_EVENT) && ((sc->flags & SC_FL_EOI) || (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) || !ic->to_forward || sco->state != SC_ST_EST)) ||
(sc->flags & SC_FL_ERROR) ||
/* changes on the consumption side */
sc_ep_test(sc, SE_FL_ERR_PENDING) ||
((oc->flags & CF_WRITE_EVENT) &&
((sc->state < SC_ST_EST) ||
(sc->flags & SC_FL_SHUT_DONE) ||
(((oc->flags & CF_WAKE_WRITE) ||
(!(oc->flags & CF_AUTO_CLOSE) &&
!(sc->flags & (SC_FL_SHUT_WANTED|SC_FL_SHUT_DONE)))) &&
(sco->state != SC_ST_EST ||
(!co_data(oc) && !oc->to_forward)))))) {
task_wakeup(task, TASK_WOKEN_IO);
}
else {
/* Update expiration date for the task and requeue it if not already expired */
if (!tick_is_expired(task->expire, now_ms)) {
task->expire = tick_first(task->expire, sc_ep_rcv_ex(sc));
task->expire = tick_first(task->expire, sc_ep_snd_ex(sc));
task->expire = tick_first(task->expire, sc_ep_rcv_ex(sco));
task->expire = tick_first(task->expire, sc_ep_snd_ex(sco));
task->expire = tick_first(task->expire, ic->analyse_exp);
task->expire = tick_first(task->expire, oc->analyse_exp);
task->expire = tick_first(task->expire, __sc_strm(sc)->conn_exp);
/* WARNING: Don't forget to remove this BUG_ON before 2.9.0 */
BUG_ON(tick_is_expired(task->expire, now_ms));
task_queue(task);
}
}
if (ic->flags & CF_READ_EVENT)
sc->flags &= ~SC_FL_RCV_ONCE;
}
/*
* This function propagates an end-of-stream received on a socket-based connection.
* It updates the stream connector. If the stream connector has SC_FL_NOHALF,
* the close is also forwarded to the write side as an abort.
*/
static void sc_conn_eos(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_conn(sc));
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
sc->flags |= SC_FL_EOS;
ic->flags |= CF_READ_EVENT;
sc_ep_report_read_activity(sc);
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (sc->flags & SC_FL_SHUT_DONE)
goto do_close;
if (sc_cond_forward_shut(sc)) {
/* we want to immediately forward this close to the write side */
/* force flag on ssl to keep stream in cache */
goto do_close;
}
/* otherwise that's just a normal read shutdown */
return;
do_close:
/* OK we completely close the socket here just as if we went through sc_shut[rw]() */
se_shutdown(sc->sedesc, SE_SHR_RESET|SE_SHW_SILENT);
sc->flags &= ~SC_FL_SHUT_WANTED;
sc->flags |= SC_FL_SHUT_DONE;
sc->state = SC_ST_DIS;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
return;
}
/*
* This is the callback which is called by the connection layer to receive data
* into the buffer from the connection. It iterates over the mux layer's
* rcv_buf function. Please do not statify this function, it's often present in
* backtraces, it's useful to recognize it.
*/
int sc_conn_recv(struct stconn *sc)
{
struct connection *conn = __sc_conn(sc);
struct channel *ic = sc_ic(sc);
int ret, max, cur_read = 0;
int read_poll = MAX_READ_POLL_LOOPS;
int flags = 0;
/* If not established yet, do nothing. */
if (sc->state != SC_ST_EST)
return 0;
/* If another call to sc_conn_recv() failed, and we subscribed to
* recv events already, give up now.
*/
if ((sc->wait_event.events & SUB_RETRY_RECV) || sc_waiting_room(sc))
return 0;
/* maybe we were called immediately after an asynchronous abort */
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return 1;
/* we must wait because the mux is not installed yet */
if (!conn->mux)
return 0;
/* stop immediately on errors. Note that we DON'T want to stop on
* POLL_ERR, as the poller might report a write error while there
* are still data available in the recv buffer. This typically
* happens when we send too large a request to a backend server
* which rejects it before reading it all.
*/
if (!sc_ep_test(sc, SE_FL_RCV_MORE)) {
if (!conn_xprt_ready(conn))
return 0;
if (sc_ep_test(sc, SE_FL_ERROR))
goto end_recv;
}
/* prepare to detect if the mux needs more room */
sc_ep_clr(sc, SE_FL_WANT_ROOM);
channel_check_idletimer(ic);
#if defined(USE_LINUX_SPLICE)
/* Detect if the splicing is possible depending on the stream policy */
if ((global.tune.options & GTUNE_USE_SPLICE) &&
(ic->to_forward >= MIN_SPLICE_FORWARD) &&
((!(sc->flags & SC_FL_ISBACK) && ((strm_fe(__sc_strm(sc))->options2|__sc_strm(sc)->be->options2) & PR_O2_SPLIC_REQ)) ||
((sc->flags & SC_FL_ISBACK) && ((strm_fe(__sc_strm(sc))->options2|__sc_strm(sc)->be->options2) & PR_O2_SPLIC_RTR)) ||
((ic->flags & CF_STREAMER_FAST) && ((strm_sess(__sc_strm(sc))->fe->options2|__sc_strm(sc)->be->options2) & PR_O2_SPLIC_AUT))))
flags |= CO_RFL_MAY_SPLICE;
#endif
/* First, let's see if we may fast-forward data from a side to the other
* one without using the channel buffer.
*/
if (sc_is_fastfwd_supported(sc)) {
if (channel_data(ic)) {
/* We're embarrassed, there are already data pending in
* the buffer and we don't want to have them at two
* locations at a time. Let's indicate we need some
* place and ask the consumer to hurry.
*/
flags |= CO_RFL_BUF_FLUSH;
goto abort_fastfwd;
}
ret = conn->mux->fastfwd(sc, ic->to_forward, flags);
if (ret < 0)
goto abort_fastfwd;
else if (ret > 0) {
if (ic->to_forward != CHN_INFINITE_FORWARD)
ic->to_forward -= ret;
ic->total += ret;
cur_read += ret;
ic->flags |= CF_READ_EVENT;
}
if (sc_ep_test(sc, SE_FL_EOS | SE_FL_ERROR))
goto end_recv;
if (sc_ep_test(sc, SE_FL_WANT_ROOM))
sc_need_room(sc, -1);
if (sc_ep_test(sc, SE_FL_MAY_FASTFWD_PROD) && ic->to_forward)
goto done_recv;
}
abort_fastfwd:
/* now we'll need a input buffer for the stream */
if (!sc_alloc_ibuf(sc, &(__sc_strm(sc)->buffer_wait)))
goto end_recv;
/* For an HTX stream, if the buffer is stuck (no output data with some
* input data) and if the HTX message is fragmented or if its free space
* wraps, we force an HTX deframentation. It is a way to have a
* contiguous free space nad to let the mux to copy as much data as
* possible.
*
* NOTE: A possible optim may be to let the mux decides if defrag is
* required or not, depending on amount of data to be xferred.
*/
if (IS_HTX_STRM(__sc_strm(sc)) && !co_data(ic)) {
struct htx *htx = htxbuf(&ic->buf);
if (htx_is_not_empty(htx) && ((htx->flags & HTX_FL_FRAGMENTED) || htx_space_wraps(htx)))
htx_defrag(htx, NULL, 0);
}
/* Instruct the mux it must subscribed for read events */
if (!(sc->flags & SC_FL_ISBACK) && /* for frontend conns only */
(sc_opposite(sc)->state != SC_ST_INI) && /* before backend connection setup */
(__sc_strm(sc)->be->options & PR_O_ABRT_CLOSE)) /* if abortonclose option is set for the current backend */
flags |= CO_RFL_KEEP_RECV;
/* Important note : if we're called with POLL_IN|POLL_HUP, it means the read polling
* was enabled, which implies that the recv buffer was not full. So we have a guarantee
* that if such an event is not handled above in splice, it will be handled here by
* recv().
*/
while (sc_ep_test(sc, SE_FL_RCV_MORE) ||
(!(conn->flags & CO_FL_HANDSHAKE) &&
(!sc_ep_test(sc, SE_FL_ERROR | SE_FL_EOS)) && !(sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)))) {
int cur_flags = flags;
/* Compute transient CO_RFL_* flags */
if (co_data(ic)) {
cur_flags |= (CO_RFL_BUF_WET | CO_RFL_BUF_NOT_STUCK);
}
/* <max> may be null. This is the mux responsibility to set
* SE_FL_RCV_MORE on the SC if more space is needed.
*/
max = channel_recv_max(ic);
ret = conn->mux->rcv_buf(sc, &ic->buf, max, cur_flags);
if (sc_ep_test(sc, SE_FL_WANT_ROOM)) {
/* SE_FL_WANT_ROOM must not be reported if the channel's
* buffer is empty.
*/
BUG_ON(c_empty(ic));
sc_need_room(sc, channel_recv_max(ic) + 1);
/* Add READ_PARTIAL because some data are pending but
* cannot be xferred to the channel
*/
ic->flags |= CF_READ_EVENT;
sc_ep_report_read_activity(sc);
}
if (ret <= 0) {
/* if we refrained from reading because we asked for a
* flush to satisfy rcv_pipe(), we must not subscribe
* and instead report that there's not enough room
* here to proceed.
*/
if (flags & CO_RFL_BUF_FLUSH)
sc_need_room(sc, -1);
break;
}
cur_read += ret;
/* if we're allowed to directly forward data, we must update ->o */
if (ic->to_forward && !(sc_opposite(sc)->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED))) {
unsigned long fwd = ret;
if (ic->to_forward != CHN_INFINITE_FORWARD) {
if (fwd > ic->to_forward)
fwd = ic->to_forward;
ic->to_forward -= fwd;
}
c_adv(ic, fwd);
}
ic->flags |= CF_READ_EVENT;
ic->total += ret;
/* End-of-input reached, we can leave. In this case, it is
* important to break the loop to not block the SC because of
* the channel's policies.This way, we are still able to receive
* shutdowns.
*/
if (sc_ep_test(sc, SE_FL_EOI))
break;
if ((sc->flags & SC_FL_RCV_ONCE) || --read_poll <= 0) {
/* we don't expect to read more data */
sc_wont_read(sc);
break;
}
/* if too many bytes were missing from last read, it means that
* it's pointless trying to read again because the system does
* not have them in buffers.
*/
if (ret < max) {
/* if a streamer has read few data, it may be because we
* have exhausted system buffers. It's not worth trying
* again.
*/
if (ic->flags & CF_STREAMER) {
/* we're stopped by the channel's policy */
sc_wont_read(sc);
break;
}
/* if we read a large block smaller than what we requested,
* it's almost certain we'll never get anything more.
*/
if (ret >= global.tune.recv_enough) {
/* we're stopped by the channel's policy */
sc_wont_read(sc);
break;
}
}
/* if we are waiting for more space, don't try to read more data
* right now.
*/
if (sc->flags & (SC_FL_WONT_READ|SC_FL_NEED_BUFF|SC_FL_NEED_ROOM))
break;
} /* while !flags */
done_recv:
if (!cur_read)
se_have_no_more_data(sc->sedesc);
else {
channel_check_xfer(ic, cur_read);
sc_ep_report_read_activity(sc);
}
end_recv:
ret = (cur_read != 0);
/* Report EOI on the channel if it was reached from the mux point of
* view. */
if (sc_ep_test(sc, SE_FL_EOI) && !(sc->flags & SC_FL_EOI)) {
sc_ep_report_read_activity(sc);
sc->flags |= SC_FL_EOI;
ic->flags |= CF_READ_EVENT;
ret = 1;
}
if (sc_ep_test(sc, SE_FL_EOS)) {
/* we received a shutdown */
if (ic->flags & CF_AUTO_CLOSE)
sc_schedule_shutdown(sc_opposite(sc));
sc_conn_eos(sc);
ret = 1;
}
if (sc_ep_test(sc, SE_FL_ERROR)) {
sc->flags |= SC_FL_ERROR;
ret = 1;
}
else if (!cur_read &&
!(sc->flags & (SC_FL_WONT_READ|SC_FL_NEED_BUFF|SC_FL_NEED_ROOM)) &&
!(sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))) {
/* Subscribe to receive events if we're blocking on I/O */
conn->mux->subscribe(sc, SUB_RETRY_RECV, &sc->wait_event);
se_have_no_more_data(sc->sedesc);
}
else {
se_have_more_data(sc->sedesc);
ret = 1;
}
return ret;
}
/* This tries to perform a synchronous receive on the stream connector to
* try to collect last arrived data. In practice it's only implemented on
* stconns. Returns 0 if nothing was done, non-zero if new data or a
* shutdown were collected. This may result on some delayed receive calls
* to be programmed and performed later, though it doesn't provide any
* such guarantee.
*/
int sc_conn_sync_recv(struct stconn *sc)
{
if (!sc_state_in(sc->state, SC_SB_RDY|SC_SB_EST))
return 0;
if (!sc_mux_ops(sc))
return 0; // only stconns are supported
if (sc->wait_event.events & SUB_RETRY_RECV)
return 0; // already subscribed
if (!sc_is_recv_allowed(sc))
return 0; // already failed
return sc_conn_recv(sc);
}
/*
* This function is called to send buffer data to a stream socket.
* It calls the mux layer's snd_buf function. It relies on the
* caller to commit polling changes. The caller should check conn->flags
* for errors. Please do not statify this function, it's often present in
* backtraces, it's useful to recognize it.
*/
int sc_conn_send(struct stconn *sc)
{
struct connection *conn = __sc_conn(sc);
struct stconn *sco = sc_opposite(sc);
struct stream *s = __sc_strm(sc);
struct channel *oc = sc_oc(sc);
int ret;
int did_send = 0;
if (sc_ep_test(sc, SE_FL_ERROR | SE_FL_ERR_PENDING) || sc_is_conn_error(sc)) {
/* We're probably there because the tasklet was woken up,
* but process_stream() ran before, detected there were an
* error and put the SC back to SC_ST_TAR. There's still
* CO_FL_ERROR on the connection but we don't want to add
* SE_FL_ERROR back, so give up
*/
if (sc->state < SC_ST_CON)
return 0;
BUG_ON(sc_ep_test(sc, SE_FL_EOS|SE_FL_ERROR|SE_FL_ERR_PENDING) == (SE_FL_EOS|SE_FL_ERR_PENDING));
return 1;
}
/* We're already waiting to be able to send, give up */
if (sc->wait_event.events & SUB_RETRY_SEND)
return 0;
/* we might have been called just after an asynchronous shutw */
if (sc->flags & SC_FL_SHUT_DONE)
return 1;
/* we must wait because the mux is not installed yet */
if (!conn->mux)
return 0;
if (sc_ep_have_ff_data(sc)) {
unsigned int send_flag = 0;
if ((!(sc->flags & (SC_FL_SND_ASAP|SC_FL_SND_NEVERWAIT)) &&
((oc->to_forward && oc->to_forward != CHN_INFINITE_FORWARD) ||
(sc->flags & SC_FL_SND_EXP_MORE) ||
(IS_HTX_STRM(s) &&
(!(sco->flags & (SC_FL_EOI|SC_FL_EOS|SC_FL_ABRT_DONE)) && htx_expect_more(htxbuf(&oc->buf)))))) ||
((oc->flags & CF_ISRESP) &&
(oc->flags & CF_AUTO_CLOSE) &&
(sc->flags & SC_FL_SHUT_WANTED)))
send_flag |= CO_SFL_MSG_MORE;
if (oc->flags & CF_STREAMER)
send_flag |= CO_SFL_STREAMER;
ret = conn->mux->resume_fastfwd(sc, send_flag);
if (ret > 0)
did_send = 1;
if (sc_ep_have_ff_data(sc))
goto end;
}
/* At this point, the pipe is empty, but we may still have data pending
* in the normal buffer.
*/
if (co_data(oc)) {
/* when we're here, we already know that there is no spliced
* data left, and that there are sendable buffered data.
*/
/* check if we want to inform the kernel that we're interested in
* sending more data after this call. We want this if :
* - we're about to close after this last send and want to merge
* the ongoing FIN with the last segment.
* - we know we can't send everything at once and must get back
* here because of unaligned data
* - there is still a finite amount of data to forward
* The test is arranged so that the most common case does only 2
* tests.
*/
unsigned int send_flag = 0;
if ((!(sc->flags & (SC_FL_SND_ASAP|SC_FL_SND_NEVERWAIT)) &&
((oc->to_forward && oc->to_forward != CHN_INFINITE_FORWARD) ||
(sc->flags & SC_FL_SND_EXP_MORE) ||
(IS_HTX_STRM(s) &&
(!(sco->flags & (SC_FL_EOI|SC_FL_EOS|SC_FL_ABRT_DONE)) && htx_expect_more(htxbuf(&oc->buf)))))) ||
((oc->flags & CF_ISRESP) &&
(oc->flags & CF_AUTO_CLOSE) &&
(sc->flags & SC_FL_SHUT_WANTED)))
send_flag |= CO_SFL_MSG_MORE;
if (oc->flags & CF_STREAMER)
send_flag |= CO_SFL_STREAMER;
if (s->txn && s->txn->flags & TX_L7_RETRY && !b_data(&s->txn->l7_buffer)) {
/* If we want to be able to do L7 retries, copy
* the data we're about to send, so that we are able
* to resend them if needed
*/
/* Try to allocate a buffer if we had none.
* If it fails, the next test will just
* disable the l7 retries by setting
* l7_conn_retries to 0.
*/
if (s->txn->req.msg_state != HTTP_MSG_DONE)
s->txn->flags &= ~TX_L7_RETRY;
else {
if (b_alloc(&s->txn->l7_buffer, DB_UNLIKELY) == NULL)
s->txn->flags &= ~TX_L7_RETRY;
else {
memcpy(b_orig(&s->txn->l7_buffer),
b_orig(&oc->buf),
b_size(&oc->buf));
s->txn->l7_buffer.head = co_data(oc);
b_add(&s->txn->l7_buffer, co_data(oc));
}
}
}
if ((sc->flags & SC_FL_SHUT_WANTED) && co_data(oc) == c_data(oc))
send_flag |= CO_SFL_LAST_DATA;
ret = conn->mux->snd_buf(sc, &oc->buf, co_data(oc), send_flag);
if (ret > 0) {
did_send = 1;
c_rew(oc, ret);
c_realign_if_empty(oc);
if (!co_data(oc)) {
/* Always clear both flags once everything has been sent, they're one-shot */
sc->flags &= ~(SC_FL_SND_ASAP|SC_FL_SND_EXP_MORE);
}
/* if some data remain in the buffer, it's only because the
* system buffers are full, we will try next time.
*/
}
}
end:
if (did_send) {
oc->flags |= CF_WRITE_EVENT | CF_WROTE_DATA;
if (sc->state == SC_ST_CON)
sc->state = SC_ST_RDY;
}
if (!sco->room_needed || (did_send && (sco->room_needed < 0 || channel_recv_max(sc_oc(sc)) >= sco->room_needed)))
sc_have_room(sco);
if (sc_ep_test(sc, SE_FL_ERROR | SE_FL_ERR_PENDING)) {
oc->flags |= CF_WRITE_EVENT;
BUG_ON(sc_ep_test(sc, SE_FL_EOS|SE_FL_ERROR|SE_FL_ERR_PENDING) == (SE_FL_EOS|SE_FL_ERR_PENDING));
if (sc_ep_test(sc, SE_FL_ERROR))
sc->flags |= SC_FL_ERROR;
return 1;
}
/* FIXME: Must be reviewed for FF */
if (!co_data(oc) && !sc_ep_have_ff_data(sc)) {
if (did_send)
sc_ep_report_send_activity(sc);
/* If fast-forwarding is blocked, unblock it now to check for
* receive on the other side
*/
if (sc->sedesc->iobuf.flags & IOBUF_FL_FF_BLOCKED) {
sc->sedesc->iobuf.flags &= ~IOBUF_FL_FF_BLOCKED;
sc_have_room(sco);
did_send = 1;
}
}
else {
/* We couldn't send all of our data, let the mux know we'd like to send more */
conn->mux->subscribe(sc, SUB_RETRY_SEND, &sc->wait_event);
if (sc_state_in(sc->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO))
sc_ep_report_blocked_send(sc, did_send);
}
return did_send;
}
/* perform a synchronous send() for the stream connector. The CF_WRITE_EVENT
* flag are cleared prior to the attempt, and will possibly be updated in case
* of success.
*/
void sc_conn_sync_send(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
oc->flags &= ~CF_WRITE_EVENT;
if (sc->flags & SC_FL_SHUT_DONE)
return;
if (!co_data(oc))
return;
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (!sc_mux_ops(sc))
return;
sc_conn_send(sc);
}
/* Called by I/O handlers after completion.. It propagates
* connection flags to the stream connector, updates the stream (which may or
* may not take this opportunity to try to forward data), then update the
* connection's polling based on the channels and stream connector's final
* states. The function always returns 0. Please do not statify this function,
* it's often present in backtraces, it's useful to recognize it.
*/
int sc_conn_process(struct stconn *sc)
{
struct connection *conn = __sc_conn(sc);
struct channel *ic = sc_ic(sc);
struct channel *oc = sc_oc(sc);
BUG_ON(!conn);
/* If we have data to send, try it now */
if ((co_data(oc) || sc_ep_have_ff_data(sc)) &&
!(sc->wait_event.events & SUB_RETRY_SEND))
sc_conn_send(sc);
/* First step, report to the stream connector what was detected at the
* connection layer : errors and connection establishment.
* Only add SC_FL_ERROR if we're connected, or we're attempting to
* connect, we may get there because we got woken up, but only run
* after process_stream() noticed there were an error, and decided
* to retry to connect, the connection may still have CO_FL_ERROR,
* and we don't want to add SC_FL_ERROR back
*
* Note: This test is only required because sc_conn_process is also the SI
* wake callback. Otherwise sc_conn_recv()/sc_conn_send() already take
* care of it.
*/
if (sc->state >= SC_ST_CON) {
if (sc_is_conn_error(sc))
sc->flags |= SC_FL_ERROR;
}
/* If we had early data, and the handshake ended, then
* we can remove the flag, and attempt to wake the task up,
* in the event there's an analyser waiting for the end of
* the handshake.
*/
if (!(conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS)) &&
sc_ep_test(sc, SE_FL_WAIT_FOR_HS)) {
sc_ep_clr(sc, SE_FL_WAIT_FOR_HS);
task_wakeup(sc_strm_task(sc), TASK_WOKEN_MSG);
}
if (!sc_state_in(sc->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO) &&
(conn->flags & CO_FL_WAIT_XPRT) == 0) {
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
oc->flags |= CF_WRITE_EVENT;
if (sc->state == SC_ST_CON)
sc->state = SC_ST_RDY;
}
/* Report EOS on the channel if it was reached from the mux point of
* view.
*
* Note: This test is only required because sc_conn_process is also the SI
* wake callback. Otherwise sc_conn_recv()/sc_conn_send() already take
* care of it.
*/
if (sc_ep_test(sc, SE_FL_EOS) && !(sc->flags & SC_FL_EOS)) {
/* we received a shutdown */
if (ic->flags & CF_AUTO_CLOSE)
sc_schedule_shutdown(sc_opposite(sc));
sc_conn_eos(sc);
}
/* Report EOI on the channel if it was reached from the mux point of
* view.
*
* Note: This test is only required because sc_conn_process is also the SI
* wake callback. Otherwise sc_conn_recv()/sc_conn_send() already take
* care of it.
*/
if (sc_ep_test(sc, SE_FL_EOI) && !(sc->flags & SC_FL_EOI)) {
sc->flags |= SC_FL_EOI;
ic->flags |= CF_READ_EVENT;
sc_ep_report_read_activity(sc);
}
if (sc_ep_test(sc, SE_FL_ERROR))
sc->flags |= SC_FL_ERROR;
/* Second step : update the stream connector and channels, try to forward any
* pending data, then possibly wake the stream up based on the new
* stream connector status.
*/
sc_notify(sc);
stream_release_buffers(__sc_strm(sc));
return 0;
}
/* This is the ->process() function for any stream connector's wait_event task.
* It's assigned during the stream connector's initialization, for any type of
* stream connector. Thus it is always safe to perform a tasklet_wakeup() on a
* stream connector, as the presence of the SC is checked there.
*/
struct task *sc_conn_io_cb(struct task *t, void *ctx, unsigned int state)
{
struct stconn *sc = ctx;
int ret = 0;
if (!sc_conn(sc))
return t;
if (!(sc->wait_event.events & SUB_RETRY_SEND) && (co_data(sc_oc(sc)) || sc_ep_have_ff_data(sc) || (sc->sedesc->iobuf.flags & IOBUF_FL_FF_BLOCKED)))
ret = sc_conn_send(sc);
if (!(sc->wait_event.events & SUB_RETRY_RECV))
ret |= sc_conn_recv(sc);
if (ret != 0)
sc_conn_process(sc);
stream_release_buffers(__sc_strm(sc));
return t;
}
/*
* This function propagates an end-of-stream received from an applet. It
* updates the stream connector. If it is is already shut, the applet is
* released. Otherwise, we try to forward the shutdown, immediately or ASAP.
*/
static void sc_applet_eos(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_appctx(sc));
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
sc->flags |= SC_FL_EOS;
ic->flags |= CF_READ_EVENT;
sc_ep_report_read_activity(sc);
/* Note: on abort, we don't call the applet */
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (sc->flags & SC_FL_SHUT_DONE) {
se_shutdown(sc->sedesc, SE_SHR_RESET|SE_SHW_NORMAL);
sc->state = SC_ST_DIS;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
else if (sc_cond_forward_shut(sc))
return sc_app_shut_applet(sc);
}
/*
* This is the callback which is called by the applet layer to receive data into
* the buffer from the appctx. It iterates over the applet's rcv_buf
* function. Please do not statify this function, it's often present in
* backtraces, it's useful to recognize it.
*/
int sc_applet_recv(struct stconn *sc)
{
struct appctx *appctx = __sc_appctx(sc);
struct channel *ic = sc_ic(sc);
int ret, max, cur_read = 0;
int read_poll = MAX_READ_POLL_LOOPS;
int flags = 0;
/* If another call to sc_applet_recv() failed, give up now.
*/
if (sc_waiting_room(sc))
return 0;
/* maybe we were called immediately after an asynchronous abort */
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return 1;
/* We must wait because the applet is not fully initialized */
if (se_fl_test(sc->sedesc, SE_FL_ORPHAN))
return 0;
/* stop immediately on errors. */
if (!sc_ep_test(sc, SE_FL_RCV_MORE)) {
// TODO: be sure SE_FL_RCV_MORE may be set for applet ?
if (sc_ep_test(sc, SE_FL_ERROR))
goto end_recv;
}
/* prepare to detect if the mux needs more room */
sc_ep_clr(sc, SE_FL_WANT_ROOM);
channel_check_idletimer(ic);
/* First, let's see if we may fast-forward data from a side to the other
* one without using the channel buffer.
*/
if (sc_is_fastfwd_supported(sc)) {
if (channel_data(ic)) {
/* We're embarrassed, there are already data pending in
* the buffer and we don't want to have them at two
* locations at a time. Let's indicate we need some
* place and ask the consumer to hurry.
*/
flags |= CO_RFL_BUF_FLUSH;
goto abort_fastfwd;
}
ret = appctx_fastfwd(sc, ic->to_forward, flags);
if (ret < 0)
goto abort_fastfwd;
else if (ret > 0) {
if (ic->to_forward != CHN_INFINITE_FORWARD)
ic->to_forward -= ret;
ic->total += ret;
cur_read += ret;
ic->flags |= CF_READ_EVENT;
}
if (sc_ep_test(sc, SE_FL_EOS | SE_FL_ERROR))
goto end_recv;
if (sc_ep_test(sc, SE_FL_WANT_ROOM))
sc_need_room(sc, -1);
if (sc_ep_test(sc, SE_FL_MAY_FASTFWD_PROD) && ic->to_forward)
goto done_recv;
}
abort_fastfwd:
if (!sc_alloc_ibuf(sc, &appctx->buffer_wait))
goto end_recv;
/* For an HTX stream, if the buffer is stuck (no output data with some
* input data) and if the HTX message is fragmented or if its free space
* wraps, we force an HTX deframentation. It is a way to have a
* contiguous free space nad to let the mux to copy as much data as
* possible.
*
* NOTE: A possible optim may be to let the mux decides if defrag is
* required or not, depending on amount of data to be xferred.
*/
if (IS_HTX_STRM(__sc_strm(sc)) && !co_data(ic)) {
struct htx *htx = htxbuf(&ic->buf);
if (htx_is_not_empty(htx) && ((htx->flags & HTX_FL_FRAGMENTED) || htx_space_wraps(htx)))
htx_defrag(htx, NULL, 0);
}
/* Compute transient CO_RFL_* flags */
if (co_data(ic)) {
flags |= (CO_RFL_BUF_WET | CO_RFL_BUF_NOT_STUCK);
}
/* <max> may be null. This is the mux responsibility to set
* SE_FL_RCV_MORE on the SC if more space is needed.
*/
max = channel_recv_max(ic);
ret = appctx_rcv_buf(sc, &ic->buf, max, flags);
if (sc_ep_test(sc, SE_FL_WANT_ROOM)) {
/* SE_FL_WANT_ROOM must not be reported if the channel's
* buffer is empty.
*/
BUG_ON(c_empty(ic));
sc_need_room(sc, channel_recv_max(ic) + 1);
/* Add READ_PARTIAL because some data are pending but
* cannot be xferred to the channel
*/
ic->flags |= CF_READ_EVENT;
sc_ep_report_read_activity(sc);
}
if (ret <= 0) {
/* if we refrained from reading because we asked for a flush to
* satisfy rcv_pipe(), report that there's not enough room here
* to proceed.
*/
if (flags & CO_RFL_BUF_FLUSH)
sc_need_room(sc, -1);
goto done_recv;
}
cur_read += ret;
/* if we're allowed to directly forward data, we must update ->o */
if (ic->to_forward && !(sc_opposite(sc)->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED))) {
unsigned long fwd = ret;
if (ic->to_forward != CHN_INFINITE_FORWARD) {
if (fwd > ic->to_forward)
fwd = ic->to_forward;
ic->to_forward -= fwd;
}
c_adv(ic, fwd);
}
ic->flags |= CF_READ_EVENT;
ic->total += ret;
/* End-of-input reached, we can leave. In this case, it is
* important to break the loop to not block the SC because of
* the channel's policies.This way, we are still able to receive
* shutdowns.
*/
if (sc_ep_test(sc, SE_FL_EOI))
goto done_recv;
if ((sc->flags & SC_FL_RCV_ONCE) || --read_poll <= 0) {
/* we don't expect to read more data */
sc_wont_read(sc);
goto done_recv;
}
/* if too many bytes were missing from last read, it means that
* it's pointless trying to read again because the system does
* not have them in buffers.
*/
if (ret < max) {
/* if a streamer has read few data, it may be because we
* have exhausted system buffers. It's not worth trying
* again.
*/
if (ic->flags & CF_STREAMER) {
/* we're stopped by the channel's policy */
sc_wont_read(sc);
goto done_recv;
}
/* if we read a large block smaller than what we requested,
* it's almost certain we'll never get anything more.
*/
if (ret >= global.tune.recv_enough) {
/* we're stopped by the channel's policy */
sc_wont_read(sc);
}
}
done_recv:
if (cur_read) {
channel_check_xfer(ic, cur_read);
sc_ep_report_read_activity(sc);
}
end_recv:
ret = (cur_read != 0);
/* Report EOI on the channel if it was reached from the mux point of
* view. */
if (sc_ep_test(sc, SE_FL_EOI) && !(sc->flags & SC_FL_EOI)) {
sc_ep_report_read_activity(sc);
sc->flags |= SC_FL_EOI;
ic->flags |= CF_READ_EVENT;
ret = 1;
}
if (sc_ep_test(sc, SE_FL_EOS)) {
/* we received a shutdown */
if (ic->flags & CF_AUTO_CLOSE)
sc_schedule_shutdown(sc_opposite(sc));
sc_applet_eos(sc);
ret = 1;
}
if (sc_ep_test(sc, SE_FL_ERROR)) {
sc->flags |= SC_FL_ERROR;
ret = 1;
}
else if (cur_read || (sc->flags & (SC_FL_WONT_READ|SC_FL_NEED_BUFF|SC_FL_NEED_ROOM))) {
se_have_more_data(sc->sedesc);
ret = 1;
}
return ret;
}
/* This tries to perform a synchronous receive on the stream connector to
* try to collect last arrived data. In practice it's only implemented on
* stconns. Returns 0 if nothing was done, non-zero if new data or a
* shutdown were collected. This may result on some delayed receive calls
* to be programmed and performed later, though it doesn't provide any
* such guarantee.
*/
int sc_applet_sync_recv(struct stconn *sc)
{
if (!(__sc_appctx(sc)->flags & APPCTX_FL_INOUT_BUFS))
return 0;
if (!sc_state_in(sc->state, SC_SB_RDY|SC_SB_EST))
return 0;
if (se_fl_test(sc->sedesc, SE_FL_ORPHAN))
return 0;
if (!sc_is_recv_allowed(sc))
return 0; // already failed
return sc_applet_recv(sc);
}
/*
* This function is called to send buffer data to an applet. It calls the
* applet's snd_buf function. Please do not statify this function, it's often
* present in backtraces, it's useful to recognize it.
*/
int sc_applet_send(struct stconn *sc)
{
struct stconn *sco = sc_opposite(sc);
struct channel *oc = sc_oc(sc);
size_t ret;
int did_send = 0;
if (sc_ep_test(sc, SE_FL_ERROR | SE_FL_ERR_PENDING)) {
BUG_ON(sc_ep_test(sc, SE_FL_EOS|SE_FL_ERROR|SE_FL_ERR_PENDING) == (SE_FL_EOS|SE_FL_ERR_PENDING));
return 1;
}
if (sc_ep_test(sc, SE_FL_WONT_CONSUME))
return 0;
/* we might have been called just after an asynchronous shutw */
if (sc->flags & SC_FL_SHUT_DONE)
return 1;
/* We must wait because the applet is not fully initialized */
if (se_fl_test(sc->sedesc, SE_FL_ORPHAN))
return 0;
/* TODO: Splicing is not supported, so it is not possible to have FF data stuck into the I/O buf */
BUG_ON(sc_ep_have_ff_data(sc));
if (co_data(oc)) {
unsigned int send_flag = 0;
if ((sc->flags & SC_FL_SHUT_WANTED) && co_data(oc) == c_data(oc))
send_flag |= CO_SFL_LAST_DATA;
ret = appctx_snd_buf(sc, &oc->buf, co_data(oc), send_flag);
if (ret > 0) {
did_send = 1;
c_rew(oc, ret);
c_realign_if_empty(oc);
if (!co_data(oc)) {
/* Always clear both flags once everything has been sent, they're one-shot */
sc->flags &= ~(SC_FL_SND_ASAP|SC_FL_SND_EXP_MORE);
}
/* if some data remain in the buffer, it's only because the
* system buffers are full, we will try next time.
*/
}
}
if (did_send)
oc->flags |= CF_WRITE_EVENT | CF_WROTE_DATA;
if (!sco->room_needed || (did_send && (sco->room_needed < 0 || channel_recv_max(sc_oc(sc)) >= sco->room_needed)))
sc_have_room(sco);
if (sc_ep_test(sc, SE_FL_ERROR | SE_FL_ERR_PENDING)) {
oc->flags |= CF_WRITE_EVENT;
BUG_ON(sc_ep_test(sc, SE_FL_EOS|SE_FL_ERROR|SE_FL_ERR_PENDING) == (SE_FL_EOS|SE_FL_ERR_PENDING));
if (sc_ep_test(sc, SE_FL_ERROR))
sc->flags |= SC_FL_ERROR;
return 1;
}
if (!co_data(oc)) {
if (did_send)
sc_ep_report_send_activity(sc);
}
else {
sc_ep_report_blocked_send(sc, did_send);
}
return did_send;
}
void sc_applet_sync_send(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
oc->flags &= ~CF_WRITE_EVENT;
if (!(__sc_appctx(sc)->flags & APPCTX_FL_INOUT_BUFS))
return;
if (sc->flags & SC_FL_SHUT_DONE)
return;
if (!co_data(oc))
return;
if (!sc_state_in(sc->state, SC_SB_EST))
return;
if (se_fl_test(sc->sedesc, SE_FL_ORPHAN))
return;
sc_applet_send(sc);
}
/* Callback to be used by applet handlers upon completion. It updates the stream
* (which may or may not take this opportunity to try to forward data), then
* may re-enable the applet's based on the channels and stream connector's final
* states. Please do not statify this function, it's often present in backtraces,
* it's useful to recognize it.
*/
int sc_applet_process(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_appctx(sc));
/* Report EOI on the channel if it was reached from the applet point of
* view. */
if (sc_ep_test(sc, SE_FL_EOI) && !(sc->flags & SC_FL_EOI)) {
sc_ep_report_read_activity(sc);
sc->flags |= SC_FL_EOI;
ic->flags |= CF_READ_EVENT;
}
if (sc_ep_test(sc, SE_FL_ERROR))
sc->flags |= SC_FL_ERROR;
if (sc_ep_test(sc, SE_FL_EOS)) {
/* we received a shutdown */
sc_applet_eos(sc);
}
BUG_ON(sc_ep_test(sc, SE_FL_HAVE_NO_DATA|SE_FL_EOI) == SE_FL_EOI);
/* If the applet wants to write and the channel is closed, it's a
* broken pipe and it must be reported.
*/
if (!sc_ep_test(sc, SE_FL_HAVE_NO_DATA) && (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)))
sc_ep_set(sc, SE_FL_ERROR);
/* automatically mark the applet having data available if it reported
* begin blocked by the channel.
*/
if ((sc->flags & (SC_FL_WONT_READ|SC_FL_NEED_BUFF|SC_FL_NEED_ROOM)) ||
sc_ep_test(sc, SE_FL_APPLET_NEED_CONN))
applet_have_more_data(__sc_appctx(sc));
/* update the stream connector, channels, and possibly wake the stream up */
sc_notify(sc);
stream_release_buffers(__sc_strm(sc));
/* sc_notify may have passed through chk_snd and released some blocking
* flags. Process_stream will consider those flags to wake up the
* appctx but in the case the task is not in runqueue we may have to
* wakeup the appctx immediately.
*/
if ((sc_is_recv_allowed(sc) && !applet_fl_test(__sc_appctx(sc), APPCTX_FL_OUTBLK_ALLOC)) ||
(sc_is_send_allowed(sc) && !applet_fl_test(__sc_appctx(sc), APPCTX_FL_INBLK_ALLOC)))
appctx_wakeup(__sc_appctx(sc));
return 0;
}
/* Prepares an endpoint upgrade. We don't now at this stage if the upgrade will
* succeed or not and if the stconn will be reused by the new endpoint. Thus,
* for now, only pretend the stconn is detached.
*/
void sc_conn_prepare_endp_upgrade(struct stconn *sc)
{
BUG_ON(!sc_conn(sc) || !sc->app);
sc_ep_clr(sc, SE_FL_T_MUX);
sc_ep_set(sc, SE_FL_DETACHED);
}
/* Endpoint upgrade failed. Restore the stconn state. */
void sc_conn_abort_endp_upgrade(struct stconn *sc)
{
sc_ep_set(sc, SE_FL_T_MUX);
sc_ep_clr(sc, SE_FL_DETACHED);
}
/* Commit the endpoint upgrade. If stconn is attached, it means the new endpoint
* use it. So we do nothing. Otherwise, the stconn will be destroy with the
* overlying stream. So, it means we must commit the detach.
*/
void sc_conn_commit_endp_upgrade(struct stconn *sc)
{
if (!sc_ep_test(sc, SE_FL_DETACHED))
return;
sc_detach_endp(&sc);
/* Because it was already set as detached, the sedesc must be preserved */
BUG_ON(!sc);
BUG_ON(!sc->sedesc);
}
/* return the frontend or backend mux stream ID.
*/
static int
smp_fetch_sid(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct stconn *sc;
int64_t sid = 0;
if (!smp->strm)
return 0;
sc = (kw[0] == 'f' ? smp->strm->scf : smp->strm->scb);
conn = sc_conn(sc);
/* No connection */
if (!conn)
return 0;
/* No mux install, this may change */
if (!conn->mux) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* No sctl, report sid=0 in this case */
if (conn->mux->sctl) {
if (conn->mux->sctl(sc, MUX_SCTL_SID, &sid) == -1)
return 0;
}
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = sid;
return 1;
}
/* return 1 if the frontend or backend mux stream has received an abort and 0 otherwise.
*/
static int
smp_fetch_strm_aborted(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stconn *sc;
unsigned int aborted = 0;
if (!smp->strm)
return 0;
sc = (kw[0] == 'f' ? smp->strm->scf : smp->strm->scb);
if (sc->sedesc->abort_info.info)
aborted = 1;
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = aborted;
return 1;
}
/* return the H2/QUIC RESET code of the frontend or backend mux stream. Any value
* means an a RST_STREAM was received on H2 and a STOP_SENDING on QUIC. Otherwise the sample fetch fails.
*/
static int
smp_fetch_strm_rst_code(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stconn *sc;
unsigned int source;
unsigned long long code = 0;
if (!smp->strm)
return 0;
sc = (kw[0] == 'f' ? smp->strm->scf : smp->strm->scb);
source = ((sc->sedesc->abort_info.info & SE_ABRT_SRC_MASK) >> SE_ABRT_SRC_SHIFT);
if (source != SE_ABRT_SRC_MUX_H2 && source != SE_ABRT_SRC_MUX_QUIC) {
if (!source)
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
code = sc->sedesc->abort_info.code;
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = code;
return 1;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Note: fetches that may return multiple types should be declared using the
* appropriate pseudo-type. If not available it must be declared as the lowest
* common denominator, the type that can be casted into all other ones.
*/
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
{ "bs.id", smp_fetch_sid, 0, NULL, SMP_T_SINT, SMP_USE_L6REQ },
{ "bs.aborted", smp_fetch_strm_aborted, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV },
{ "bs.rst_code", smp_fetch_strm_rst_code, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV },
{ "fs.id", smp_fetch_sid, 0, NULL, SMP_T_STR, SMP_USE_L6RES },
{ "fs.aborted", smp_fetch_strm_aborted, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "fs.rst_code", smp_fetch_strm_rst_code, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords);
|