diff options
Diffstat (limited to 'src/livarot/PathOutline.cpp')
-rw-r--r-- | src/livarot/PathOutline.cpp | 1530 |
1 files changed, 1530 insertions, 0 deletions
diff --git a/src/livarot/PathOutline.cpp b/src/livarot/PathOutline.cpp new file mode 100644 index 0000000..c93c040 --- /dev/null +++ b/src/livarot/PathOutline.cpp @@ -0,0 +1,1530 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/** @file + * TODO: insert short description here + *//* + * Authors: see git history + * + * Copyright (C) 2018 Authors + * Released under GNU GPL v2+, read the file 'COPYING' for more information. + */ + +#include "livarot/Path.h" +#include "livarot/path-description.h" + +/* + * the "outliner" + * takes a sequence of path commands and produces a set of commands that approximates the offset + * result is stored in dest (that paremeter is handed to all the subfunctions) + * not that the result is in general not mathematically correct; you can end up with unwanted holes in your + * beautiful offset. a better way is to do path->polyline->polygon->offset of polygon->polyline(=contours of the polygon)->path + * but computing offsets of the path is faster... + */ + +// outline of a path. +// computed by making 2 offsets, one of the "left" side of the path, one of the right side, and then glueing the two +// the left side has to be reversed to make a contour +void Path::Outline(Path *dest, double width, JoinType join, ButtType butt, double miter) +{ + if ( descr_flags & descr_adding_bezier ) { + CancelBezier(); + } + if ( descr_flags & descr_doing_subpath ) { + CloseSubpath(); + } + if ( descr_cmd.size() <= 1 ) { + return; + } + if ( dest == nullptr ) { + return; + } + + dest->Reset(); + dest->SetBackData(false); + + outline_callbacks calls; + Geom::Point endButt; + Geom::Point endPos; + calls.cubicto = StdCubicTo; + calls.bezierto = StdBezierTo; + calls.arcto = StdArcTo; + + Path *rev = new Path; + + // we repeat the offset contour creation for each subpath + int curP = 0; + do { + int lastM = curP; + do { + curP++; + if (curP >= int(descr_cmd.size())) { + break; + } + int typ = descr_cmd[curP]->getType(); + if (typ == descr_moveto) { + break; + } + } while (curP < int(descr_cmd.size())); + + if (curP >= int(descr_cmd.size())) { + curP = descr_cmd.size(); + } + + if (curP > lastM + 1) { + // we have isolated a subpath, now we make a reversed version of it + // we do so by taking the subpath in the reverse and constructing a path as appropriate + // the construct is stored in "rev" + int curD = curP - 1; + Geom::Point curX; + Geom::Point nextX; + int firstTyp = descr_cmd[curD]->getType(); + bool const needClose = (firstTyp == descr_close); + while (curD > lastM && descr_cmd[curD]->getType() == descr_close) { + curD--; + } + + int realP = curD + 1; + if (curD > lastM) { + curX = PrevPoint(curD); + rev->Reset (); + rev->MoveTo(curX); + while (curD > lastM) { + int const typ = descr_cmd[curD]->getType(); + if (typ == descr_moveto) { + // rev->Close(); + curD--; + } else if (typ == descr_forced) { + // rev->Close(); + curD--; + } else if (typ == descr_lineto) { + nextX = PrevPoint (curD - 1); + rev->LineTo (nextX); + curX = nextX; + curD--; + } else if (typ == descr_cubicto) { + PathDescrCubicTo* nData = dynamic_cast<PathDescrCubicTo*>(descr_cmd[curD]); + nextX = PrevPoint (curD - 1); + Geom::Point isD=-nData->start; + Geom::Point ieD=-nData->end; + rev->CubicTo (nextX, ieD,isD); + curX = nextX; + curD--; + } else if (typ == descr_arcto) { + PathDescrArcTo* nData = dynamic_cast<PathDescrArcTo*>(descr_cmd[curD]); + nextX = PrevPoint (curD - 1); + rev->ArcTo (nextX, nData->rx,nData->ry,nData->angle,nData->large,!nData->clockwise); + curX = nextX; + curD--; + } else if (typ == descr_bezierto) { + nextX = PrevPoint (curD - 1); + rev->LineTo (nextX); + curX = nextX; + curD--; + } else if (typ == descr_interm_bezier) { + int nD = curD - 1; + while (nD > lastM && descr_cmd[nD]->getType() != descr_bezierto) nD--; + if ((descr_cmd[nD]->getType()) != descr_bezierto) { + // pas trouve le debut!? + // Not find the start?! + nextX = PrevPoint (nD); + rev->LineTo (nextX); + curX = nextX; + } else { + nextX = PrevPoint (nD - 1); + rev->BezierTo (nextX); + for (int i = curD; i > nD; i--) { + PathDescrIntermBezierTo* nData = dynamic_cast<PathDescrIntermBezierTo*>(descr_cmd[i]); + rev->IntermBezierTo (nData->p); + } + rev->EndBezierTo (); + curX = nextX; + } + curD = nD - 1; + } else { + curD--; + } + } + + // offset the paths and glue everything + // actual offseting is done in SubContractOutline() + if (needClose) { + rev->Close (); + rev->SubContractOutline (0, rev->descr_cmd.size(), + dest, calls, 0.0025 * width * width, width, + join, butt, miter, true, false, endPos, endButt); + SubContractOutline (lastM, realP + 1 - lastM, + dest, calls, 0.0025 * width * width, + width, join, butt, miter, true, false, endPos, endButt); + } else { + rev->SubContractOutline (0, rev->descr_cmd.size(), + dest, calls, 0.0025 * width * width, width, + join, butt, miter, false, false, endPos, endButt); + Geom::Point endNor=endButt.ccw(); + if (butt == butt_round) { + dest->ArcTo (endPos+width*endButt, width, width, 0.0, false, true); + dest->ArcTo (endPos+width*endNor, width, width, 0.0, false, true); + } else if (butt == butt_square) { + dest->LineTo (endPos-width*endNor+width*endButt); + dest->LineTo (endPos+width*endNor+width*endButt); + dest->LineTo (endPos+width*endNor); + } else if (butt == butt_pointy) { + dest->LineTo (endPos+width*endButt); + dest->LineTo (endPos+width*endNor); + } else { + dest->LineTo (endPos+width*endNor); + } + SubContractOutline (lastM, realP - lastM, + dest, calls, 0.0025 * width * width, width, join, butt, + miter, false, true, endPos, endButt); + + endNor=endButt.ccw(); + if (butt == butt_round) { + dest->ArcTo (endPos+width*endButt, width, width, 0.0, false, true); + dest->ArcTo (endPos+width*endNor, width, width, 0.0, false, true); + } else if (butt == butt_square) { + dest->LineTo (endPos-width*endNor+width*endButt); + dest->LineTo (endPos+width*endNor+width*endButt); + dest->LineTo (endPos+width*endNor); + } else if (butt == butt_pointy) { + dest->LineTo (endPos+width*endButt); + dest->LineTo (endPos+width*endNor); + } else { + dest->LineTo (endPos+width*endNor); + } + dest->Close (); + } + } // if (curD > lastM) + } // if (curP > lastM + 1) + + } while (curP < int(descr_cmd.size())); + + delete rev; +} + +// versions for outlining closed path: they only make one side of the offset contour +void +Path::OutsideOutline (Path * dest, double width, JoinType join, ButtType butt, + double miter) +{ + if (descr_flags & descr_adding_bezier) { + CancelBezier(); + } + if (descr_flags & descr_doing_subpath) { + CloseSubpath(); + } + if (int(descr_cmd.size()) <= 1) return; + if (dest == nullptr) return; + dest->Reset (); + dest->SetBackData (false); + + outline_callbacks calls; + Geom::Point endButt, endPos; + calls.cubicto = StdCubicTo; + calls.bezierto = StdBezierTo; + calls.arcto = StdArcTo; + SubContractOutline (0, descr_cmd.size(), + dest, calls, 0.0025 * width * width, width, join, butt, + miter, true, false, endPos, endButt); +} + +void +Path::InsideOutline (Path * dest, double width, JoinType join, ButtType butt, + double miter) +{ + if ( descr_flags & descr_adding_bezier ) { + CancelBezier(); + } + if ( descr_flags & descr_doing_subpath ) { + CloseSubpath(); + } + if (int(descr_cmd.size()) <= 1) return; + if (dest == nullptr) return; + dest->Reset (); + dest->SetBackData (false); + + outline_callbacks calls; + Geom::Point endButt, endPos; + calls.cubicto = StdCubicTo; + calls.bezierto = StdBezierTo; + calls.arcto = StdArcTo; + + Path *rev = new Path; + + int curP = 0; + do { + int lastM = curP; + do { + curP++; + if (curP >= int(descr_cmd.size())) break; + int typ = descr_cmd[curP]->getType(); + if (typ == descr_moveto) break; + } while (curP < int(descr_cmd.size())); + if (curP >= int(descr_cmd.size())) curP = descr_cmd.size(); + if (curP > lastM + 1) { + // Otherwise there's only one point. (tr: or "only a point") + // [sinon il n'y a qu'un point] + int curD = curP - 1; + Geom::Point curX; + Geom::Point nextX; + while (curD > lastM && (descr_cmd[curD]->getType()) == descr_close) curD--; + if (curD > lastM) { + curX = PrevPoint (curD); + rev->Reset (); + rev->MoveTo (curX); + while (curD > lastM) { + int typ = descr_cmd[curD]->getType(); + if (typ == descr_moveto) { + rev->Close (); + curD--; + } else if (typ == descr_forced) { + curD--; + } else if (typ == descr_lineto) { + nextX = PrevPoint (curD - 1); + rev->LineTo (nextX); + curX = nextX; + curD--; + } else if (typ == descr_cubicto) { + PathDescrCubicTo *nData = dynamic_cast<PathDescrCubicTo*>(descr_cmd[curD]); + nextX = PrevPoint (curD - 1); + Geom::Point isD=-nData->start; + Geom::Point ieD=-nData->end; + rev->CubicTo (nextX, ieD,isD); + curX = nextX; + curD--; + } else if (typ == descr_arcto) { + PathDescrArcTo* nData = dynamic_cast<PathDescrArcTo*>(descr_cmd[curD]); + nextX = PrevPoint (curD - 1); + rev->ArcTo (nextX, nData->rx,nData->ry,nData->angle,nData->large,nData->clockwise); + curX = nextX; + curD--; + } else if (typ == descr_bezierto) { + nextX = PrevPoint (curD - 1); + rev->LineTo (nextX); + curX = nextX; + curD--; + } else if (typ == descr_interm_bezier) { + int nD = curD - 1; + while (nD > lastM && (descr_cmd[nD]->getType()) != descr_bezierto) nD--; + if (descr_cmd[nD]->getType() != descr_bezierto) { + // pas trouve le debut!? + nextX = PrevPoint (nD); + rev->LineTo (nextX); + curX = nextX; + } else { + nextX = PrevPoint (nD - 1); + rev->BezierTo (nextX); + for (int i = curD; i > nD; i--) { + PathDescrIntermBezierTo* nData = dynamic_cast<PathDescrIntermBezierTo*>(descr_cmd[i]); + rev->IntermBezierTo (nData->p); + } + rev->EndBezierTo (); + curX = nextX; + } + curD = nD - 1; + } else { + curD--; + } + } + rev->Close (); + rev->SubContractOutline (0, rev->descr_cmd.size(), + dest, calls, 0.0025 * width * width, + width, join, butt, miter, true, false, + endPos, endButt); + } + } + } while (curP < int(descr_cmd.size())); + + delete rev; +} + + +// the offset +// take each command and offset it. +// the bezier spline is split in a sequence of bezier curves, and these are transformed in cubic bezier (which is +// not hard since they are quadratic bezier) +// joins are put where needed +void Path::SubContractOutline(int off, int num_pd, + Path *dest, outline_callbacks & calls, + double tolerance, double width, JoinType join, + ButtType /*butt*/, double miter, bool closeIfNeeded, + bool skipMoveto, Geom::Point &lastP, Geom::Point &lastT) +{ + outline_callback_data callsData; + + callsData.orig = this; + callsData.dest = dest; + int curP = 1; + + // le moveto + Geom::Point curX; + { + int firstTyp = descr_cmd[off]->getType(); + if ( firstTyp != descr_moveto ) { + curX[0] = curX[1] = 0; + curP = 0; + } else { + PathDescrMoveTo* nData = dynamic_cast<PathDescrMoveTo*>(descr_cmd[off]); + curX = nData->p; + } + } + Geom::Point curT(0, 0); + + bool doFirst = true; + Geom::Point firstP(0, 0); + Geom::Point firstT(0, 0); + + // et le reste, 1 par 1 + while (curP < num_pd) + { + int curD = off + curP; + int nType = descr_cmd[curD]->getType(); + Geom::Point nextX; + Geom::Point stPos, enPos, stTgt, enTgt, stNor, enNor; + double stRad, enRad, stTle, enTle; + if (nType == descr_forced) { + curP++; + } else if (nType == descr_moveto) { + PathDescrMoveTo* nData = dynamic_cast<PathDescrMoveTo*>(descr_cmd[curD]); + nextX = nData->p; + // et on avance + if (doFirst) { + } else { + if (closeIfNeeded) { + if ( Geom::LInfty (curX- firstP) < 0.0001 ) { + OutlineJoin (dest, firstP, curT, firstT, width, join, + miter, nType); + dest->Close (); + } else { + PathDescrLineTo temp(firstP); + + TangentOnSegAt (0.0, curX, temp, stPos, stTgt, + stTle); + TangentOnSegAt (1.0, curX, temp, enPos, enTgt, + enTle); + stNor=stTgt.cw(); + enNor=enTgt.cw(); + + // jointure + { + Geom::Point pos; + pos = curX; + OutlineJoin (dest, pos, curT, stNor, width, join, + miter, nType); + } + dest->LineTo (enPos+width*enNor); + + // jointure + { + Geom::Point pos; + pos = firstP; + OutlineJoin (dest, enPos, enNor, firstT, width, join, + miter, nType); + dest->Close (); + } + } + } + } + firstP = nextX; + curP++; + } + else if (nType == descr_close) + { + if (! doFirst) + { + if (Geom::LInfty (curX - firstP) < 0.0001) + { + OutlineJoin (dest, firstP, curT, firstT, width, join, + miter, nType); + dest->Close (); + } + else + { + PathDescrLineTo temp(firstP); + nextX = firstP; + + TangentOnSegAt (0.0, curX, temp, stPos, stTgt, stTle); + TangentOnSegAt (1.0, curX, temp, enPos, enTgt, enTle); + stNor=stTgt.cw(); + enNor=enTgt.cw(); + + // jointure + { + OutlineJoin (dest, stPos, curT, stNor, width, join, + miter, nType); + } + + dest->LineTo (enPos+width*enNor); + + // jointure + { + OutlineJoin (dest, enPos, enNor, firstT, width, join, + miter, nType); + dest->Close (); + } + } + } + doFirst = true; + curP++; + } + else if (nType == descr_lineto) + { + PathDescrLineTo* nData = dynamic_cast<PathDescrLineTo*>(descr_cmd[curD]); + nextX = nData->p; + // et on avance + TangentOnSegAt (0.0, curX, *nData, stPos, stTgt, stTle); + TangentOnSegAt (1.0, curX, *nData, enPos, enTgt, enTle); + // test de nullité du segment + if (IsNulCurve (descr_cmd, curD, curX)) + { + if (descr_cmd.size() == 2) { // single point, see LP Bug 1006666 + stTgt = dest->descr_cmd.size() ? Geom::Point(1, 0) : Geom::Point(-1, 0); // reverse direction + enTgt = stTgt; + } else { + curP++; + continue; + } + } + stNor=stTgt.cw(); + enNor=enTgt.cw(); + + lastP = enPos; + lastT = enTgt; + + if (doFirst) + { + doFirst = false; + firstP = stPos; + firstT = stNor; + if (skipMoveto) + { + skipMoveto = false; + } + else + dest->MoveTo (curX+width*stNor); + } + else + { + // jointure + Geom::Point pos; + pos = curX; + OutlineJoin (dest, pos, curT, stNor, width, join, miter, nType); + } + + int n_d = dest->LineTo (nextX+width*enNor); + if (n_d >= 0) + { + dest->descr_cmd[n_d]->associated = curP; + dest->descr_cmd[n_d]->tSt = 0.0; + dest->descr_cmd[n_d]->tEn = 1.0; + } + curP++; + } + else if (nType == descr_cubicto) + { + PathDescrCubicTo* nData = dynamic_cast<PathDescrCubicTo*>(descr_cmd[curD]); + nextX = nData->p; + // test de nullite du segment + if (IsNulCurve (descr_cmd, curD, curX)) + { + curP++; + continue; + } + // et on avance + TangentOnCubAt (0.0, curX, *nData, false, stPos, stTgt, + stTle, stRad); + TangentOnCubAt (1.0, curX, *nData, true, enPos, enTgt, + enTle, enRad); + stNor=stTgt.cw(); + enNor=enTgt.cw(); + + lastP = enPos; + lastT = enTgt; + + if (doFirst) + { + doFirst = false; + firstP = stPos; + firstT = stNor; + if (skipMoveto) + { + skipMoveto = false; + } + else + dest->MoveTo (curX+width*stNor); + } + else + { + // jointure + Geom::Point pos; + pos = curX; + OutlineJoin (dest, pos, curT, stNor, width, join, miter, nType); + } + + callsData.piece = curP; + callsData.tSt = 0.0; + callsData.tEn = 1.0; + callsData.x1 = curX[0]; + callsData.y1 = curX[1]; + callsData.x2 = nextX[0]; + callsData.y2 = nextX[1]; + callsData.d.c.dx1 = nData->start[0]; + callsData.d.c.dy1 = nData->start[1]; + callsData.d.c.dx2 = nData->end[0]; + callsData.d.c.dy2 = nData->end[1]; + (calls.cubicto) (&callsData, tolerance, width); + + curP++; + } + else if (nType == descr_arcto) + { + PathDescrArcTo* nData = dynamic_cast<PathDescrArcTo*>(descr_cmd[curD]); + nextX = nData->p; + // test de nullité du segment + if (IsNulCurve (descr_cmd, curD, curX)) + { + curP++; + continue; + } + // et on avance + TangentOnArcAt (0.0, curX, *nData, stPos, stTgt, stTle, + stRad); + TangentOnArcAt (1.0, curX, *nData, enPos, enTgt, enTle, + enRad); + stNor=stTgt.cw(); + enNor=enTgt.cw(); + + lastP = enPos; + lastT = enTgt; // tjs definie + + if (doFirst) + { + doFirst = false; + firstP = stPos; + firstT = stNor; + if (skipMoveto) + { + skipMoveto = false; + } + else + dest->MoveTo (curX+width*stNor); + } + else + { + // jointure + Geom::Point pos; + pos = curX; + OutlineJoin (dest, pos, curT, stNor, width, join, miter, nType); + } + + callsData.piece = curP; + callsData.tSt = 0.0; + callsData.tEn = 1.0; + callsData.x1 = curX[0]; + callsData.y1 = curX[1]; + callsData.x2 = nextX[0]; + callsData.y2 = nextX[1]; + callsData.d.a.rx = nData->rx; + callsData.d.a.ry = nData->ry; + callsData.d.a.angle = nData->angle; + callsData.d.a.clock = nData->clockwise; + callsData.d.a.large = nData->large; + (calls.arcto) (&callsData, tolerance, width); + + curP++; + } + else if (nType == descr_bezierto) + { + PathDescrBezierTo* nBData = dynamic_cast<PathDescrBezierTo*>(descr_cmd[curD]); + int nbInterm = nBData->nb; + nextX = nBData->p; + + if (IsNulCurve (descr_cmd, curD, curX)) { + curP += nbInterm + 1; + continue; + } + + curP++; + + curD = off + curP; + int ip = curD; + PathDescrIntermBezierTo* nData = dynamic_cast<PathDescrIntermBezierTo*>(descr_cmd[ip]); + + if (nbInterm <= 0) { + // et on avance + PathDescrLineTo temp(nextX); + TangentOnSegAt (0.0, curX, temp, stPos, stTgt, stTle); + TangentOnSegAt (1.0, curX, temp, enPos, enTgt, enTle); + stNor=stTgt.cw(); + enNor=enTgt.cw(); + + lastP = enPos; + lastT = enTgt; + + if (doFirst) { + doFirst = false; + firstP = stPos; + firstT = stNor; + if (skipMoveto) { + skipMoveto = false; + } else dest->MoveTo (curX+width*stNor); + } else { + // jointure + Geom::Point pos; + pos = curX; + if (stTle > 0) OutlineJoin (dest, pos, curT, stNor, width, join, miter, nType); + } + int n_d = dest->LineTo (nextX+width*enNor); + if (n_d >= 0) { + dest->descr_cmd[n_d]->associated = curP - 1; + dest->descr_cmd[n_d]->tSt = 0.0; + dest->descr_cmd[n_d]->tEn = 1.0; + } + } else if (nbInterm == 1) { + Geom::Point midX; + midX = nData->p; + // et on avance + TangentOnBezAt (0.0, curX, *nData, *nBData, false, stPos, stTgt, stTle, stRad); + TangentOnBezAt (1.0, curX, *nData, *nBData, true, enPos, enTgt, enTle, enRad); + stNor=stTgt.cw(); + enNor=enTgt.cw(); + + lastP = enPos; + lastT = enTgt; + + if (doFirst) { + doFirst = false; + firstP = stPos; + firstT = stNor; + if (skipMoveto) { + skipMoveto = false; + } else dest->MoveTo (curX+width*stNor); + } else { + // jointure + Geom::Point pos; + pos = curX; + OutlineJoin (dest, pos, curT, stNor, width, join, miter, nType); + } + + callsData.piece = curP; + callsData.tSt = 0.0; + callsData.tEn = 1.0; + callsData.x1 = curX[0]; + callsData.y1 = curX[1]; + callsData.x2 = nextX[0]; + callsData.y2 = nextX[1]; + callsData.d.b.mx = midX[0]; + callsData.d.b.my = midX[1]; + (calls.bezierto) (&callsData, tolerance, width); + + } else if (nbInterm > 1) { + Geom::Point bx=curX; + Geom::Point cx=curX; + Geom::Point dx=nData->p; + + TangentOnBezAt (0.0, curX, *nData, *nBData, false, stPos, stTgt, stTle, stRad); + stNor=stTgt.cw(); + + ip++; + nData = dynamic_cast<PathDescrIntermBezierTo*>(descr_cmd[ip]); + // et on avance + if (stTle > 0) { + if (doFirst) { + doFirst = false; + firstP = stPos; + firstT = stNor; + if (skipMoveto) { + skipMoveto = false; + } else dest->MoveTo (curX+width*stNor); + } else { + // jointure + Geom::Point pos=curX; + OutlineJoin (dest, pos, stTgt, stNor, width, join, miter, nType); + // dest->LineTo(curX+width*stNor.x,curY+width*stNor.y); + } + } + + cx = 2 * bx - dx; + + for (int k = 0; k < nbInterm - 1; k++) { + bx = cx; + cx = dx; + + dx = nData->p; + ip++; + nData = dynamic_cast<PathDescrIntermBezierTo*>(descr_cmd[ip]); + Geom::Point stx = (bx + cx) / 2; + // double stw=(bw+cw)/2; + + PathDescrBezierTo tempb((cx + dx) / 2, 1); + PathDescrIntermBezierTo tempi(cx); + TangentOnBezAt (1.0, stx, tempi, tempb, true, enPos, enTgt, enTle, enRad); + enNor=enTgt.cw(); + + lastP = enPos; + lastT = enTgt; + + callsData.piece = curP + k; + callsData.tSt = 0.0; + callsData.tEn = 1.0; + callsData.x1 = stx[0]; + callsData.y1 = stx[1]; + callsData.x2 = (cx[0] + dx[0]) / 2; + callsData.y2 = (cx[1] + dx[1]) / 2; + callsData.d.b.mx = cx[0]; + callsData.d.b.my = cx[1]; + (calls.bezierto) (&callsData, tolerance, width); + } + { + bx = cx; + cx = dx; + + dx = nextX; + dx = 2 * dx - cx; + + Geom::Point stx = (bx + cx) / 2; + // double stw=(bw+cw)/2; + + PathDescrBezierTo tempb((cx + dx) / 2, 1); + PathDescrIntermBezierTo tempi(cx); + TangentOnBezAt (1.0, stx, tempi, tempb, true, enPos, + enTgt, enTle, enRad); + enNor=enTgt.cw(); + + lastP = enPos; + lastT = enTgt; + + callsData.piece = curP + nbInterm - 1; + callsData.tSt = 0.0; + callsData.tEn = 1.0; + callsData.x1 = stx[0]; + callsData.y1 = stx[1]; + callsData.x2 = (cx[0] + dx[0]) / 2; + callsData.y2 = (cx[1] + dx[1]) / 2; + callsData.d.b.mx = cx[0]; + callsData.d.b.my = cx[1]; + (calls.bezierto) (&callsData, tolerance, width); + + } + } + + // et on avance + curP += nbInterm; + } + curX = nextX; + curT = enNor; // sera tjs bien definie + } + if (closeIfNeeded) + { + if (! doFirst) + { + } + } + +} + +/* + * + * utilitaires pour l'outline + * + */ + +// like the name says: check whether the path command is actually more than a dumb point. +bool +Path::IsNulCurve (std::vector<PathDescr*> const &cmd, int curD, Geom::Point const &curX) +{ + switch(cmd[curD]->getType()) { + case descr_lineto: + { + PathDescrLineTo *nData = dynamic_cast<PathDescrLineTo*>(cmd[curD]); + if (Geom::LInfty(nData->p - curX) < 0.00001) { + return true; + } + return false; + } + case descr_cubicto: + { + PathDescrCubicTo *nData = dynamic_cast<PathDescrCubicTo*>(cmd[curD]); + Geom::Point A = nData->start + nData->end + 2*(curX - nData->p); + Geom::Point B = 3*(nData->p - curX) - 2*nData->start - nData->end; + Geom::Point C = nData->start; + if (Geom::LInfty(A) < 0.0001 + && Geom::LInfty(B) < 0.0001 + && Geom::LInfty (C) < 0.0001) { + return true; + } + return false; + } + case descr_arcto: + { + PathDescrArcTo* nData = dynamic_cast<PathDescrArcTo*>(cmd[curD]); + if ( Geom::LInfty(nData->p - curX) < 0.00001) { + if ((! nData->large) + || (fabs (nData->rx) < 0.00001 + || fabs (nData->ry) < 0.00001)) { + return true; + } + } + return false; + } + case descr_bezierto: + { + PathDescrBezierTo* nBData = dynamic_cast<PathDescrBezierTo*>(cmd[curD]); + if (nBData->nb <= 0) + { + if (Geom::LInfty(nBData->p - curX) < 0.00001) { + return true; + } + return false; + } + else if (nBData->nb == 1) + { + if (Geom::LInfty(nBData->p - curX) < 0.00001) { + int ip = curD + 1; + PathDescrIntermBezierTo* nData = dynamic_cast<PathDescrIntermBezierTo*>(cmd[ip]); + if (Geom::LInfty(nData->p - curX) < 0.00001) { + return true; + } + } + return false; + } else if (Geom::LInfty(nBData->p - curX) < 0.00001) { + for (int i = 1; i <= nBData->nb; i++) { + int ip = curD + i; + PathDescrIntermBezierTo* nData = dynamic_cast<PathDescrIntermBezierTo*>(cmd[ip]); + if (Geom::LInfty(nData->p - curX) > 0.00001) { + return false; + } + } + return true; + } + } + default: + return true; + } +} + +// tangents and curvarture computing, for the different path command types. +// the need for tangent is obvious: it gives the normal, along which we offset points +// curvature is used to do strength correction on the length of the tangents to the offset (see +// cubic offset) + +/** + * \param at Distance along a tangent (0 <= at <= 1). + * \param iS Start point. + * \param fin LineTo description containing end point. + * \param pos Filled in with the position of `at' on the segment. + * \param tgt Filled in with the normalised tangent vector. + * \param len Filled in with the length of the segment. + */ + +void Path::TangentOnSegAt(double at, Geom::Point const &iS, PathDescrLineTo const &fin, + Geom::Point &pos, Geom::Point &tgt, double &len) +{ + Geom::Point const iE = fin.p; + Geom::Point const seg = iE - iS; + double const l = L2(seg); + if (l <= 0.000001) { + pos = iS; + tgt = Geom::Point(0, 0); + len = 0; + } else { + tgt = seg / l; + pos = (1 - at) * iS + at * iE; // in other words, pos = iS + at * seg + len = l; + } +} + +// barf +void Path::TangentOnArcAt(double at, const Geom::Point &iS, PathDescrArcTo const &fin, + Geom::Point &pos, Geom::Point &tgt, double &len, double &rad) +{ + Geom::Point const iE = fin.p; + double const rx = fin.rx; + double const ry = fin.ry; + double const angle = fin.angle*M_PI/180.0; + bool const large = fin.large; + bool const wise = fin.clockwise; + + pos = iS; + tgt[0] = tgt[1] = 0; + if (rx <= 0.0001 || ry <= 0.0001) + return; + + double const sex = iE[0] - iS[0], sey = iE[1] - iS[1]; + double const ca = cos (angle), sa = sin (angle); + double csex = ca * sex + sa * sey; + double csey = -sa * sex + ca * sey; + csex /= rx; + csey /= ry; + double l = csex * csex + csey * csey; + double const d = sqrt(std::max(1 - l / 4, 0.0)); + double csdx = csey; + double csdy = -csex; + l = sqrt(l); + csdx /= l; + csdy /= l; + csdx *= d; + csdy *= d; + + double sang; + double eang; + double rax = -csdx - csex / 2; + double ray = -csdy - csey / 2; + if (rax < -1) + { + sang = M_PI; + } + else if (rax > 1) + { + sang = 0; + } + else + { + sang = acos (rax); + if (ray < 0) + sang = 2 * M_PI - sang; + } + rax = -csdx + csex / 2; + ray = -csdy + csey / 2; + if (rax < -1) + { + eang = M_PI; + } + else if (rax > 1) + { + eang = 0; + } + else + { + eang = acos (rax); + if (ray < 0) + eang = 2 * M_PI - eang; + } + + csdx *= rx; + csdy *= ry; + double drx = ca * csdx - sa * csdy; + double dry = sa * csdx + ca * csdy; + + if (wise) + { + if (large) + { + drx = -drx; + dry = -dry; + double swap = eang; + eang = sang; + sang = swap; + eang += M_PI; + sang += M_PI; + if (eang >= 2 * M_PI) + eang -= 2 * M_PI; + if (sang >= 2 * M_PI) + sang -= 2 * M_PI; + } + } + else + { + if (! large) + { + drx = -drx; + dry = -dry; + double swap = eang; + eang = sang; + sang = swap; + eang += M_PI; + sang += M_PI; + if (eang >= 2 * M_PI) + eang -= 2 * M_PI; + if (sang >= 2 * M_PI) + sang -= 2 * M_PI; + } + } + drx += (iS[0] + iE[0]) / 2; + dry += (iS[1] + iE[1]) / 2; + + if (wise) { + if (sang < eang) + sang += 2 * M_PI; + double b = sang * (1 - at) + eang * at; + double cb = cos (b), sb = sin (b); + pos[0] = drx + ca * rx * cb - sa * ry * sb; + pos[1] = dry + sa * rx * cb + ca * ry * sb; + tgt[0] = ca * rx * sb + sa * ry * cb; + tgt[1] = sa * rx * sb - ca * ry * cb; + Geom::Point dtgt; + dtgt[0] = -ca * rx * cb + sa * ry * sb; + dtgt[1] = -sa * rx * cb - ca * ry * sb; + len = L2(tgt); + rad = -len * dot(tgt, tgt) / (tgt[0] * dtgt[1] - tgt[1] * dtgt[0]); + tgt /= len; + } + else + { + if (sang > eang) + sang -= 2 * M_PI; + double b = sang * (1 - at) + eang * at; + double cb = cos (b), sb = sin (b); + pos[0] = drx + ca * rx * cb - sa * ry * sb; + pos[1] = dry + sa * rx * cb + ca * ry * sb; + tgt[0] = ca * rx * sb + sa * ry * cb; + tgt[1] = sa * rx * sb - ca * ry * cb; + Geom::Point dtgt; + dtgt[0] = -ca * rx * cb + sa * ry * sb; + dtgt[1] = -sa * rx * cb - ca * ry * sb; + len = L2(tgt); + rad = len * dot(tgt, tgt) / (tgt[0] * dtgt[1] - tgt[1] * dtgt[0]); + tgt /= len; + } + + if (!wise) { + tgt = -tgt; + } +} +void +Path::TangentOnCubAt (double at, Geom::Point const &iS, PathDescrCubicTo const &fin, bool before, + Geom::Point &pos, Geom::Point &tgt, double &len, double &rad) +{ + const Geom::Point E = fin.p; + const Geom::Point Sd = fin.start; + const Geom::Point Ed = fin.end; + + pos = iS; + tgt = Geom::Point(0,0); + len = rad = 0; + + const Geom::Point A = Sd + Ed - 2*E + 2*iS; + const Geom::Point B = 0.5*(Ed - Sd); + const Geom::Point C = 0.25*(6*E - 6*iS - Sd - Ed); + const Geom::Point D = 0.125*(4*iS + 4*E - Ed + Sd); + const double atb = at - 0.5; + pos = (atb * atb * atb)*A + (atb * atb)*B + atb*C + D; + const Geom::Point der = (3 * atb * atb)*A + (2 * atb)*B + C; + const Geom::Point dder = (6 * atb)*A + 2*B; + const Geom::Point ddder = 6 * A; + + double l = Geom::L2 (der); + // lots of nasty cases. inversion points are sadly too common... + if (l <= 0.0001) { + len = 0; + l = L2(dder); + if (l <= 0.0001) { + l = L2(ddder); + if (l <= 0.0001) { + // pas de segment.... + return; + } + rad = 100000000; + tgt = ddder / l; + if (before) { + tgt = -tgt; + } + return; + } + rad = -l * (dot(dder,dder)) / (cross(dder, ddder)); + tgt = dder / l; + if (before) { + tgt = -tgt; + } + return; + } + len = l; + + rad = -l * (dot(der,der)) / (cross(der, dder)); + + tgt = der / l; +} + +void +Path::TangentOnBezAt (double at, Geom::Point const &iS, + PathDescrIntermBezierTo & mid, + PathDescrBezierTo & fin, bool before, Geom::Point & pos, + Geom::Point & tgt, double &len, double &rad) +{ + pos = iS; + tgt = Geom::Point(0,0); + len = rad = 0; + + const Geom::Point A = fin.p + iS - 2*mid.p; + const Geom::Point B = 2*mid.p - 2 * iS; + const Geom::Point C = iS; + + pos = at * at * A + at * B + C; + const Geom::Point der = 2 * at * A + B; + const Geom::Point dder = 2 * A; + double l = Geom::L2(der); + + if (l <= 0.0001) { + l = Geom::L2(dder); + if (l <= 0.0001) { + // pas de segment.... + // Not a segment. + return; + } + rad = 100000000; // Why this number? + tgt = dder / l; + if (before) { + tgt = -tgt; + } + return; + } + len = l; + rad = -l * (dot(der,der)) / (cross(der, dder)); + + tgt = der / l; +} + +void +Path::OutlineJoin (Path * dest, Geom::Point pos, Geom::Point stNor, Geom::Point enNor, double width, + JoinType join, double miter, int nType) +{ + /* + Arbitrarily decide if we're on the inside or outside of a half turn. + A turn of 180 degrees (line path leaves the node in the same direction as it arrived) + is symmetric and has no real inside and outside. However when outlining we shall handle + one path as inside and the reverse path as outside. Handling both as inside joins (as + was done previously) will cut off round joins. Handling both as outside joins could + ideally work because both should fall together, but it seems that this causes many + extra nodes (due to rounding errors). Solution: for the 'half turn'-case toggle + inside/outside each time the same node is processed 2 consecutive times. + */ + static bool TurnInside = true; + static Geom::Point PrevPos(0, 0); + TurnInside ^= PrevPos == pos; + PrevPos = pos; + + const double angSi = cross (stNor, enNor); + const double angCo = dot (stNor, enNor); + + if ((fabs(angSi) < .0000001) && angCo > 0) { // The join is straight -> nothing to do. + } else { + if ((angSi > 0 && width >= 0) + || (angSi < 0 && width < 0)) { // This is an inside join -> join is independent of chosen JoinType. + if ((dest->descr_cmd[dest->descr_cmd.size() - 1]->getType() == descr_lineto) && (nType == descr_lineto)) { + Geom::Point const biss = unit_vector(Geom::rot90( stNor - enNor )); + double c2 = Geom::dot (biss, enNor); + if (fabs(c2) > M_SQRT1_2) { // apply only to obtuse angles + double l = width / c2; + PathDescrLineTo* nLine = dynamic_cast<PathDescrLineTo*>(dest->descr_cmd[dest->descr_cmd.size() - 1]); + nLine->p = pos + l*biss; // relocate to bisector + } else { + dest->LineTo (pos + width*enNor); + } + } else { +// dest->LineTo (pos); // redundant + dest->LineTo (pos + width*enNor); + } + } else if (angSi == 0 && TurnInside) { // Half turn (180 degrees) ... inside (see above). + dest->LineTo (pos + width*enNor); + } else { // This is an outside join -> chosen JoinType should be applied. + if (join == join_round) { + // Use the ends of the cubic: approximate the arc at the + // point where .., and support better the rounding of + // coordinates of the end points. + + // utiliser des bouts de cubique: approximation de l'arc (au point ou on en est...), et supporte mieux + // l'arrondi des coordonnees des extremites + /* double angle=acos(angCo); + if ( angCo >= 0 ) { + Geom::Point stTgt,enTgt; + RotCCWTo(stNor,stTgt); + RotCCWTo(enNor,enTgt); + dest->CubicTo(pos.x+width*enNor.x,pos.y+width*enNor.y, + angle*width*stTgt.x,angle*width*stTgt.y, + angle*width*enTgt.x,angle*width*enTgt.y); + } else { + Geom::Point biNor; + Geom::Point stTgt,enTgt,biTgt; + biNor.x=stNor.x+enNor.x; + biNor.y=stNor.y+enNor.y; + double biL=sqrt(biNor.x*biNor.x+biNor.y*biNor.y); + biNor.x/=biL; + biNor.y/=biL; + RotCCWTo(stNor,stTgt); + RotCCWTo(enNor,enTgt); + RotCCWTo(biNor,biTgt); + dest->CubicTo(pos.x+width*biNor.x,pos.y+width*biNor.y, + angle*width*stTgt.x,angle*width*stTgt.y, + angle*width*biTgt.x,angle*width*biTgt.y); + dest->CubicTo(pos.x+width*enNor.x,pos.y+width*enNor.y, + angle*width*biTgt.x,angle*width*biTgt.y, + angle*width*enTgt.x,angle*width*enTgt.y); + }*/ + if (width > 0) { + dest->ArcTo (pos + width*enNor, + 1.0001 * width, 1.0001 * width, 0.0, false, true); + } else { + dest->ArcTo (pos + width*enNor, + -1.0001 * width, -1.0001 * width, 0.0, false, + false); + } + } else if (join == join_pointy) { + Geom::Point const biss = unit_vector(Geom::rot90( stNor - enNor )); + double c2 = Geom::dot (biss, enNor); + double l = width / c2; + if ( fabs(l) > miter) { + dest->LineTo (pos + width*enNor); + } else { + if (dest->descr_cmd[dest->descr_cmd.size() - 1]->getType() == descr_lineto) { + PathDescrLineTo* nLine = dynamic_cast<PathDescrLineTo*>(dest->descr_cmd[dest->descr_cmd.size() - 1]); + nLine->p = pos+l*biss; // relocate to bisector + } else { + dest->LineTo (pos+l*biss); + } + if (nType != descr_lineto) + dest->LineTo (pos+width*enNor); + } + } else { // Bevel join + dest->LineTo (pos + width*enNor); + } + } + } +} + +// les callbacks + +// see http://www.home.unix-ag.org/simon/sketch/pathstroke.py to understand what's happening here + +void +Path::RecStdCubicTo (outline_callback_data * data, double tol, double width, + int lev) +{ + Geom::Point stPos, miPos, enPos; + Geom::Point stTgt, enTgt, miTgt, stNor, enNor, miNor; + double stRad, miRad, enRad; + double stTle, miTle, enTle; + // un cubic + { + PathDescrCubicTo temp(Geom::Point(data->x2, data->y2), + Geom::Point(data->d.c.dx1, data->d.c.dy1), + Geom::Point(data->d.c.dx2, data->d.c.dy2)); + + Geom::Point initial_point(data->x1, data->y1); + TangentOnCubAt (0.0, initial_point, temp, false, stPos, stTgt, stTle, + stRad); + TangentOnCubAt (0.5, initial_point, temp, false, miPos, miTgt, miTle, + miRad); + TangentOnCubAt (1.0, initial_point, temp, true, enPos, enTgt, enTle, + enRad); + stNor=stTgt.cw(); + miNor=miTgt.cw(); + enNor=enTgt.cw(); + } + + double stGue = 1, miGue = 1, enGue = 1; + // correction of the lengths of the tangent to the offset + // if you don't see why i wrote that, draw a little figure and everything will be clear + if (fabs (stRad) > 0.01) + stGue += width / stRad; + if (fabs (miRad) > 0.01) + miGue += width / miRad; + if (fabs (enRad) > 0.01) + enGue += width / enRad; + stGue *= stTle; + miGue *= miTle; + enGue *= enTle; + + + if (lev <= 0) { + int n_d = data->dest->CubicTo (enPos + width*enNor, + stGue*stTgt, + enGue*enTgt); + if (n_d >= 0) { + data->dest->descr_cmd[n_d]->associated = data->piece; + data->dest->descr_cmd[n_d]->tSt = data->tSt; + data->dest->descr_cmd[n_d]->tEn = data->tEn; + } + return; + } + + Geom::Point chk; + const Geom::Point req = miPos + width * miNor; + { + PathDescrCubicTo temp(enPos + width * enNor, + stGue * stTgt, + enGue * enTgt); + double chTle, chRad; + Geom::Point chTgt; + TangentOnCubAt (0.5, stPos+width*stNor, + temp, false, chk, chTgt, chTle, chRad); + } + const Geom::Point diff = req - chk; + const double err = dot(diff,diff); + if (err <= tol ) { // tolerance is given as a quadratic value, no need to use tol*tol here +// printf("%f <= %f %i\n",err,tol,lev); + int n_d = data->dest->CubicTo (enPos + width*enNor, + stGue*stTgt, + enGue*enTgt); + if (n_d >= 0) { + data->dest->descr_cmd[n_d]->associated = data->piece; + data->dest->descr_cmd[n_d]->tSt = data->tSt; + data->dest->descr_cmd[n_d]->tEn = data->tEn; + } + } else { + outline_callback_data desc = *data; + + desc.tSt = data->tSt; + desc.tEn = (data->tSt + data->tEn) / 2; + desc.x1 = data->x1; + desc.y1 = data->y1; + desc.x2 = miPos[0]; + desc.y2 = miPos[1]; + desc.d.c.dx1 = 0.5 * stTle * stTgt[0]; + desc.d.c.dy1 = 0.5 * stTle * stTgt[1]; + desc.d.c.dx2 = 0.5 * miTle * miTgt[0]; + desc.d.c.dy2 = 0.5 * miTle * miTgt[1]; + RecStdCubicTo (&desc, tol, width, lev - 1); + + desc.tSt = (data->tSt + data->tEn) / 2; + desc.tEn = data->tEn; + desc.x1 = miPos[0]; + desc.y1 = miPos[1]; + desc.x2 = data->x2; + desc.y2 = data->y2; + desc.d.c.dx1 = 0.5 * miTle * miTgt[0]; + desc.d.c.dy1 = 0.5 * miTle * miTgt[1]; + desc.d.c.dx2 = 0.5 * enTle * enTgt[0]; + desc.d.c.dy2 = 0.5 * enTle * enTgt[1]; + RecStdCubicTo (&desc, tol, width, lev - 1); + } +} + +void +Path::StdCubicTo (Path::outline_callback_data * data, double tol, double width) +{ +// fflush (stdout); + RecStdCubicTo (data, tol, width, 8); +} + +void +Path::StdBezierTo (Path::outline_callback_data * data, double tol, double width) +{ + PathDescrBezierTo tempb(Geom::Point(data->x2, data->y2), 1); + PathDescrIntermBezierTo tempi(Geom::Point(data->d.b.mx, data->d.b.my)); + Geom::Point stPos, enPos, stTgt, enTgt; + double stRad, enRad, stTle, enTle; + Geom::Point tmp(data->x1,data->y1); + TangentOnBezAt (0.0, tmp, tempi, tempb, false, stPos, stTgt, + stTle, stRad); + TangentOnBezAt (1.0, tmp, tempi, tempb, true, enPos, enTgt, + enTle, enRad); + data->d.c.dx1 = stTle * stTgt[0]; + data->d.c.dy1 = stTle * stTgt[1]; + data->d.c.dx2 = enTle * enTgt[0]; + data->d.c.dy2 = enTle * enTgt[1]; + RecStdCubicTo (data, tol, width, 8); +} + +void +Path::RecStdArcTo (outline_callback_data * data, double tol, double width, + int lev) +{ + Geom::Point stPos, miPos, enPos; + Geom::Point stTgt, enTgt, miTgt, stNor, enNor, miNor; + double stRad, miRad, enRad; + double stTle, miTle, enTle; + // un cubic + { + PathDescrArcTo temp(Geom::Point(data->x2, data->y2), + data->d.a.rx, data->d.a.ry, + data->d.a.angle, data->d.a.large, data->d.a.clock); + + Geom::Point tmp(data->x1,data->y1); + TangentOnArcAt (data->d.a.stA, tmp, temp, stPos, stTgt, + stTle, stRad); + TangentOnArcAt ((data->d.a.stA + data->d.a.enA) / 2, tmp, + temp, miPos, miTgt, miTle, miRad); + TangentOnArcAt (data->d.a.enA, tmp, temp, enPos, enTgt, + enTle, enRad); + stNor=stTgt.cw(); + miNor=miTgt.cw(); + enNor=enTgt.cw(); + } + + double stGue = 1, miGue = 1, enGue = 1; + if (fabs (stRad) > 0.01) + stGue += width / stRad; + if (fabs (miRad) > 0.01) + miGue += width / miRad; + if (fabs (enRad) > 0.01) + enGue += width / enRad; + stGue *= stTle; + miGue *= miTle; + enGue *= enTle; + double sang, eang; + { + Geom::Point tms(data->x1,data->y1),tme(data->x2,data->y2); + ArcAngles (tms,tme, data->d.a.rx, + data->d.a.ry, data->d.a.angle*M_PI/180.0, data->d.a.large, !data->d.a.clock, + sang, eang); + } + double scal = eang - sang; + if (scal < 0) + scal += 2 * M_PI; + if (scal > 2 * M_PI) + scal -= 2 * M_PI; + scal *= data->d.a.enA - data->d.a.stA; + + if (lev <= 0) + { + int n_d = data->dest->CubicTo (enPos + width*enNor, + stGue*scal*stTgt, + enGue*scal*enTgt); + if (n_d >= 0) { + data->dest->descr_cmd[n_d]->associated = data->piece; + data->dest->descr_cmd[n_d]->tSt = data->d.a.stA; + data->dest->descr_cmd[n_d]->tEn = data->d.a.enA; + } + return; + } + + Geom::Point chk; + const Geom::Point req = miPos + width*miNor; + { + PathDescrCubicTo temp(enPos + width * enNor, stGue * scal * stTgt, enGue * scal * enTgt); + double chTle, chRad; + Geom::Point chTgt; + TangentOnCubAt (0.5, stPos+width*stNor, + temp, false, chk, chTgt, chTle, chRad); + } + const Geom::Point diff = req - chk; + const double err = (dot(diff,diff)); + if (err <= tol) // tolerance is given as a quadratic value, no need to use tol*tol here + { + int n_d = data->dest->CubicTo (enPos + width*enNor, + stGue*scal*stTgt, + enGue*scal*enTgt); + if (n_d >= 0) { + data->dest->descr_cmd[n_d]->associated = data->piece; + data->dest->descr_cmd[n_d]->tSt = data->d.a.stA; + data->dest->descr_cmd[n_d]->tEn = data->d.a.enA; + } + } else { + outline_callback_data desc = *data; + + desc.d.a.stA = data->d.a.stA; + desc.d.a.enA = (data->d.a.stA + data->d.a.enA) / 2; + RecStdArcTo (&desc, tol, width, lev - 1); + + desc.d.a.stA = (data->d.a.stA + data->d.a.enA) / 2; + desc.d.a.enA = data->d.a.enA; + RecStdArcTo (&desc, tol, width, lev - 1); + } +} + +void +Path::StdArcTo (Path::outline_callback_data * data, double tol, double width) +{ + data->d.a.stA = 0.0; + data->d.a.enA = 1.0; + RecStdArcTo (data, tol, width, 8); +} + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 : |