diff options
Diffstat (limited to 'src/livarot/PathConversion.cpp')
-rw-r--r-- | src/livarot/PathConversion.cpp | 1638 |
1 files changed, 1638 insertions, 0 deletions
diff --git a/src/livarot/PathConversion.cpp b/src/livarot/PathConversion.cpp new file mode 100644 index 0000000..81dc32d --- /dev/null +++ b/src/livarot/PathConversion.cpp @@ -0,0 +1,1638 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/** @file + * TODO: insert short description here + *//* + * Authors: + * see git history + * Fred + * + * Copyright (C) 2018 Authors + * Released under GNU GPL v2+, read the file 'COPYING' for more information. + */ + +#include <glib.h> +#include <2geom/transforms.h> +#include "Path.h" +#include "Shape.h" +#include "livarot/path-description.h" + +/* + * path description -> polyline + * and Path -> Shape (the Fill() function at the bottom) + * nathing fancy here: take each command and append an approximation of it to the polyline + */ + +void Path::ConvertWithBackData(double treshhold) +{ + // if a quadratic Bezier spline was being added (Path::BezierTo or Path::TempBezierTo + // were called and Path::EndBezierTo hasn't been called yet), cancel it + if ( descr_flags & descr_adding_bezier ) { + CancelBezier(); + } + + // are we doing a sub path? if yes, clear the flags. CloseSubPath just clears the flags + // it doesn't close a sub path + if ( descr_flags & descr_doing_subpath ) { + CloseSubpath(); + } + + // set the backdata flag to true since this function will be calculating and storing backdata stuff + SetBackData(true); + // clears any pre-existing polyline approximation stuff + ResetPoints(); + + // nothing to approximate so return + if ( descr_cmd.empty() ) { + return; + } + + Geom::Point curX; // the last point added + // the description to process. We start with 1 usually since the first is always a MoveTo that + // we handle before the loop (see below). In the case that the first is not a moveTo, We set + // curP to 0. + int curP = 1; + // index of the last moveto point. Useful when a close path command is encountered. + int lastMoveTo = -1; + + // The initial moveto. + // if the first command is a moveTo, set that as the lastPoint (curX) otherwise add a point at + // the origin as a moveTo. + { + int const firstTyp = descr_cmd[0]->getType(); + if ( firstTyp == descr_moveto ) { + curX = dynamic_cast<PathDescrMoveTo *>(descr_cmd[0])->p; + } else { + curP = 0; + curX[Geom::X] = curX[Geom::Y] = 0; + } + // tiny detail to see here is that piece (the index of the path command this point comes from) is set to 0 which + // may or may not be true. If there was not a MoveTo, index 0 can have other description types. + lastMoveTo = AddPoint(curX, 0, 0.0, true); + } + + // And the rest, one by one. + // within this loop, curP holds the current path command index, curX holds the last point added + while ( curP < int(descr_cmd.size()) ) { + + int const nType = descr_cmd[curP]->getType(); + Geom::Point nextX; + + switch (nType) { + case descr_forced: { + // just add a forced point (at the last point added). These arguments are useless by the way. + AddForcedPoint(curX, curP, 1.0); + curP++; + break; + } + + case descr_moveto: { + PathDescrMoveTo *nData = dynamic_cast<PathDescrMoveTo*>(descr_cmd[curP]); + nextX = nData->p; + // add the moveTo point and also store this in lastMoveTo + lastMoveTo = AddPoint(nextX, curP, 0.0, true); + // et on avance + curP++; + break; + } + + case descr_close: { + // add the lastMoveTo point again + nextX = pts[lastMoveTo].p; + int n = AddPoint(nextX, curP, 1.0, false); + // we check if n > 0 because in some cases the last point has already been added so AddPoint would + // return -1 .. but then that last point won't get marked with closed = true .. I wonder if that would cause + // problems. Just to explain this say: + // MoveTo(0, 0); LineTo(10, 0); LineTo(10, 10); LineTo(0, 10); LineTo(0, 0); Close(); + // LineTo(0, 0) would have already added a point at origin. So AddPoint won't add anything. But my point is that + // then the last point (0,0) won't get marked as closed = true which it should be. + // But then maybe this doesn't matter because closed variable is barely used. + if (n > 0) pts[n].closed = true; + curP++; + break; + } + + case descr_lineto: { + PathDescrLineTo *nData = dynamic_cast<PathDescrLineTo *>(descr_cmd[curP]); + nextX = nData->p; + AddPoint(nextX,curP,1.0,false); + // et on avance + curP++; + break; + } + + case descr_cubicto: { + PathDescrCubicTo *nData = dynamic_cast<PathDescrCubicTo *>(descr_cmd[curP]); + nextX = nData->p; + // RecCubicTo will see if threshold is fine with approximating this cubic bezier with + // a line segment through the start and end points. If no, it'd split the cubic at its + // center point and recursively call itself on the left and right side. The center point + // gets added in the points list too. + RecCubicTo(curX, nData->start, nextX, nData->end, treshhold, 8, 0.0, 1.0, curP); + // RecCubicTo adds any points inside the cubic and last one is added here + AddPoint(nextX, curP, 1.0, false); + // et on avance + curP++; + break; + } + + case descr_arcto: { + PathDescrArcTo *nData = dynamic_cast<PathDescrArcTo *>(descr_cmd[curP]); + nextX = nData->p; + // Similar to RecCubicTo, just for Arcs + DoArc(curX, nextX, nData->rx, nData->ry, nData->angle, nData->large, nData->clockwise, treshhold, curP); + AddPoint(nextX, curP, 1.0, false); + // et on avance + curP++; + break; + } + + case descr_bezierto: { + PathDescrBezierTo *nBData = dynamic_cast<PathDescrBezierTo *>(descr_cmd[curP]); + int nbInterm = nBData->nb; + nextX = nBData->p; + // same as RecCubicTo and RecArcTo but for quadratic bezier splines + + int ip = curP + 1; + PathDescrIntermBezierTo *nData = dynamic_cast<PathDescrIntermBezierTo *>(descr_cmd[ip]); + + if ( nbInterm >= 1 ) { + Geom::Point bx = curX; + Geom::Point dx = nData->p; + Geom::Point cx = 2 * bx - dx; + + ip++; + nData = dynamic_cast<PathDescrIntermBezierTo *>(descr_cmd[ip]); + + for (int k = 0; k < nbInterm - 1; k++) { + bx = cx; + cx = dx; + + dx = nData->p; + ip++; + nData = dynamic_cast<PathDescrIntermBezierTo *>(descr_cmd[ip]); + + Geom::Point stx; + stx = (bx + cx) / 2; + if ( k > 0 ) { + AddPoint(stx,curP - 1+k,1.0,false); + } + + { + Geom::Point mx; + mx = (cx + dx) / 2; + RecBezierTo(cx, stx, mx, treshhold, 8, 0.0, 1.0, curP + k); + } + } + { + bx = cx; + cx = dx; + + dx = nextX; + dx = 2 * dx - cx; + + Geom::Point stx; + stx = (bx + cx) / 2; + + if ( nbInterm > 1 ) { + AddPoint(stx, curP + nbInterm - 2, 1.0, false); + } + + { + Geom::Point mx; + mx = (cx + dx) / 2; + RecBezierTo(cx, stx, mx, treshhold, 8, 0.0, 1.0, curP + nbInterm - 1); + } + } + + } + + + AddPoint(nextX, curP - 1 + nbInterm, 1.0, false); + + // et on avance + curP += 1 + nbInterm; + break; + } + } + curX = nextX; + } +} + + +void Path::Convert(double treshhold) +{ + if ( descr_flags & descr_adding_bezier ) { + CancelBezier(); + } + + if ( descr_flags & descr_doing_subpath ) { + CloseSubpath(); + } + + SetBackData(false); + ResetPoints(); + if ( descr_cmd.empty() ) { + return; + } + + Geom::Point curX; + int curP = 1; + int lastMoveTo = 0; + + // le moveto + { + int const firstTyp = descr_cmd[0]->getType(); + if ( firstTyp == descr_moveto ) { + curX = dynamic_cast<PathDescrMoveTo *>(descr_cmd[0])->p; + } else { + curP = 0; + curX[0] = curX[1] = 0; + } + lastMoveTo = AddPoint(curX, true); + } + descr_cmd[0]->associated = lastMoveTo; + + // et le reste, 1 par 1 + while ( curP < int(descr_cmd.size()) ) { + + int const nType = descr_cmd[curP]->getType(); + Geom::Point nextX; + + switch (nType) { + case descr_forced: { + descr_cmd[curP]->associated = AddForcedPoint(curX); + curP++; + break; + } + + case descr_moveto: { + PathDescrMoveTo *nData = dynamic_cast<PathDescrMoveTo *>(descr_cmd[curP]); + nextX = nData->p; + lastMoveTo = AddPoint(nextX, true); + descr_cmd[curP]->associated = lastMoveTo; + + // et on avance + curP++; + break; + } + + case descr_close: { + nextX = pts[lastMoveTo].p; + descr_cmd[curP]->associated = AddPoint(nextX, false); + if ( descr_cmd[curP]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[curP]->associated = 0; + } else { + descr_cmd[curP]->associated = descr_cmd[curP - 1]->associated; + } + } + if ( descr_cmd[curP]->associated > 0 ) { + pts[descr_cmd[curP]->associated].closed = true; + } + curP++; + break; + } + + case descr_lineto: { + PathDescrLineTo *nData = dynamic_cast<PathDescrLineTo *>(descr_cmd[curP]); + nextX = nData->p; + descr_cmd[curP]->associated = AddPoint(nextX, false); + if ( descr_cmd[curP]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[curP]->associated = 0; + } else { + descr_cmd[curP]->associated = descr_cmd[curP - 1]->associated; + } + } + // et on avance + curP++; + break; + } + + case descr_cubicto: { + PathDescrCubicTo *nData = dynamic_cast<PathDescrCubicTo *>(descr_cmd[curP]); + nextX = nData->p; + RecCubicTo(curX, nData->start, nextX, nData->end, treshhold, 8); + descr_cmd[curP]->associated = AddPoint(nextX,false); + if ( descr_cmd[curP]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[curP]->associated = 0; + } else { + descr_cmd[curP]->associated = descr_cmd[curP - 1]->associated; + } + } + // et on avance + curP++; + break; + } + + case descr_arcto: { + PathDescrArcTo *nData = dynamic_cast<PathDescrArcTo *>(descr_cmd[curP]); + nextX = nData->p; + DoArc(curX, nextX, nData->rx, nData->ry, nData->angle, nData->large, nData->clockwise, treshhold); + descr_cmd[curP]->associated = AddPoint(nextX, false); + if ( descr_cmd[curP]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[curP]->associated = 0; + } else { + descr_cmd[curP]->associated = descr_cmd[curP - 1]->associated; + } + } + // et on avance + curP++; + break; + } + + case descr_bezierto: { + PathDescrBezierTo *nBData = dynamic_cast<PathDescrBezierTo *>(descr_cmd[curP]); + int nbInterm = nBData->nb; + nextX = nBData->p; + int curBD = curP; + + curP++; + int ip = curP; + PathDescrIntermBezierTo *nData = dynamic_cast<PathDescrIntermBezierTo *>(descr_cmd[ip]); + + if ( nbInterm == 1 ) { + Geom::Point const midX = nData->p; + RecBezierTo(midX, curX, nextX, treshhold, 8); + } else if ( nbInterm > 1 ) { + Geom::Point bx = curX; + Geom::Point dx = nData->p; + Geom::Point cx = 2 * bx - dx; + + ip++; + nData = dynamic_cast<PathDescrIntermBezierTo *>(descr_cmd[ip]); + + for (int k = 0; k < nbInterm - 1; k++) { + bx = cx; + cx = dx; + + dx = nData->p; + ip++; + nData = dynamic_cast<PathDescrIntermBezierTo *>(descr_cmd[ip]); + + Geom::Point stx = (bx + cx) / 2; + if ( k > 0 ) { + descr_cmd[ip - 2]->associated = AddPoint(stx, false); + if ( descr_cmd[ip - 2]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[ip - 2]->associated = 0; + } else { + descr_cmd[ip - 2]->associated = descr_cmd[ip - 3]->associated; + } + } + } + + { + Geom::Point const mx = (cx + dx) / 2; + RecBezierTo(cx, stx, mx, treshhold, 8); + } + } + + { + bx = cx; + cx = dx; + + dx = nextX; + dx = 2 * dx - cx; + + Geom::Point stx = (bx + cx) / 2; + + descr_cmd[ip - 1]->associated = AddPoint(stx, false); + if ( descr_cmd[ip - 1]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[ip - 1]->associated = 0; + } else { + descr_cmd[ip - 1]->associated = descr_cmd[ip - 2]->associated; + } + } + + { + Geom::Point mx = (cx + dx) / 2; + RecBezierTo(cx, stx, mx, treshhold, 8); + } + } + } + + descr_cmd[curBD]->associated = AddPoint(nextX, false); + if ( descr_cmd[curBD]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[curBD]->associated = 0; + } else { + descr_cmd[curBD]->associated = descr_cmd[curBD - 1]->associated; + } + } + + // et on avance + curP += nbInterm; + break; + } + } + + curX = nextX; + } +} + +void Path::ConvertEvenLines(double treshhold) +{ + if ( descr_flags & descr_adding_bezier ) { + CancelBezier(); + } + + if ( descr_flags & descr_doing_subpath ) { + CloseSubpath(); + } + + SetBackData(false); + ResetPoints(); + if ( descr_cmd.empty() ) { + return; + } + + Geom::Point curX; + int curP = 1; + int lastMoveTo = 0; + + // le moveto + { + int const firstTyp = descr_cmd[0]->getType(); + if ( firstTyp == descr_moveto ) { + curX = dynamic_cast<PathDescrMoveTo *>(descr_cmd[0])->p; + } else { + curP = 0; + curX[0] = curX[1] = 0; + } + lastMoveTo = AddPoint(curX, true); + } + descr_cmd[0]->associated = lastMoveTo; + + // et le reste, 1 par 1 + while ( curP < int(descr_cmd.size()) ) { + + int const nType = descr_cmd[curP]->getType(); + Geom::Point nextX; + + switch (nType) { + case descr_forced: { + descr_cmd[curP]->associated = AddForcedPoint(curX); + curP++; + break; + } + + case descr_moveto: { + PathDescrMoveTo* nData = dynamic_cast<PathDescrMoveTo *>(descr_cmd[curP]); + nextX = nData->p; + lastMoveTo = AddPoint(nextX,true); + descr_cmd[curP]->associated = lastMoveTo; + + // et on avance + curP++; + break; + } + + case descr_close: { + nextX = pts[lastMoveTo].p; + { + Geom::Point nexcur; + nexcur = nextX - curX; + const double segL = Geom::L2(nexcur); + if ( (segL > treshhold) && (treshhold > 0) ) { + for (double i = treshhold; i < segL; i += treshhold) { + Geom::Point nX; + nX = (segL - i) * curX + i * nextX; + nX /= segL; + AddPoint(nX); + } + } + } + + descr_cmd[curP]->associated = AddPoint(nextX,false); + if ( descr_cmd[curP]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[curP]->associated = 0; + } else { + descr_cmd[curP]->associated = descr_cmd[curP - 1]->associated; + } + } + if ( descr_cmd[curP]->associated > 0 ) { + pts[descr_cmd[curP]->associated].closed = true; + } + curP++; + break; + } + + case descr_lineto: { + PathDescrLineTo* nData = dynamic_cast<PathDescrLineTo *>(descr_cmd[curP]); + nextX = nData->p; + Geom::Point nexcur = nextX - curX; + const double segL = L2(nexcur); + if ( (segL > treshhold) && (treshhold > 0)) { + for (double i = treshhold; i < segL; i += treshhold) { + Geom::Point nX = ((segL - i) * curX + i * nextX) / segL; + AddPoint(nX); + } + } + + descr_cmd[curP]->associated = AddPoint(nextX,false); + if ( descr_cmd[curP]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[curP]->associated = 0; + } else { + descr_cmd[curP]->associated = descr_cmd[curP - 1]->associated; + } + } + // et on avance + curP++; + break; + } + + case descr_cubicto: { + PathDescrCubicTo *nData = dynamic_cast<PathDescrCubicTo *>(descr_cmd[curP]); + nextX = nData->p; + RecCubicTo(curX, nData->start, nextX, nData->end, treshhold, 8, 4 * treshhold); + descr_cmd[curP]->associated = AddPoint(nextX, false); + if ( descr_cmd[curP]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[curP]->associated = 0; + } else { + descr_cmd[curP]->associated = descr_cmd[curP - 1]->associated; + } + } + // et on avance + curP++; + break; + } + + case descr_arcto: { + PathDescrArcTo *nData = dynamic_cast<PathDescrArcTo *>(descr_cmd[curP]); + nextX = nData->p; + DoArc(curX, nextX, nData->rx, nData->ry, nData->angle, nData->large, nData->clockwise, treshhold); + descr_cmd[curP]->associated =AddPoint(nextX, false); + if ( descr_cmd[curP]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[curP]->associated = 0; + } else { + descr_cmd[curP]->associated = descr_cmd[curP - 1]->associated; + } + } + + // et on avance + curP++; + break; + } + + case descr_bezierto: { + PathDescrBezierTo *nBData = dynamic_cast<PathDescrBezierTo *>(descr_cmd[curP]); + int nbInterm = nBData->nb; + nextX = nBData->p; + int curBD = curP; + + curP++; + int ip = curP; + PathDescrIntermBezierTo *nData = dynamic_cast<PathDescrIntermBezierTo *>(descr_cmd[ip]); + + if ( nbInterm == 1 ) { + Geom::Point const midX = nData->p; + RecBezierTo(midX, curX, nextX, treshhold, 8, 4 * treshhold); + } else if ( nbInterm > 1 ) { + Geom::Point bx = curX; + Geom::Point dx = nData->p; + Geom::Point cx = 2 * bx - dx; + + ip++; + nData = dynamic_cast<PathDescrIntermBezierTo *>(descr_cmd[ip]); + + for (int k = 0; k < nbInterm - 1; k++) { + bx = cx; + cx = dx; + dx = nData->p; + + ip++; + nData = dynamic_cast<PathDescrIntermBezierTo *>(descr_cmd[ip]); + + Geom::Point stx = (bx+cx) / 2; + if ( k > 0 ) { + descr_cmd[ip - 2]->associated = AddPoint(stx, false); + if ( descr_cmd[ip - 2]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[ip- 2]->associated = 0; + } else { + descr_cmd[ip - 2]->associated = descr_cmd[ip - 3]->associated; + } + } + } + + { + Geom::Point const mx = (cx + dx) / 2; + RecBezierTo(cx, stx, mx, treshhold, 8, 4 * treshhold); + } + } + + { + bx = cx; + cx = dx; + + dx = nextX; + dx = 2 * dx - cx; + + Geom::Point const stx = (bx + cx) / 2; + + descr_cmd[ip - 1]->associated = AddPoint(stx, false); + if ( descr_cmd[ip - 1]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[ip - 1]->associated = 0; + } else { + descr_cmd[ip - 1]->associated = descr_cmd[ip - 2]->associated; + } + } + + { + Geom::Point const mx = (cx + dx) / 2; + RecBezierTo(cx, stx, mx, treshhold, 8, 4 * treshhold); + } + } + } + + descr_cmd[curBD]->associated = AddPoint(nextX, false); + if ( descr_cmd[curBD]->associated < 0 ) { + if ( curP == 0 ) { + descr_cmd[curBD]->associated = 0; + } else { + descr_cmd[curBD]->associated = descr_cmd[curBD - 1]->associated; + } + } + + // et on avance + curP += nbInterm; + break; + } + } + if ( Geom::LInfty(curX - nextX) > 0.00001 ) { + curX = nextX; + } + } +} + +const Geom::Point Path::PrevPoint(int i) const +{ + /* TODO: I suspect this should assert `(unsigned) i < descr_nb'. We can probably change + the argument to unsigned. descr_nb should probably be changed to unsigned too. */ + g_assert( i >= 0 ); + switch ( descr_cmd[i]->getType() ) { + case descr_moveto: { + PathDescrMoveTo *nData = dynamic_cast<PathDescrMoveTo *>(descr_cmd[i]); + return nData->p; + } + case descr_lineto: { + PathDescrLineTo *nData = dynamic_cast<PathDescrLineTo *>(descr_cmd[i]); + return nData->p; + } + case descr_arcto: { + PathDescrArcTo *nData = dynamic_cast<PathDescrArcTo *>(descr_cmd[i]); + return nData->p; + } + case descr_cubicto: { + PathDescrCubicTo *nData = dynamic_cast<PathDescrCubicTo *>(descr_cmd[i]); + return nData->p; + } + case descr_bezierto: { + PathDescrBezierTo *nData = dynamic_cast<PathDescrBezierTo *>(descr_cmd[i]); + return nData->p; + } + case descr_interm_bezier: + case descr_close: + case descr_forced: + return PrevPoint(i - 1); + default: + g_assert_not_reached(); + return Geom::Point(0, 0); + } +} + +// utilitaries: given a quadratic bezier curve (start point, control point, end point, ie that's a clamped curve), +// and an abcissis on it, get the point with that abcissis. +// warning: it's NOT a curvilign abcissis (or whatever you call that in english), so "t" is NOT the length of "start point"->"result point" +void Path::QuadraticPoint(double t, Geom::Point &oPt, + const Geom::Point &iS, const Geom::Point &iM, const Geom::Point &iE) +{ + Geom::Point const ax = iE - 2 * iM + iS; + Geom::Point const bx = 2 * iM - 2 * iS; + Geom::Point const cx = iS; + + oPt = t * t * ax + t * bx + cx; +} +// idem for cubic bezier patch +void Path::CubicTangent(double t, Geom::Point &oPt, const Geom::Point &iS, const Geom::Point &isD, + const Geom::Point &iE, const Geom::Point &ieD) +{ + Geom::Point const ax = ieD - 2 * iE + 2 * iS + isD; + Geom::Point const bx = 3 * iE - ieD - 2 * isD - 3 * iS; + Geom::Point const cx = isD; + + oPt = 3 * t * t * ax + 2 * t * bx + cx; +} + +// extract interesting info of a SVG arc description +static void ArcAnglesAndCenter(Geom::Point const &iS, Geom::Point const &iE, + double rx, double ry, double angle, + bool large, bool wise, + double &sang, double &eang, Geom::Point &dr); + +void Path::ArcAngles(const Geom::Point &iS, const Geom::Point &iE, + double rx, double ry, double angle, bool large, bool wise, double &sang, double &eang) +{ + Geom::Point dr; + ArcAnglesAndCenter(iS, iE, rx, ry, angle, large, wise, sang, eang, dr); +} + +/* N.B. If iS == iE then sang,eang,dr each become NaN. Probably a bug. */ +static void ArcAnglesAndCenter(Geom::Point const &iS, Geom::Point const &iE, + double rx, double ry, double angle, + bool large, bool wise, + double &sang, double &eang, Geom::Point &dr) +{ + Geom::Point se = iE - iS; + Geom::Point ca(cos(angle), sin(angle)); + Geom::Point cse(dot(ca, se), cross(ca, se)); + cse[0] /= rx; + cse[1] /= ry; + double const lensq = dot(cse,cse); + Geom::Point csd = ( ( lensq < 4 + ? sqrt( 1/lensq - .25 ) + : 0.0 ) + * cse.ccw() ); + + Geom::Point ra = -csd - 0.5 * cse; + if ( ra[0] <= -1 ) { + sang = M_PI; + } else if ( ra[0] >= 1 ) { + sang = 0; + } else { + sang = acos(ra[0]); + if ( ra[1] < 0 ) { + sang = 2 * M_PI - sang; + } + } + + ra = -csd + 0.5 * cse; + if ( ra[0] <= -1 ) { + eang = M_PI; + } else if ( ra[0] >= 1 ) { + eang = 0; + } else { + eang = acos(ra[0]); + if ( ra[1] < 0 ) { + eang = 2 * M_PI - eang; + } + } + + csd[0] *= rx; + csd[1] *= ry; + ca[1] = -ca[1]; // because it's the inverse rotation + + dr[0] = dot(ca, csd); + dr[1] = cross(ca, csd); + + ca[1] = -ca[1]; + + if ( wise ) { + + if (large) { + dr = -dr; + double swap = eang; + eang = sang; + sang = swap; + eang += M_PI; + sang += M_PI; + if ( eang >= 2*M_PI ) { + eang -= 2*M_PI; + } + if ( sang >= 2*M_PI ) { + sang -= 2*M_PI; + } + } + + } else { + if (!large) { + dr = -dr; + double swap = eang; + eang = sang; + sang = swap; + eang += M_PI; + sang += M_PI; + if ( eang >= 2*M_PI ) { + eang -= 2 * M_PI; + } + if ( sang >= 2*M_PI ) { + sang -= 2 * M_PI; + } + } + } + + dr += 0.5 * (iS + iE); +} + + + +void Path::DoArc(Geom::Point const &iS, Geom::Point const &iE, + double const rx, double const ry, double const angle, + bool const large, bool const wise, double const tresh) +{ + /* TODO: Check that our behaviour is standards-conformant if iS and iE are (much) further + apart than the diameter. Also check that we do the right thing for negative radius. + (Same for the other DoArc functions in this file.) */ + if ( rx <= 0.0001 || ry <= 0.0001 || tresh <= 1e-8) { + return; + // We always add a lineto afterwards, so this is fine. + // [on ajoute toujours un lineto apres, donc c bon] + } + + double sang; + double eang; + Geom::Point dr_temp; + ArcAnglesAndCenter(iS, iE, rx, ry, angle*M_PI/180.0, large, wise, sang, eang, dr_temp); + Geom::Point dr = dr_temp; + /* TODO: This isn't as good numerically as treating iS and iE as primary. E.g. consider + the case of low curvature (i.e. very large radius). */ + + Geom::Scale const ar(rx, ry); + Geom::Rotate cb(sang); + Geom::Rotate cbangle(angle*M_PI/180.0); + double max_ang = 2 * acos ( 1 - tresh / (fmax(rx, ry) ) ); + max_ang = fmin (max_ang, M_PI / 2 ); + int const num_sectors = abs(sang - eang) / max_ang + 1; + + if (wise) { + + + if ( sang < eang ) { + sang += 2*M_PI; + } + double const incr = (eang - sang) / num_sectors; + Geom::Rotate const omega(incr); + for (double b = sang + incr ; b > eang ; b += incr) { + cb = omega * cb; + AddPoint( cb.vector() * ar * cbangle + dr ); + } + + } else { + + if ( sang > eang ) { + sang -= 2*M_PI; + } + double const incr = (eang - sang) / num_sectors; + Geom::Rotate const omega(incr); + for (double b = sang + incr ; b < eang ; b += incr) { + cb = omega * cb; + AddPoint( cb.vector() * ar * cbangle + dr); + } + } +} + + +void Path::RecCubicTo( Geom::Point const &iS, Geom::Point const &isD, + Geom::Point const &iE, Geom::Point const &ieD, + double tresh, int lev, double maxL) +{ + // vector from start to end point + Geom::Point se = iE - iS; + // length of that vector + const double dC = Geom::L2(se); + // if the vector from start to end point is smaller than 0.01 + if ( dC < 0.01 ) { + // we still need to get an idea of how far away the curve goes from the start to end line segment se + // for that, we measure lengths of isD and ieD + const double sC = dot(isD,isD); + const double eC = dot(ieD,ieD); + // if they are limited by tresh, great + if ( sC < tresh && eC < tresh ) { + return; + } + // otherwise proceed + + } else { + // okay so length is greater than or equal to 0.01, we can still check the perpendicular component + // of the control handles and see if they are limited by tresh + const double sC = fabs(cross(se, isD)) / dC; + const double eC = fabs(cross(se, ieD)) / dC; + if ( sC < tresh && eC < tresh ) { + // presque tt droit -> attention si on nous demande de bien subdiviser les petits segments + // if the perpendicular is limited and a maxL is set, check if maxL is being respected, if yes + // return otherwise we split + if ( maxL > 0 && dC > maxL ) { + if ( lev <= 0 ) { + return; + } + // maths for splitting one cubic bezier into two + Geom::Point m = 0.5 * (iS + iE) + 0.125 * (isD - ieD); + Geom::Point md = 0.75 * (iE - iS) - 0.125 * (isD + ieD); + + Geom::Point hisD = 0.5 * isD; + Geom::Point hieD = 0.5 * ieD; + + RecCubicTo(iS, hisD, m, md, tresh, lev - 1, maxL); + AddPoint(m); + RecCubicTo(m, md, iE, hieD, tresh, lev - 1,maxL); + } + return; + } + } + + if ( lev <= 0 ) { + return; + } + + { + Geom::Point m = 0.5 * (iS + iE) + 0.125 * (isD - ieD); + Geom::Point md = 0.75 * (iE - iS) - 0.125 * (isD + ieD); + + Geom::Point hisD = 0.5 * isD; + Geom::Point hieD = 0.5 * ieD; + + RecCubicTo(iS, hisD, m, md, tresh, lev - 1, maxL); + AddPoint(m); + RecCubicTo(m, md, iE, hieD, tresh, lev - 1,maxL); + } +} + + + +void Path::RecBezierTo(const Geom::Point &iP, + const Geom::Point &iS, + const Geom::Point &iE, + double tresh, int lev, double maxL) +{ + if ( lev <= 0 ) { + return; + } + + Geom::Point ps = iS - iP; + Geom::Point pe = iE - iP; + Geom::Point se = iE - iS; + double s = fabs(cross(pe, ps)); + if ( s < tresh ) { + const double l = L2(se); + if ( maxL > 0 && l > maxL ) { + const Geom::Point m = 0.25 * (iS + iE + 2 * iP); + Geom::Point md = 0.5 * (iS + iP); + RecBezierTo(md, iS, m, tresh, lev - 1, maxL); + AddPoint(m); + md = 0.5 * (iP + iE); + RecBezierTo(md, m, iE, tresh, lev - 1, maxL); + } + return; + } + + { + const Geom::Point m = 0.25 * (iS + iE + 2 * iP); + Geom::Point md = 0.5 * (iS + iP); + RecBezierTo(md, iS, m, tresh, lev - 1, maxL); + AddPoint(m); + md = 0.5 * (iP + iE); + RecBezierTo(md, m, iE, tresh, lev - 1, maxL); + } +} + + +void Path::DoArc(Geom::Point const &iS, Geom::Point const &iE, + double const rx, double const ry, double const angle, + bool const large, bool const wise, double const tresh, int const piece) +{ + /* TODO: Check that our behaviour is standards-conformant if iS and iE are (much) further + apart than the diameter. Also check that we do the right thing for negative radius. + (Same for the other DoArc functions in this file.) */ + if ( rx <= 0.0001 || ry <= 0.0001 || tresh <= 1e-8 ) { + return; + // We always add a lineto afterwards, so this is fine. + // [on ajoute toujours un lineto apres, donc c bon] + } + + double sang; + double eang; + Geom::Point dr_temp; + ArcAnglesAndCenter(iS, iE, rx, ry, angle*M_PI/180.0, large, wise, sang, eang, dr_temp); + Geom::Point dr = dr_temp; + /* TODO: This isn't as good numerically as treating iS and iE as primary. E.g. consider + the case of low curvature (i.e. very large radius). */ + + Geom::Scale const ar(rx, ry); + Geom::Rotate cb(sang); + Geom::Rotate cbangle(angle*M_PI/180.0); + + // max angle is basically the maximum arc angle you can have that won't create + // an arc that exceeds the threshold + double max_ang = 2 * acos ( 1 - tresh / fmax(rx, ry) ); + max_ang = fmin (max_ang, M_PI / 2 ); + // divide the whole arc range into sectors such that each sector + // is no bigger than max ang + int const num_sectors = abs(sang - eang) / max_ang + 1; + + if (wise) { + if ( sang < eang ) { + sang += 2*M_PI; + } + double const incr = (eang - sang) / num_sectors; + Geom::Rotate const omega(incr); + for (double b = sang + incr; b > eang; b += incr) { + cb = omega * cb; + AddPoint(cb.vector() * ar * cbangle + dr, piece, (sang - b) / (sang - eang)); + } + + } else { + + if ( sang > eang ) { + sang -= 2 * M_PI; + } + double const incr = (eang - sang) / num_sectors; + Geom::Rotate const omega(incr); + for (double b = sang + incr ; b < eang ; b += incr) { + cb = omega * cb; + AddPoint(cb.vector() * ar * cbangle + dr, piece, (b - sang) / (eang - sang)); + } + } +} + +void Path::RecCubicTo(Geom::Point const &iS, Geom::Point const &isD, + Geom::Point const &iE, Geom::Point const &ieD, + double tresh, int lev, double st, double et, int piece) +{ + const Geom::Point se = iE - iS; + const double dC = Geom::L2(se); + if ( dC < 0.01 ) { + const double sC = dot(isD, isD); + const double eC = dot(ieD, ieD); + if ( sC < tresh && eC < tresh ) { + return; + } + } else { + const double sC = fabs(cross(se, isD)) / dC; + const double eC = fabs(cross(se, ieD)) / dC; + if ( sC < tresh && eC < tresh ) { + return; + } + } + + if ( lev <= 0 ) { + return; + } + + Geom::Point m = 0.5 * (iS + iE) + 0.125 * (isD - ieD); + Geom::Point md = 0.75 * (iE - iS) - 0.125 * (isD + ieD); + double mt = (st + et) / 2; + + Geom::Point hisD = 0.5 * isD; + Geom::Point hieD = 0.5 * ieD; + + RecCubicTo(iS, hisD, m, md, tresh, lev - 1, st, mt, piece); + AddPoint(m, piece, mt); + RecCubicTo(m, md, iE, hieD, tresh, lev - 1, mt, et, piece); + +} + + + +void Path::RecBezierTo(Geom::Point const &iP, + Geom::Point const &iS, + Geom::Point const &iE, + double tresh, int lev, double st, double et, int piece) +{ + if ( lev <= 0 ) { + return; + } + + Geom::Point ps = iS - iP; + Geom::Point pe = iE - iP; + const double s = fabs(cross(pe, ps)); + if ( s < tresh ) { + return; + } + + { + const double mt = (st + et) / 2; + const Geom::Point m = 0.25 * (iS + iE + 2 * iP); + RecBezierTo(0.5 * (iS + iP), iS, m, tresh, lev - 1, st, mt, piece); + AddPoint(m, piece, mt); + RecBezierTo(0.5 * (iP + iE), m, iE, tresh, lev - 1, mt, et, piece); + } +} + + + +void Path::DoArc(Geom::Point const &iS, Geom::Point const &iE, + double const rx, double const ry, double const angle, + bool const large, bool const wise, double const /*tresh*/, + int const piece, offset_orig &/*orig*/) +{ + // Will never arrive here, as offsets are made of cubics. + // [on n'arrivera jamais ici, puisque les offsets sont fait de cubiques] + /* TODO: Check that our behaviour is standards-conformant if iS and iE are (much) further + apart than the diameter. Also check that we do the right thing for negative radius. + (Same for the other DoArc functions in this file.) */ + if ( rx <= 0.0001 || ry <= 0.0001 ) { + return; + // We always add a lineto afterwards, so this is fine. + // [on ajoute toujours un lineto apres, donc c bon] + } + + double sang; + double eang; + Geom::Point dr_temp; + ArcAnglesAndCenter(iS, iE, rx, ry, angle*M_PI/180.0, large, wise, sang, eang, dr_temp); + Geom::Point dr = dr_temp; + /* TODO: This isn't as good numerically as treating iS and iE as primary. E.g. consider + the case of low curvature (i.e. very large radius). */ + + Geom::Scale const ar(rx, ry); + Geom::Rotate cb(sang); + Geom::Rotate cbangle(angle*M_PI/180.0); + if (wise) { + + double const incr = -0.1/sqrt(ar.vector().length()); + if ( sang < eang ) { + sang += 2*M_PI; + } + Geom::Rotate const omega(incr); + for (double b = sang + incr; b > eang ;b += incr) { + cb = omega * cb; + AddPoint(cb.vector() * ar * cbangle + dr, piece, (sang - b) / (sang - eang)); + } + + } else { + double const incr = 0.1/sqrt(ar.vector().length()); + if ( sang > eang ) { + sang -= 2*M_PI; + } + Geom::Rotate const omega(incr); + for (double b = sang + incr ; b < eang ; b += incr) { + cb = omega * cb; + AddPoint(cb.vector() * ar * cbangle + dr, piece, (b - sang) / (eang - sang)); + } + } +} + + +void Path::RecCubicTo(Geom::Point const &iS, Geom::Point const &isD, + Geom::Point const &iE, Geom::Point const &ieD, + double tresh, int lev, double st, double et, + int piece, offset_orig &orig) +{ + const Geom::Point se = iE - iS; + const double dC = Geom::L2(se); + bool doneSub = false; + if ( dC < 0.01 ) { + const double sC = dot(isD, isD); + const double eC = dot(ieD, ieD); + if ( sC < tresh && eC < tresh ) { + return; + } + } else { + const double sC = fabs(cross(se, isD)) / dC; + const double eC = fabs(cross(se, ieD)) / dC; + if ( sC < tresh && eC < tresh ) { + doneSub = true; + } + } + + if ( lev <= 0 ) { + doneSub = true; + } + + // test des inversions + bool stInv = false; + bool enInv = false; + { + Geom::Point os_pos; + Geom::Point os_tgt; + Geom::Point oe_pos; + Geom::Point oe_tgt; + + orig.orig->PointAndTangentAt(orig.piece, orig.tSt * (1 - st) + orig.tEn * st, os_pos, os_tgt); + orig.orig->PointAndTangentAt(orig.piece, orig.tSt * (1 - et) + orig.tEn * et, oe_pos, oe_tgt); + + + Geom::Point n_tgt = isD; + double si = dot(n_tgt, os_tgt); + if ( si < 0 ) { + stInv = true; + } + n_tgt = ieD; + si = dot(n_tgt, oe_tgt); + if ( si < 0 ) { + enInv = true; + } + if ( stInv && enInv ) { + + AddPoint(os_pos, -1, 0.0); + AddPoint(iE, piece, et); + AddPoint(iS, piece, st); + AddPoint(oe_pos, -1, 0.0); + return; + + } else if ( ( stInv && !enInv ) || ( !stInv && enInv ) ) { + return; + } + + } + + if ( ( !stInv && !enInv && doneSub ) || lev <= 0 ) { + return; + } + + { + const Geom::Point m = 0.5 * (iS+iE) + 0.125 * (isD - ieD); + const Geom::Point md = 0.75 * (iE - iS) - 0.125 * (isD + ieD); + const double mt = (st + et) / 2; + const Geom::Point hisD = 0.5 * isD; + const Geom::Point hieD = 0.5 * ieD; + + RecCubicTo(iS, hisD, m, md, tresh, lev - 1, st, mt, piece, orig); + AddPoint(m, piece, mt); + RecCubicTo(m, md, iE, hieD, tresh, lev - 1, mt, et, piece, orig); + } +} + + + +void Path::RecBezierTo(Geom::Point const &iP, Geom::Point const &iS,Geom::Point const &iE, + double tresh, int lev, double st, double et, + int piece, offset_orig& orig) +{ + bool doneSub = false; + if ( lev <= 0 ) { + return; + } + + const Geom::Point ps = iS - iP; + const Geom::Point pe = iE - iP; + const double s = fabs(cross(pe, ps)); + if ( s < tresh ) { + doneSub = true ; + } + + // test des inversions + bool stInv = false; + bool enInv = false; + { + Geom::Point os_pos; + Geom::Point os_tgt; + Geom::Point oe_pos; + Geom::Point oe_tgt; + Geom::Point n_tgt; + Geom::Point n_pos; + + double n_len; + double n_rad; + PathDescrIntermBezierTo mid(iP); + PathDescrBezierTo fin(iE, 1); + + TangentOnBezAt(0.0, iS, mid, fin, false, n_pos, n_tgt, n_len, n_rad); + orig.orig->PointAndTangentAt(orig.piece, orig.tSt * (1 - st) + orig.tEn * st, os_pos, os_tgt); + double si = dot(n_tgt, os_tgt); + if ( si < 0 ) { + stInv = true; + } + + TangentOnBezAt(1.0, iS, mid, fin, false, n_pos, n_tgt, n_len, n_rad); + orig.orig->PointAndTangentAt(orig.piece, orig.tSt * (1 - et) + orig.tEn * et, oe_pos, oe_tgt); + si = dot(n_tgt, oe_tgt); + if ( si < 0 ) { + enInv = true; + } + + if ( stInv && enInv ) { + AddPoint(os_pos, -1, 0.0); + AddPoint(iE, piece, et); + AddPoint(iS, piece, st); + AddPoint(oe_pos, -1, 0.0); + return; + } + } + + if ( !stInv && !enInv && doneSub ) { + return; + } + + { + double mt = (st + et) / 2; + Geom::Point m = 0.25 * (iS + iE + 2 * iP); + Geom::Point md = 0.5 * (iS + iP); + RecBezierTo(md, iS, m, tresh, lev - 1, st, mt, piece, orig); + AddPoint(m, piece, mt); + md = 0.5 * (iP + iE); + RecBezierTo(md, m, iE, tresh, lev - 1, mt, et, piece, orig); + } +} + + +/* + * put a polyline in a Shape instance, for further fun + * pathID is the ID you want this Path instance to be associated with, for when you're going to recompose the polyline + * in a path description ( you need to have prepared the back data for that, of course) + */ + +void Path::Fill(Shape* dest, int pathID, bool justAdd, bool closeIfNeeded, bool invert) +{ + if ( dest == nullptr ) { + return; + } + + if ( justAdd == false ) { + dest->Reset(pts.size(), pts.size()); + } + + if ( pts.size() <= 1 ) { + return; + } + + int first = dest->numberOfPoints(); + + if ( back ) { + dest->MakeBackData(true); + } + + if ( invert ) { + if ( back ) { + { + // invert && back && !weighted + for (auto & pt : pts) { + dest->AddPoint(pt.p); + } + int lastM = 0; + int curP = 1; + int pathEnd = 0; + bool closed = false; + int lEdge = -1; + + while ( curP < int(pts.size()) ) { + int sbp = curP; + int lm = lastM; + int prp = pathEnd; + + if ( pts[sbp].isMoveTo == polyline_moveto ) { + + if ( closeIfNeeded ) { + if ( closed && lEdge >= 0 ) { + dest->DisconnectStart(lEdge); + dest->ConnectStart(first + lastM, lEdge); + } else { + lEdge = dest->AddEdge(first + lastM, first+pathEnd); + if ( lEdge >= 0 ) { + dest->ebData[lEdge].pathID = pathID; + dest->ebData[lEdge].pieceID = pts[lm].piece; + dest->ebData[lEdge].tSt = 1.0; + dest->ebData[lEdge].tEn = 0.0; + } + } + } + + lastM = curP; + pathEnd = curP; + closed = false; + lEdge = -1; + + } else { + + if ( Geom::LInfty(pts[sbp].p - pts[prp].p) >= 0.00001 ) { + lEdge = dest->AddEdge(first + curP, first + pathEnd); + if ( lEdge >= 0 ) { + dest->ebData[lEdge].pathID = pathID; + dest->ebData[lEdge].pieceID = pts[sbp].piece; + if ( pts[sbp].piece == pts[prp].piece ) { + dest->ebData[lEdge].tSt = pts[sbp].t; + dest->ebData[lEdge].tEn = pts[prp].t; + } else { + dest->ebData[lEdge].tSt = pts[sbp].t; + dest->ebData[lEdge].tEn = 0.0; + } + } + pathEnd = curP; + if ( Geom::LInfty(pts[sbp].p - pts[lm].p) < 0.00001 ) { + closed = true; + } else { + closed = false; + } + } + } + + curP++; + } + + if ( closeIfNeeded ) { + if ( closed && lEdge >= 0 ) { + dest->DisconnectStart(lEdge); + dest->ConnectStart(first + lastM, lEdge); + } else { + int lm = lastM; + lEdge = dest->AddEdge(first + lastM, first + pathEnd); + if ( lEdge >= 0 ) { + dest->ebData[lEdge].pathID = pathID; + dest->ebData[lEdge].pieceID = pts[lm].piece; + dest->ebData[lEdge].tSt = 1.0; + dest->ebData[lEdge].tEn = 0.0; + } + } + } + } + + } else { + + { + // invert && !back && !weighted + for (auto & pt : pts) { + dest->AddPoint(pt.p); + } + int lastM = 0; + int curP = 1; + int pathEnd = 0; + bool closed = false; + int lEdge = -1; + while ( curP < int(pts.size()) ) { + int sbp = curP; + int lm = lastM; + int prp = pathEnd; + if ( pts[sbp].isMoveTo == polyline_moveto ) { + if ( closeIfNeeded ) { + if ( closed && lEdge >= 0 ) { + dest->DisconnectStart(lEdge); + dest->ConnectStart(first + lastM, lEdge); + } else { + dest->AddEdge(first + lastM, first + pathEnd); + } + } + lastM = curP; + pathEnd = curP; + closed = false; + lEdge = -1; + } else { + if ( Geom::LInfty(pts[sbp].p - pts[prp].p) >= 0.00001 ) { + lEdge = dest->AddEdge(first+curP, first+pathEnd); + pathEnd = curP; + if ( Geom::LInfty(pts[sbp].p - pts[lm].p) < 0.00001 ) { + closed = true; + } else { + closed = false; + } + } + } + curP++; + } + + if ( closeIfNeeded ) { + if ( closed && lEdge >= 0 ) { + dest->DisconnectStart(lEdge); + dest->ConnectStart(first + lastM, lEdge); + } else { + dest->AddEdge(first + lastM, first + pathEnd); + } + } + + } + } + + } else { + + if ( back ) { + { + // !invert && back && !weighted + + // add all points to the shape + for (auto & pt : pts) { + dest->AddPoint(pt.p); + } + + int lastM = 0; + int curP = 1; + int pathEnd = 0; + bool closed = false; + int lEdge = -1; + while ( curP < int(pts.size()) ) { + int sbp = curP; + int lm = lastM; + int prp = pathEnd; + if ( pts[sbp].isMoveTo == polyline_moveto ) { + if ( closeIfNeeded ) { + if ( closed && lEdge >= 0 ) { + dest->DisconnectEnd(lEdge); + dest->ConnectEnd(first + lastM, lEdge); + } else { + lEdge = dest->AddEdge(first + pathEnd, first+lastM); + if ( lEdge >= 0 ) { + dest->ebData[lEdge].pathID = pathID; + dest->ebData[lEdge].pieceID = pts[lm].piece; + dest->ebData[lEdge].tSt = 0.0; + dest->ebData[lEdge].tEn = 1.0; + } + } + } + lastM = curP; + pathEnd = curP; + closed = false; + lEdge = -1; + } else { + if ( Geom::LInfty(pts[sbp].p - pts[prp].p) >= 0.00001 ) { + lEdge = dest->AddEdge(first + pathEnd, first + curP); + dest->ebData[lEdge].pathID = pathID; + dest->ebData[lEdge].pieceID = pts[sbp].piece; + if ( pts[sbp].piece == pts[prp].piece ) { + dest->ebData[lEdge].tSt = pts[prp].t; + dest->ebData[lEdge].tEn = pts[sbp].t; + } else { + dest->ebData[lEdge].tSt = 0.0; + dest->ebData[lEdge].tEn = pts[sbp].t; + } + pathEnd = curP; + if ( Geom::LInfty(pts[sbp].p - pts[lm].p) < 0.00001 ) { + closed = true; + } else { + closed = false; + } + } + } + curP++; + } + + if ( closeIfNeeded ) { + if ( closed && lEdge >= 0 ) { + dest->DisconnectEnd(lEdge); + dest->ConnectEnd(first + lastM, lEdge); + } else { + int lm = lastM; + lEdge = dest->AddEdge(first + pathEnd, first + lastM); + if ( lEdge >= 0 ) { + dest->ebData[lEdge].pathID = pathID; + dest->ebData[lEdge].pieceID = pts[lm].piece; + dest->ebData[lEdge].tSt = 0.0; + dest->ebData[lEdge].tEn = 1.0; + } + } + } + } + + } else { + { + // !invert && !back && !weighted + for (auto & pt : pts) { + dest->AddPoint(pt.p); + } + + int lastM = 0; + int curP = 1; + int pathEnd = 0; + bool closed = false; + int lEdge = -1; + while ( curP < int(pts.size()) ) { + int sbp = curP; + int lm = lastM; + int prp = pathEnd; + if ( pts[sbp].isMoveTo == polyline_moveto ) { + if ( closeIfNeeded ) { + if ( closed && lEdge >= 0 ) { + dest->DisconnectEnd(lEdge); + dest->ConnectEnd(first + lastM, lEdge); + } else { + dest->AddEdge(first + pathEnd, first + lastM); + } + } + lastM = curP; + pathEnd = curP; + closed = false; + lEdge = -1; + } else { + if ( Geom::LInfty(pts[sbp].p - pts[prp].p) >= 0.00001 ) { + lEdge = dest->AddEdge(first+pathEnd, first+curP); + pathEnd = curP; + if ( Geom::LInfty(pts[sbp].p - pts[lm].p) < 0.00001 ) { + closed = true; + } else { + closed = false; + } + } + } + curP++; + } + + if ( closeIfNeeded ) { + if ( closed && lEdge >= 0 ) { + dest->DisconnectEnd(lEdge); + dest->ConnectEnd(first + lastM, lEdge); + } else { + dest->AddEdge(first + pathEnd, first + lastM); + } + } + + } + } + } +} + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 : |