// SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include "splinefont.h" #include "splinefit.h" #define FONTFORGE_CONFIG_USE_DOUBLE 1 bigreal BPDot(BasePoint v1, BasePoint v2) { return v1.x * v2.x + v1.y * v2.y; } bigreal BPCross(BasePoint v1, BasePoint v2) { return v1.x * v2.y - v1.y * v2.x; } BasePoint BPRev(BasePoint v) { return (BasePoint) { -v.x, -v.y }; } int RealWithin(real a,real b,real fudge) { return( b>=a-fudge && b<=a+fudge ); } BOOL RealNear(real a,real b) { real d = a-b; #ifdef FONTFORGE_CONFIG_USE_DOUBLE // These tighter equals-zero tests are retained for code tuned when // passing zero as a constant if ( a==0 ) return b>-1e-8 && b<1e-8; if ( b==0 ) return a>-1e-8 && a<1e-8; return d>-1e-6 && d<1e-6; #else /* For floats */ return d>-1e-5 && d<1e-5 #endif } int RealApprox(real a,real b) { if ( a==0 ) { if ( b<.0001 && b>-.0001 ) return( true ); } else if ( b==0 ) { if ( a<.0001 && a>-.0001 ) return( true ); } else { a /= b; if ( a>=.95 && a<=1.05 ) return( true ); } return( false ); } void LineListFree(LineList *ll) { LineList *next; while ( ll!=NULL ) { next = ll->next; chunkfree(ll,sizeof(LineList)); ll = next; } } void LinearApproxFree(LinearApprox *la) { LinearApprox *next; while ( la!=NULL ) { next = la->next; LineListFree(la->lines); chunkfree(la,sizeof(LinearApprox)); la = next; } } void SplineFree(Spline *spline) { LinearApproxFree(spline->approx); chunkfree(spline,sizeof(Spline)); } SplinePoint *SplinePointCreate(real x, real y) { SplinePoint *sp; if ( (sp=chunkalloc(sizeof(SplinePoint)))!=NULL ) { sp->me.x = x; sp->me.y = y; sp->nextcp = sp->prevcp = sp->me; sp->nonextcp = sp->noprevcp = true; sp->nextcpdef = sp->prevcpdef = false; sp->ttfindex = sp->nextcpindex = 0xfffe; sp->name = NULL; } return( sp ); } void SplinePointsFree(SplinePointList *spl) { Spline *first, *spline, *next; int nonext; if ( spl==NULL ) return; if ( spl->first!=NULL ) { nonext = spl->first->next==NULL; // If there is no spline, we set a flag. first = NULL; // We start on the first spline if it exists. for ( spline = spl->first->next; spline!=NULL && spline!=first; spline = next ) { next = spline->to->next; // Cache the location of the next spline. SplinePointFree(spline->to); // Free the destination point. SplineFree(spline); // Free the spline. if ( first==NULL ) first = spline; // We want to avoid repeating the circuit. } // If the path is open or has no splines, free the starting point. if ( spl->last!=spl->first || nonext ) SplinePointFree(spl->first); } } void SplinePointListFree(SplinePointList *spl) { if ( spl==NULL ) return; SplinePointsFree(spl); // free(spl->spiros); free(spl->contour_name); chunkfree(spl,sizeof(SplinePointList)); } void SplineRefigure2(Spline *spline) { SplinePoint *from = spline->from, *to = spline->to; Spline1D *xsp = &spline->splines[0], *ysp = &spline->splines[1]; Spline old; #ifdef DEBUG if ( RealNear(from->me.x,to->me.x) && RealNear(from->me.y,to->me.y)) IError("Zero length spline created"); #endif if ( spline->acceptableextrema ) old = *spline; if ( ( from->nextcp.x==from->me.x && from->nextcp.y==from->me.y && from->nextcpindex>=0xfffe ) || ( to->prevcp.x==to->me.x && to->prevcp.y==to->me.y && from->nextcpindex>=0xfffe ) ) { from->nonextcp = to->noprevcp = true; from->nextcp = from->me; to->prevcp = to->me; } else { from->nonextcp = to->noprevcp = false; if ( from->nextcp.x==from->me.x && from->nextcp.y==from->me.y ) to->prevcp = from->me; else if ( to->prevcp.x==to->me.x && to->prevcp.y==to->me.y ) from->nextcp = to->me; } if ( from->nonextcp && to->noprevcp ) /* Ok */; else if ( from->nextcp.x!=to->prevcp.x || from->nextcp.y!=to->prevcp.y ) { if ( RealNear(from->nextcp.x,to->prevcp.x) && RealNear(from->nextcp.y,to->prevcp.y)) { from->nextcp.x = to->prevcp.x = (from->nextcp.x+to->prevcp.x)/2; from->nextcp.y = to->prevcp.y = (from->nextcp.y+to->prevcp.y)/2; } else { IError("Invalid 2nd order spline in SplineRefigure2" ); #ifndef GWW_TEST /* I don't want these to go away when I'm debugging. I want to */ /* know how I got them */ from->nextcp.x = to->prevcp.x = (from->nextcp.x+to->prevcp.x)/2; from->nextcp.y = to->prevcp.y = (from->nextcp.y+to->prevcp.y)/2; #endif } } xsp->d = from->me.x; ysp->d = from->me.y; if ( from->nonextcp && to->noprevcp ) { spline->islinear = true; xsp->c = to->me.x-from->me.x; ysp->c = to->me.y-from->me.y; xsp->a = xsp->b = 0; ysp->a = ysp->b = 0; } else { /* from p. 393 (Operator Details, curveto) PostScript Lang. Ref. Man. (Red book) */ xsp->c = 2*(from->nextcp.x-from->me.x); ysp->c = 2*(from->nextcp.y-from->me.y); xsp->b = to->me.x-from->me.x-xsp->c; ysp->b = to->me.y-from->me.y-ysp->c; xsp->a = 0; ysp->a = 0; if ( RealNear(xsp->c,0)) xsp->c=0; if ( RealNear(ysp->c,0)) ysp->c=0; if ( RealNear(xsp->b,0)) xsp->b=0; if ( RealNear(ysp->b,0)) ysp->b=0; spline->islinear = false; if ( ysp->b==0 && xsp->b==0 ) spline->islinear = true; /* This seems extremely unlikely... */ if ( from->nextcpselected || to->prevcpselected ) { // The convention for tracking selection of quadratic control // points is to use nextcpselected except at the tail of the // list, where it's prevcpselected on the first point. from->nextcpselected = true; to->prevcpselected = false; } } if ( isnan(ysp->b) || isnan(xsp->b) ) IError("NaN value in spline creation"); LinearApproxFree(spline->approx); spline->approx = NULL; spline->knowncurved = false; spline->knownlinear = spline->islinear; SplineIsLinear(spline); spline->isquadratic = !spline->knownlinear; spline->order2 = true; if ( spline->acceptableextrema ) { /* I don't check "d", because changes to that reflect simple */ /* translations which will not affect the shape of the spline */ /* (I don't check "a" because it is always 0 in a quadratic spline) */ if ( !RealNear(old.splines[0].b,spline->splines[0].b) || !RealNear(old.splines[0].c,spline->splines[0].c) || !RealNear(old.splines[1].b,spline->splines[1].b) || !RealNear(old.splines[1].c,spline->splines[1].c) ) spline->acceptableextrema = false; } } Spline *SplineMake(SplinePoint *from, SplinePoint *to, int order2) { if (order2 > 0) return( SplineMake2(from,to)); else return( SplineMake3(from,to)); } Spline *SplineMake2(SplinePoint *from, SplinePoint *to) { Spline *spline = chunkalloc(sizeof(Spline)); spline->from = from; spline->to = to; from->next = to->prev = spline; spline->order2 = true; SplineRefigure2(spline); return( spline ); } Spline *SplineMake3(SplinePoint *from, SplinePoint *to) { Spline *spline = chunkalloc(sizeof(Spline)); spline->from = from; spline->to = to; from->next = to->prev = spline; SplineRefigure3(spline); return( spline ); } void SplinePointFree(SplinePoint *sp) { // chunkfree(sp->hintmask,sizeof(HintMask)); free(sp->name); chunkfree(sp,sizeof(SplinePoint)); } void SplineRefigure(Spline *spline) { if ( spline==NULL ) return; if ( spline->order2 ) SplineRefigure2(spline); else SplineRefigure3(spline); } # define RE_NearZero .00000001 # define RE_Factor (1024.0*1024.0*1024.0*1024.0*1024.0*2.0) /* 52 bits => divide by 2^51 */ int Within16RoundingErrors(bigreal v1, bigreal v2) { bigreal temp=v1*v2; bigreal re; if ( temp<0 ) /* Ok, if the two values are on different sides of 0 there */ return( false ); /* is no way they can be within a rounding error of each other */ else if ( temp==0 ) { if ( v1==0 ) return( v2-RE_NearZero ); else return( v1-RE_NearZero ); } else if ( v1>0 ) { if ( v1>v2 ) { /* Rounding error from the biggest absolute value */ re = v1/ (RE_Factor/16); return( v1-v2 < re ); } else { re = v2/ (RE_Factor/16); return( v2-v1 < re ); } } else { if ( v1 re ); } else { re = v2/ (RE_Factor/16); return( v2-v1 > re ); } } } /* An IEEE double has 52 bits of precision. So one unit of rounding error will be */ /* the number divided by 2^51 */ # define D_RE_Factor (1024.0*1024.0*1024.0*1024.0*1024.0*2.0) /* But that's not going to work near 0, so, since the t values we care about */ /* are [0,1], let's use 1.0/D_RE_Factor */ double CheckExtremaForSingleBitErrors(const Spline1D *sp, double t, double othert) { double u1, um1; double slope, slope1, slopem1; int err; double diff, factor; if ( t<0 || t>1 ) return( t ); factor = t*0x40000/D_RE_Factor; if ( (diff = t-othert)<0 ) diff= -diff; if ( factor>diff/4 && diff!=0 ) /* This little check is to insure we don't skip beyond the well of this extremum into the next */ factor = diff/4; slope = (3*(double) sp->a*t+2*sp->b)*t+sp->c; if ( slope<0 ) slope = -slope; for ( err = 0x40000; err!=0; err>>=1 ) { u1 = t+factor; slope1 = (3*(double) sp->a*u1+2*sp->b)*u1+sp->c; if ( slope1<0 ) slope1 = -slope1; um1 = t-factor; slopem1 = (3*(double) sp->a*um1+2*sp->b)*um1+sp->c; if ( slopem1<0 ) slopem1 = -slopem1; if ( slope1=0.0 ) { t = um1; } factor /= 2.0; } /* that seems as good as it gets */ return( t ); } void SplineFindExtrema(const Spline1D *sp, extended *_t1, extended *_t2 ) { extended t1= -1, t2= -1; extended b2_fourac; /* Find the extreme points on the curve */ /* Set to -1 if there are none or if they are outside the range [0,1] */ /* Order them so that t1a!=0 ) { /* cubic, possibly 2 extrema (possibly none) */ b2_fourac = 4*(extended) sp->b*sp->b - 12*(extended) sp->a*sp->c; if ( b2_fourac>=0 ) { b2_fourac = sqrt(b2_fourac); t1 = (-2*sp->b - b2_fourac) / (6*sp->a); t2 = (-2*sp->b + b2_fourac) / (6*sp->a); t1 = CheckExtremaForSingleBitErrors(sp,t1,t2); t2 = CheckExtremaForSingleBitErrors(sp,t2,t1); if ( t1>t2 ) { extended temp = t1; t1 = t2; t2 = temp; } else if ( t1==t2 ) t2 = -1; if ( RealNear(t1,0)) t1=0; else if ( RealNear(t1,1)) t1=1; if ( RealNear(t2,0)) t2=0; else if ( RealNear(t2,1)) t2=1; if ( t2<=0 || t2>=1 ) t2 = -1; if ( t1<=0 || t1>=1 ) { t1 = t2; t2 = -1; } } } else if ( sp->b!=0 ) { /* Quadratic, at most one extremum */ t1 = -sp->c/(2.0*(extended) sp->b); if ( t1<=0 || t1>=1 ) t1 = -1; } else /*if ( sp->c!=0 )*/ { /* linear, no extrema */ } *_t1 = t1; *_t2 = t2; } int IntersectLines(BasePoint *inter, BasePoint *line1_1, BasePoint *line1_2, BasePoint *line2_1, BasePoint *line2_2) { // A lot of functions call this with the same address as an input and the output. // In order to avoid unexpected behavior, we delay writing to the output until the end. bigreal s1, s2; BasePoint _output; BasePoint * output = &_output; if ( line1_1->x == line1_2->x ) { // Line 1 is vertical. output->x = line1_1->x; if ( line2_1->x == line2_2->x ) { // Line 2 is vertical. if ( line2_1->x!=line1_1->x ) return( false ); /* Parallel vertical lines */ output->y = (line1_1->y+line2_1->y)/2; } else { output->y = line2_1->y + (output->x-line2_1->x) * (line2_2->y - line2_1->y)/(line2_2->x - line2_1->x); } *inter = *output; return( true ); } else if ( line2_1->x == line2_2->x ) { // Line 2 is vertical, but we know that line 1 is not. output->x = line2_1->x; output->y = line1_1->y + (output->x-line1_1->x) * (line1_2->y - line1_1->y)/(line1_2->x - line1_1->x); *inter = *output; return( true ); } else { // Both lines are oblique. s1 = (line1_2->y - line1_1->y)/(line1_2->x - line1_1->x); s2 = (line2_2->y - line2_1->y)/(line2_2->x - line2_1->x); if ( RealNear(s1,s2)) { if ( !RealNear(line1_1->y + (line2_1->x-line1_1->x) * s1,line2_1->y)) return( false ); output->x = (line1_2->x+line2_2->x)/2; output->y = (line1_2->y+line2_2->y)/2; } else { output->x = (s1*line1_1->x - s2*line2_1->x - line1_1->y + line2_1->y)/(s1-s2); output->y = line1_1->y + (output->x-line1_1->x) * s1; } *inter = *output; return( true ); } } static int MinMaxWithin(Spline *spline) { extended dx, dy; int which; extended t1, t2; extended w; /* We know that this "spline" is basically one dimensional. As long as its*/ /* extrema are between the start and end points on that line then we can */ /* treat it as a line. If the extrema are way outside the line segment */ /* then it's a line that backtracks on itself */ if ( (dx = spline->to->me.x - spline->from->me.x)<0 ) dx = -dx; if ( (dy = spline->to->me.y - spline->from->me.y)<0 ) dy = -dy; which = dxsplines[which],&t1,&t2); if ( t1==-1 ) return( true ); w = ((spline->splines[which].a*t1 + spline->splines[which].b)*t1 + spline->splines[which].c)*t1 + spline->splines[which].d; if ( RealNear(w, (&spline->to->me.x)[which]) || RealNear(w, (&spline->from->me.x)[which]) ) /* Close enough */; else if ( (w<(&spline->to->me.x)[which] && w<(&spline->from->me.x)[which]) || (w>(&spline->to->me.x)[which] && w>(&spline->from->me.x)[which]) ) return( false ); /* Outside */ w = ((spline->splines[which].a*t2 + spline->splines[which].b)*t2 + spline->splines[which].c)*t2 + spline->splines[which].d; if ( RealNear(w, (&spline->to->me.x)[which]) || RealNear(w, (&spline->from->me.x)[which]) ) /* Close enough */; else if ( (w<(&spline->to->me.x)[which] && w<(&spline->from->me.x)[which]) || (w>(&spline->to->me.x)[which] && w>(&spline->from->me.x)[which]) ) return( false ); /* Outside */ return( true ); } int SplineIsLinear(Spline *spline) { bigreal t1,t2, t3,t4; int ret; if ( spline->knownlinear ) return( true ); if ( spline->knowncurved ) return( false ); if ( spline->splines[0].a==0 && spline->splines[0].b==0 && spline->splines[1].a==0 && spline->splines[1].b==0 ) return( true ); /* Something is linear if the control points lie on the line between the */ /* two base points */ /* Vertical lines */ if ( RealNear(spline->from->me.x,spline->to->me.x) ) { ret = RealNear(spline->from->me.x,spline->from->nextcp.x) && RealNear(spline->from->me.x,spline->to->prevcp.x); if ( ret && ! ((spline->from->nextcp.y >= spline->from->me.y && spline->from->nextcp.y <= spline->to->me.y && spline->to->prevcp.y >= spline->from->me.y && spline->to->prevcp.y <= spline->to->me.y ) || (spline->from->nextcp.y <= spline->from->me.y && spline->from->nextcp.y >= spline->to->me.y && spline->to->prevcp.y <= spline->from->me.y && spline->to->prevcp.y >= spline->to->me.y )) ) ret = MinMaxWithin(spline); /* Horizontal lines */ } else if ( RealNear(spline->from->me.y,spline->to->me.y) ) { ret = RealNear(spline->from->me.y,spline->from->nextcp.y) && RealNear(spline->from->me.y,spline->to->prevcp.y); if ( ret && ! ((spline->from->nextcp.x >= spline->from->me.x && spline->from->nextcp.x <= spline->to->me.x && spline->to->prevcp.x >= spline->from->me.x && spline->to->prevcp.x <= spline->to->me.x) || (spline->from->nextcp.x <= spline->from->me.x && spline->from->nextcp.x >= spline->to->me.x && spline->to->prevcp.x <= spline->from->me.x && spline->to->prevcp.x >= spline->to->me.x)) ) ret = MinMaxWithin(spline); } else { ret = true; t1 = (spline->from->nextcp.y-spline->from->me.y)/(spline->to->me.y-spline->from->me.y); t2 = (spline->from->nextcp.x-spline->from->me.x)/(spline->to->me.x-spline->from->me.x); t3 = (spline->to->me.y-spline->to->prevcp.y)/(spline->to->me.y-spline->from->me.y); t4 = (spline->to->me.x-spline->to->prevcp.x)/(spline->to->me.x-spline->from->me.x); ret = (Within16RoundingErrors(t1,t2) || (RealApprox(t1,0) && RealApprox(t2,0))) && (Within16RoundingErrors(t3,t4) || (RealApprox(t3,0) && RealApprox(t4,0))); if ( ret ) { if ( t1<0 || t2<0 || t3<0 || t4<0 || t1>1 || t2>1 || t3>1 || t4>1 ) ret = MinMaxWithin(spline); } } spline->knowncurved = !ret; spline->knownlinear = ret; if ( ret ) { /* A few places that if the spline is knownlinear then its splines[?] */ /* are linear. So give the linear version and not that suggested by */ /* the control points */ spline->splines[0].a = spline->splines[0].b = 0; spline->splines[0].d = spline->from->me.x; spline->splines[0].c = spline->to->me.x-spline->from->me.x; spline->splines[1].a = spline->splines[1].b = 0; spline->splines[1].d = spline->from->me.y; spline->splines[1].c = spline->to->me.y-spline->from->me.y; } return( ret ); } static bigreal FindZero5(bigreal w[7],bigreal tlow, bigreal thigh) { /* Somewhere between tlow and thigh there is a value of t where w(t)==0 */ /* It is conceiveable that there might be 3 such ts if there are some high frequency effects */ /* but I ignore that for now */ bigreal t, test; int bot_negative; t = tlow; test = ((((w[5]*t+w[4])*t+w[3])*t+w[2])*t+w[1])*t + w[0]; bot_negative = test<0; for (;;) { t = (thigh+tlow)/2; if ( thigh==t || tlow==t ) return( t ); /* close as we can get */ test = ((((w[5]*t+w[4])*t+w[3])*t+w[2])*t+w[1])*t + w[0]; if ( test==0 ) return( t ); if ( bot_negative ) { if ( test<0 ) tlow = t; else thigh = t; } else { if ( test<0 ) thigh = t; else tlow = t; } } } static bigreal FindZero3(bigreal w[7],bigreal tlow, bigreal thigh) { /* Somewhere between tlow and thigh there is a value of t where w(t)==0 */ /* It is conceiveable that there might be 3 such ts if there are some high frequency effects */ /* but I ignore that for now */ bigreal t, test; int bot_negative; t = tlow; test = ((w[3]*t+w[2])*t+w[1])*t + w[0]; bot_negative = test<0; for (;;) { t = (thigh+tlow)/2; if ( thigh==t || tlow==t ) return( t ); /* close as we can get */ test = ((w[3]*t+w[2])*t+w[1])*t + w[0]; if ( test==0 ) return( t ); if ( bot_negative ) { if ( test<0 ) tlow = t; else thigh = t; } else { if ( test<0 ) thigh = t; else tlow = t; } } } bigreal SplineMinDistanceToPoint(Spline *s, BasePoint *p) { /* So to find the minimum distance we want the sqrt( (sx(t)-px)^2 + (sy(t)-py)^2 ) */ /* Same minima as (sx(t)-px)^2 + (sy(t)-py)^2, which is easier to deal with */ bigreal w[7]; Spline1D *x = &s->splines[0], *y = &s->splines[1]; bigreal off[2], best; off[0] = (x->d-p->x); off[1] = (y->d-p->y); w[6] = (x->a*x->a) + (y->a*y->a); w[5] = 2*(x->a*x->b + y->a*y->b); w[4] = (x->b*x->b) + 2*(x->a*x->c) + (y->b*y->b) + 2*(y->a*y->c); w[3] = 2* (x->b*x->c + x->a*off[0] + y->b*y->c + y->a*off[1]); w[2] = (x->c*x->c) + 2*(x->b*off[0]) + (y->c*y->c) + 2*y->b*off[1]; w[1] = 2*(x->c*off[0] + y->c*off[1]); w[0] = off[0]*off[0] + off[1]*off[1]; /* Take derivative */ w[0] = w[1]; w[1] = 2*w[2]; w[2] = 3*w[3]; w[3] = 4*w[4]; w[4] = 5*w[5]; w[5] = 6*w[6]; w[6] = 0; if ( w[5]!=0 ) { bigreal tzeros[8], t, incr, test, lasttest, zerot; int i, zcnt=0; /* Well, we've got a 5th degree poly and no way to play cute tricks. */ /* brute force it */ incr = 1.0/1024; lasttest = w[0]; for ( t = incr; t<=1.0; t += incr ) { test = ((((w[5]*t+w[4])*t+w[3])*t+w[2])*t+w[1])*t + w[0]; if ( test==0 ) tzeros[zcnt++] = t; else { if ( lasttest!=0 && (test>0) != (lasttest>0) ) { zerot = FindZero5(w,t-incr,t); if ( zerot>0 ) tzeros[zcnt++] = zerot; } } lasttest = test; } best = off[0]*off[0] + off[1]*off[1]; /* t==0 */ test = (x->a+x->b+x->c+off[0])*(x->a+x->b+x->c+off[0]) + (y->a+y->b+y->c+off[1])*(y->a+y->b+y->c+off[1]); /* t==1 */ if ( best>test ) best = test; for ( i=0; ia*tzeros[i]+x->b)*tzeros[i]+x->c)*tzeros[i] + off[0]; ty = ((y->a*tzeros[i]+y->b)*tzeros[i]+y->c)*tzeros[i] + off[1]; test = tx*tx + ty*ty; if ( best>test ) best = test; } return( sqrt(best)); } else if ( w[4]==0 && w[3]!=0 ) { /* Started with a quadratic -- now, find 0s of a cubic */ /* We could find the extrema, so we have a bunch of monotonics */ /* Or we could brute force it as above */ bigreal tzeros[8], test, zerot; bigreal quad[3], disc, e[5], t1, t2; int i, zcnt=0, ecnt; quad[2] = 3*w[3]; quad[1] = 2*w[2]; quad[0] = w[1]; disc = (-quad[1]*quad[1] - 4*quad[2]*quad[0]); e[0] = 0; if ( disc<0 ) { e[1] = 1.0; ecnt = 2; } else disc = sqrt(disc); t1 = (-w[1] - disc) / (2*w[2]); t2 = (-w[1] + disc) / (2*w[2]); if ( t1>t2 ) { bigreal temp = t1; t1 = t2; t2 = temp; } ecnt=1; if ( t1>0 && t1<1 ) e[ecnt++] = t1; if ( t2>0 && t2<1 && t1!=t2 ) e[ecnt++] = t2; e[ecnt++] = 1.0; for ( i=1; i0 ) tzeros[zcnt++] = zerot; } best = off[0]*off[0] + off[1]*off[1]; /* t==0 */ test = (x->b+x->c+off[0])*(x->b+x->c+off[0]) + (y->b+y->c+off[1])*(y->b+y->c+off[1]); /* t==1 */ if ( best>test ) best = test; for ( i=0; ib*tzeros[i]+x->c)*tzeros[i] + off[0]; ty = (y->b*tzeros[i]+y->c)*tzeros[i] + off[1]; test = tx*tx + ty*ty; if ( best>test ) best = test; } return( sqrt(best)); } else if ( w[2]==0 && w[1]!=0 ) { /* Started with a line */ bigreal t = -w[0]/w[1], test, best; best = off[0]*off[0] + off[1]*off[1]; /* t==0 */ test = (x->c+off[0])*(x->c+off[0]) + (y->c+off[1])*(y->c+off[1]); /* t==1 */ if ( best>test ) best = test; if ( t>0 && t<1 ) { test = (x->c*t+off[0])*(x->c*t+off[0]) + (y->c*t+off[1])*(y->c*t+off[1]); if ( best>test ) best = test; } return(sqrt(best)); } else if ( w[4]!=0 && w[3]!=0 && w[2]!=0 && w[1]!=0 ) { IError( "Impossible condition in SplineMinDistanceToPoint"); } else { /* It's a point, minimum distance is the only distance */ return( sqrt(off[0]*off[0] + off[1]*off[1]) ); } return( -1 ); } /* This returns all real solutions, even those out of bounds */ /* I use -999999 as an error flag, since we're really only interested in */ /* solns near 0 and 1 that should be ok. -1 is perhaps a little too close */ /* Sigh. When solutions are near 0, the rounding errors are appalling. */ int _CubicSolve(const Spline1D *sp,bigreal sought, extended ts[3]) { extended d, xN, yN, delta2, temp, delta, h, t2, t3, theta; extended sa=sp->a, sb=sp->b, sc=sp->c, sd=sp->d-sought; int i=0; ts[0] = ts[1] = ts[2] = -999999; if ( sd==0 && sa!=0 ) { /* one of the roots is 0, the other two are the soln of a quadratic */ ts[0] = 0; if ( sc==0 ) { ts[1] = -sb/(extended) sa; /* two zero roots */ } else { temp = sb*(extended) sb-4*(extended) sa*sc; if ( RealNear(temp,0)) ts[1] = -sb/(2*(extended) sa); else if ( temp>=0 ) { temp = sqrt(temp); ts[1] = (-sb+temp)/(2*(extended) sa); ts[2] = (-sb-temp)/(2*(extended) sa); } } } else if ( sa!=0 ) { /* http://www.m-a.org.uk/eb/mg/mg077ch.pdf */ /* this nifty solution to the cubic neatly avoids complex arithmetic */ xN = -sb/(3*(extended) sa); yN = ((sa*xN + sb)*xN+sc)*xN + sd; delta2 = (sb*(extended) sb-3*(extended) sa*sc)/(9*(extended) sa*sa); /*if ( RealWithin(delta2,0,.00000001) ) delta2 = 0;*/ /* the descriminant is yN^2-h^2, but delta might be <0 so avoid using h */ d = yN*yN - 4*sa*sa*delta2*delta2*delta2; if ( ((yN>.01 || yN<-.01) && RealNear(d/yN,0)) || ((yN<=.01 && yN>=-.01) && RealNear(d,0)) ) d = 0; if ( d>0 ) { temp = sqrt(d); t2 = (-yN-temp)/(2*sa); t2 = (t2==0) ? 0 : (t2<0) ? -pow(-t2,1./3.) : pow(t2,1./3.); t3 = (-yN+temp)/(2*sa); t3 = t3==0 ? 0 : (t3<0) ? -pow(-t3,1./3.) : pow(t3,1./3.); ts[0] = xN + t2 + t3; } else if ( d<0 ) { if ( delta2>=0 ) { delta = sqrt(delta2); h = 2*sa*delta2*delta; temp = -yN/h; if ( temp>=-1.0001 && temp<=1.0001 ) { if ( temp<-1 ) temp = -1; else if ( temp>1 ) temp = 1; theta = acos(temp)/3; ts[i++] = xN+2*delta*cos(theta); ts[i++] = xN+2*delta*cos(2.0943951+theta); /* 2*pi/3 */ ts[i++] = xN+2*delta*cos(4.1887902+theta); /* 4*pi/3 */ } } } else if ( /* d==0 && */ delta2!=0 ) { delta = yN/(2*sa); delta = delta==0 ? 0 : delta>0 ? pow(delta,1./3.) : -pow(-delta,1./3.); ts[i++] = xN + delta; /* this root twice, but that's irrelevant to me */ ts[i++] = xN - 2*delta; } else if ( /* d==0 && */ delta2==0 ) { if ( xN>=-0.0001 && xN<=1.0001 ) ts[0] = xN; } } else if ( sb!=0 ) { extended d = sc*(extended) sc-4*(extended) sb*sd; if ( d<0 && RealNear(d,0)) d=0; if ( d<0 ) return(false); /* All roots imaginary */ d = sqrt(d); ts[0] = (-sc-d)/(2*(extended) sb); ts[1] = (-sc+d)/(2*(extended) sb); } else if ( sc!=0 ) { ts[0] = -sd/(extended) sc; } else { /* If it's a point then either everything is a solution, or nothing */ } return( ts[0]!=-999999 ); } int _QuarticSolve(Quartic *q,extended ts[4]) { extended extrema[5]; Spline1D sp; int ecnt = 0, i, zcnt; /* Two special cases */ if ( q->a==0 ) { /* It's really a cubic */ sp.a = q->b; sp.b = q->c; sp.c = q->d; sp.d = q->e; ts[3] = -999999; return( _CubicSolve(&sp,0,ts)); } else if ( q->e==0 ) { /* we can factor out a zero root */ sp.a = q->a; sp.b = q->b; sp.c = q->c; sp.d = q->d; ts[0] = 0; return( _CubicSolve(&sp,0,ts+1)+1); } sp.a = 4*q->a; sp.b = 3*q->b; sp.c = 2*q->c; sp.d = q->d; if ( _CubicSolve(&sp,0,extrema)) { ecnt = 1; if ( extrema[1]!=-999999 ) { ecnt = 2; if ( extrema[1]=0 ; --i ) extrema[i+1] = extrema[i]; /* Upper and lower bounds within which we'll search */ extrema[0] = -999; extrema[ecnt+1] = 999; ecnt += 2; /* divide into monotonic sections & use binary search to find zeroes */ for ( i=zcnt=0; ia*topt+q->b)*topt+q->c)*topt+q->d)*topt+q->e; bottom = (((q->a*bottomt+q->b)*bottomt+q->c)*bottomt+q->d)*bottomt+q->e; if ( top.001 ) /* this monotonic is all above 0 */ continue; if ( top<-.001 ) /* this monotonic is all below 0 */ continue; if ( bottom>0 ) { ts[zcnt++] = bottomt; continue; } if ( top<0 ) { ts[zcnt++] = topt; continue; } for (;;) { t = (topt+bottomt)/2; if ( isnan(t) ) { break; } else if ( t==topt || t==bottomt ) { ts[zcnt++] = t; break; } val = (((q->a*t+q->b)*t+q->c)*t+q->d)*t+q->e; if ( val>-.0001 && val<.0001 ) { ts[zcnt++] = t; break; } else if ( val>0 ) { top = val; topt = t; } else { bottom = val; bottomt = t; } } } for ( i=zcnt; i<4; ++i ) ts[i] = -999999; return( zcnt ); } /* calculating the actual length of a spline is hard, this gives a very */ /* rough (but quick) approximation */ static bigreal SplineLenApprox(Spline *spline) { bigreal len, slen, temp; if ( (temp = spline->to->me.x-spline->from->me.x)<0 ) temp = -temp; len = temp; if ( (temp = spline->to->me.y-spline->from->me.y)<0 ) temp = -temp; len += temp; if ( !spline->to->noprevcp || !spline->from->nonextcp ) { if ( (temp = spline->from->nextcp.x-spline->from->me.x)<0 ) temp = -temp; slen = temp; if ( (temp = spline->from->nextcp.y-spline->from->me.y)<0 ) temp = -temp; slen += temp; if ( (temp = spline->to->prevcp.x-spline->from->nextcp.x)<0 ) temp = -temp; slen += temp; if ( (temp = spline->to->prevcp.y-spline->from->nextcp.y)<0 ) temp = -temp; slen += temp; if ( (temp = spline->to->me.x-spline->to->prevcp.x)<0 ) temp = -temp; slen += temp; if ( (temp = spline->to->me.y-spline->to->prevcp.y)<0 ) temp = -temp; slen += temp; len = (len + slen)/2; } return( len ); } FitPoint *SplinesFigureFPsBetween(SplinePoint *from, SplinePoint *to, int *tot) { int cnt, i, j, pcnt; bigreal len, slen, lbase; SplinePoint *np; FitPoint *fp; bigreal _lens[10], *lens = _lens; int _cnts[10], *cnts = _cnts; /* I used just to give every spline 10 points. But that gave much more */ /* weight to small splines than to big ones */ cnt = 0; for ( np = from->next->to; ; np = np->next->to ) { ++cnt; if ( np==to ) break; } if ( cnt>10 ) { lens = malloc(cnt*sizeof(bigreal)); cnts = malloc(cnt*sizeof(int)); } cnt = 0; len = 0; for ( np = from->next->to; ; np = np->next->to ) { lens[cnt] = SplineLenApprox(np->prev); len += lens[cnt]; ++cnt; if ( np==to ) break; } if ( len!=0 ) { pcnt = 0; for ( i=0; ime.x; fp[i].p.y = from->me.y; } } else { lbase = 0; for ( i=cnt=0, np = from->next->to; ; np = np->next->to, ++cnt ) { slen = SplineLenApprox(np->prev); for ( j=0; jprev->splines[0].a*t+np->prev->splines[0].b)*t+np->prev->splines[0].c)*t + np->prev->splines[0].d; fp[i++].p.y = ((np->prev->splines[1].a*t+np->prev->splines[1].b)*t+np->prev->splines[1].c)*t + np->prev->splines[1].d; } lbase += slen; if ( np==to ) break; } } if ( cnts!=_cnts ) free(cnts); if ( lens!=_lens ) free(lens); *tot = i; return( fp ); } static int SplinePointCategory(SplinePoint *sp) { enum pointtype pt; pt = pt_corner; if ( sp->next==NULL && sp->prev==NULL ) ; else if ( (sp->next!=NULL && sp->next->to->me.x==sp->me.x && sp->next->to->me.y==sp->me.y) || (sp->prev!=NULL && sp->prev->from->me.x==sp->me.x && sp->prev->from->me.y==sp->me.y )) ; else if ( sp->next==NULL ) { pt = sp->noprevcp ? pt_corner : pt_curve; } else if ( sp->prev==NULL ) { pt = sp->nonextcp ? pt_corner : pt_curve; } else if ( sp->nonextcp && sp->noprevcp ) { ; } else { BasePoint ndir, ncdir, ncunit, pdir, pcdir, pcunit; bigreal nlen, nclen, plen, pclen; bigreal cross, bounds; ncdir.x = sp->nextcp.x - sp->me.x; ncdir.y = sp->nextcp.y - sp->me.y; pcdir.x = sp->prevcp.x - sp->me.x; pcdir.y = sp->prevcp.y - sp->me.y; ndir.x = ndir.y = pdir.x = pdir.y = 0; if ( sp->next!=NULL ) { ndir.x = sp->next->to->me.x - sp->me.x; ndir.y = sp->next->to->me.y - sp->me.y; } if ( sp->prev!=NULL ) { pdir.x = sp->prev->from->me.x - sp->me.x; pdir.y = sp->prev->from->me.y - sp->me.y; } nclen = sqrt(ncdir.x*ncdir.x + ncdir.y*ncdir.y); pclen = sqrt(pcdir.x*pcdir.x + pcdir.y*pcdir.y); nlen = sqrt(ndir.x*ndir.x + ndir.y*ndir.y); plen = sqrt(pdir.x*pdir.x + pdir.y*pdir.y); ncunit = ncdir; pcunit = pcdir; if ( nclen!=0 ) { ncunit.x /= nclen; ncunit.y /= nclen; } if ( pclen!=0 ) { pcunit.x /= pclen; pcunit.y /= pclen; } if ( nlen!=0 ) { ndir.x /= nlen; ndir.y /= nlen; } if ( plen!=0 ) { pdir.x /= plen; pdir.y /= plen; } /* find out which side has the shorter control vector. Cross that vector */ /* with the normal of the unit vector on the other side. If the */ /* result is less than 1 em-unit then we've got colinear control points */ /* (within the resolution of the integer grid) */ /* Not quite... they could point in the same direction */ if ( sp->pointtype==pt_curve ) bounds = 4.0; else bounds = 1.0; if ( nclen!=0 && pclen!=0 && ((nclen>=pclen && (cross = pcdir.x*ncunit.y - pcdir.y*ncunit.x)-bounds ) || (pclen>nclen && (cross = ncdir.x*pcunit.y - ncdir.y*pcunit.x)-bounds )) && ncdir.x*pcdir.x + ncdir.y*pcdir.y < 0 ) pt = pt_curve; /* Cross product of control point with unit vector normal to line in */ /* opposite direction should be less than an em-unit for a tangent */ else if ( ( nclen==0 && pclen!=0 && (cross = pcdir.x*ndir.y-pcdir.y*ndir.x)-bounds && (pcdir.x*ndir.x+pcdir.y*ndir.y)<0 ) || ( pclen==0 && nclen!=0 && (cross = ncdir.x*pdir.y-ncdir.y*pdir.x)-bounds && (ncdir.x*pdir.x+ncdir.y*pdir.y)<0 ) ) pt = pt_tangent; if (pt == pt_curve && ((sp->nextcp.x==sp->me.x && sp->prevcp.x==sp->me.x && sp->nextcp.y!=sp->me.y) || (sp->nextcp.y==sp->me.y && sp->prevcp.y==sp->me.y && sp->nextcp.x!=sp->me.x))) pt = pt_hvcurve; } return pt; } static enum pointtype SplinePointDowngrade(int current, int geom) { enum pointtype np = current; if ( current==pt_curve && geom!=pt_curve ) { if ( geom==pt_hvcurve ) np = pt_curve; else np = pt_corner; } else if ( current==pt_hvcurve && geom!=pt_hvcurve ) { if ( geom==pt_curve ) np = pt_curve; else np = pt_corner; } else if ( current==pt_tangent && geom!=pt_tangent ) { np = pt_corner; } return np; } // Assumes flag combinations are already verified. Only returns false // when called with check_compat int _SplinePointCategorize(SplinePoint *sp, int flags) { enum pointtype geom, dg, cur; if ( flags & pconvert_flag_none ) // No points selected for conversion -- keep type as is return true; if ( flags & pconvert_flag_smooth && sp->pointtype == pt_corner ) // Convert only "smooth" points, not corners return true; geom = SplinePointCategory(sp); dg = SplinePointDowngrade(sp->pointtype, geom); if ( flags & pconvert_flag_incompat && sp->pointtype == dg ) // Only convert points incompatible with current type return true; if ( flags & pconvert_flag_by_geom ) { if ( ! ( flags & pconvert_flag_hvcurve ) && geom == pt_hvcurve ) sp->pointtype = pt_curve; else sp->pointtype = geom; } else if ( flags & pconvert_flag_downgrade ) { sp->pointtype = dg; } else if ( flags & pconvert_flag_force_type ) { if ( sp->pointtype != dg ) { cur = sp->pointtype; sp->pointtype = dg; /* SPChangePointType(sp,cur); */ } } else if ( flags & pconvert_flag_check_compat ) { if ( sp->pointtype != dg ) return false; } return true; } void SplinePointCategorize(SplinePoint *sp) { _SplinePointCategorize(sp, pconvert_flag_all|pconvert_flag_by_geom); } static void SplinePointReCategorize(SplinePoint *sp,int oldpt) { SplinePointCategorize(sp); if ( sp->pointtype!=oldpt ) { if ( sp->pointtype==pt_curve && oldpt==pt_hvcurve && ((sp->nextcp.x == sp->me.x && sp->nextcp.y != sp->me.y ) || (sp->nextcp.y == sp->me.y && sp->nextcp.x != sp->me.x ))) sp->pointtype = pt_hvcurve; } } void SplinesRemoveBetween(SplinePoint *from, SplinePoint *to, int type) { int tot; FitPoint *fp; SplinePoint *np, oldfrom; int oldfpt = from->pointtype, oldtpt = to->pointtype; Spline *sp; int order2 = from->next->order2; oldfrom = *from; fp = SplinesFigureFPsBetween(from,to,&tot); if ( type==1 ) ApproximateSplineFromPointsSlopes(from,to,fp,tot-1,order2,mt_levien); else ApproximateSplineFromPoints(from,to,fp,tot-1,order2); /* Have to do the frees after the approximation because the approx */ /* uses the splines to determine slopes */ for ( sp = oldfrom.next; ; ) { np = sp->to; SplineFree(sp); if ( np==to ) break; sp = np->next; // SplinePointMDFree(sc,np); } free(fp); SplinePointReCategorize(from,oldfpt); SplinePointReCategorize(to,oldtpt); }