// SPDX-License-Identifier: GPL-2.0-or-later /* * feSpecularLighting renderer * * Authors: * Niko Kiirala * Jean-Rene Reinhard * * Copyright (C) 2007 authors * * Released under GNU GPL v2+, read the file 'COPYING' for more information. */ #ifdef HAVE_CONFIG_H # include "config.h" // only include where actually required! #endif #include #include #include "display/cairo-templates.h" #include "display/cairo-utils.h" #include "display/nr-3dutils.h" #include "display/nr-filter-specularlighting.h" #include "display/nr-filter-slot.h" #include "display/nr-filter-units.h" #include "display/nr-filter-utils.h" #include "display/nr-light.h" #include "svg/svg-icc-color.h" #include "svg/svg-color.h" namespace Inkscape { namespace Filters { FilterSpecularLighting::FilterSpecularLighting() : light_type(NO_LIGHT) , specularConstant(1) , specularExponent(1) , surfaceScale(1) , lighting_color(0xffffffff) {} FilterSpecularLighting::~FilterSpecularLighting() = default; struct SpecularLight : public SurfaceSynth { SpecularLight(cairo_surface_t *bumpmap, double scale, double specular_constant, double specular_exponent) : SurfaceSynth(bumpmap) , _scale(scale) , _ks(specular_constant) , _exp(specular_exponent) {} protected: guint32 specularLighting(int x, int y, NR::Fvector const &halfway, NR::Fvector const &light_components) { NR::Fvector normal = surfaceNormalAt(x, y, _scale); double sp = NR::scalar_product(normal, halfway); double k = sp <= 0.0 ? 0.0 : _ks * std::pow(sp, _exp); guint32 r = CLAMP_D_TO_U8(k * light_components[LIGHT_RED]); guint32 g = CLAMP_D_TO_U8(k * light_components[LIGHT_GREEN]); guint32 b = CLAMP_D_TO_U8(k * light_components[LIGHT_BLUE]); guint32 a = std::max(std::max(r, g), b); r = premul_alpha(r, a); g = premul_alpha(g, a); b = premul_alpha(b, a); ASSEMBLE_ARGB32(pxout, a,r,g,b) return pxout; } double _scale, _ks, _exp; }; struct SpecularDistantLight : public SpecularLight { SpecularDistantLight(cairo_surface_t *bumpmap, DistantLightData const &light, guint32 color, double scale, double specular_constant, double specular_exponent) : SpecularLight(bumpmap, scale, specular_constant, specular_exponent) { DistantLight dl(light, color); NR::Fvector lv; dl.light_vector(lv); dl.light_components(_light_components); NR::normalized_sum(_halfway, lv, NR::EYE_VECTOR); } guint32 operator()(int x, int y) { return specularLighting(x, y, _halfway, _light_components); } private: NR::Fvector _halfway, _light_components; }; struct SpecularPointLight : public SpecularLight { SpecularPointLight(cairo_surface_t *bumpmap, PointLightData const &light, guint32 color, Geom::Affine const &trans, double scale, double specular_constant, double specular_exponent, double x0, double y0, int device_scale) : SpecularLight(bumpmap, scale, specular_constant, specular_exponent) , _light(light, color, trans, device_scale) , _x0(x0) , _y0(y0) { _light.light_components(_light_components); } guint32 operator()(int x, int y) { NR::Fvector light, halfway; _light.light_vector(light, _x0 + x, _y0 + y, _scale * alphaAt(x, y) / 255.0); NR::normalized_sum(halfway, light, NR::EYE_VECTOR); return specularLighting(x, y, halfway, _light_components); } private: PointLight _light; NR::Fvector _light_components; double _x0, _y0; }; struct SpecularSpotLight : public SpecularLight { SpecularSpotLight(cairo_surface_t *bumpmap, SpotLightData const &light, guint32 color, Geom::Affine const &trans, double scale, double specular_constant, double specular_exponent, double x0, double y0, int device_scale) : SpecularLight(bumpmap, scale, specular_constant, specular_exponent) , _light(light, color, trans, device_scale) , _x0(x0) , _y0(y0) {} guint32 operator()(int x, int y) { NR::Fvector light, halfway, light_components; _light.light_vector(light, _x0 + x, _y0 + y, _scale * alphaAt(x, y) / 255.0); _light.light_components(light_components, light); NR::normalized_sum(halfway, light, NR::EYE_VECTOR); return specularLighting(x, y, halfway, light_components); } private: SpotLight _light; double _x0, _y0; }; void FilterSpecularLighting::render_cairo(FilterSlot &slot) const { cairo_surface_t *input = slot.getcairo(_input); cairo_surface_t *out = ink_cairo_surface_create_same_size(input, CAIRO_CONTENT_COLOR_ALPHA); double r = SP_RGBA32_R_F(lighting_color); double g = SP_RGBA32_G_F(lighting_color); double b = SP_RGBA32_B_F(lighting_color); if (icc) { unsigned char ru, gu, bu; icc_color_to_sRGB(&*icc, &ru, &gu, &bu); r = SP_COLOR_U_TO_F(ru); g = SP_COLOR_U_TO_F(gu); b = SP_COLOR_U_TO_F(bu); } // Only alpha channel of input is used, no need to check input color_interpolation_filter value. // Lighting color is always defined in terms of sRGB, preconvert to linearRGB // if color_interpolation_filters set to linearRGB (for efficiency assuming // next filter primitive has same value of cif). if (color_interpolation == SP_CSS_COLOR_INTERPOLATION_LINEARRGB) { r = srgb_to_linear(r); g = srgb_to_linear(g); b = srgb_to_linear(b); } set_cairo_surface_ci(out, color_interpolation); guint32 color = SP_RGBA32_F_COMPOSE(r, g, b, 1.0); int device_scale = slot.get_device_scale(); // trans has inverse y... so we can't just scale by device_scale! We must instead explicitly // scale the point and spot light coordinates (as well as "scale"). Geom::Affine trans = slot.get_units().get_matrix_primitiveunits2pb(); Geom::Point p = slot.get_slot_area().min(); double x0 = p[Geom::X]; double y0 = p[Geom::Y]; double scale = surfaceScale * trans.descrim() * device_scale; double ks = specularConstant; double se = specularExponent; switch (light_type) { case DISTANT_LIGHT: ink_cairo_surface_synthesize(out, SpecularDistantLight(input, light.distant, color, scale, ks, se)); break; case POINT_LIGHT: ink_cairo_surface_synthesize(out, SpecularPointLight(input, light.point, color, trans, scale, ks, se, x0, y0, device_scale)); break; case SPOT_LIGHT: ink_cairo_surface_synthesize(out, SpecularSpotLight(input, light.spot, color, trans, scale, ks, se, x0, y0, device_scale)); break; default: { cairo_t *ct = cairo_create(out); cairo_set_source_rgba(ct, 0,0,0,1); cairo_set_operator(ct, CAIRO_OPERATOR_SOURCE); cairo_paint(ct); cairo_destroy(ct); break; } } slot.set(_output, out); cairo_surface_destroy(out); } void FilterSpecularLighting::area_enlarge(Geom::IntRect &area, Geom::Affine const & /*trans*/) const { // TODO: support kernelUnitLength area.expandBy(1); } double FilterSpecularLighting::complexity(Geom::Affine const &) const { return 9.0; } } // namespace Filters } // namespace Inkscape /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :