// SPDX-License-Identifier: GPL-2.0-or-later /* * Quantization for Inkscape * * Authors: * Stéphane Gimenez * * Copyright (C) 2006 Authors * * Released under GNU GPL v2+, read the file 'COPYING' for more information. */ #include #include #include #include #include "pool.h" #include "imagemap.h" #include "quantize.h" namespace Inkscape { namespace Trace { namespace { /** * an octree node datastructure */ struct Ocnode { Ocnode *parent; // parent node Ocnode **ref; // node's reference Ocnode *child[8]; // children int nchild; // number of children int width; // width level of this node RGB rgb; // rgb's prefix of that node unsigned long weight; // number of pixels this node accounts for unsigned long rs, gs, bs; // sum of pixels colors this node accounts for int nleaf; // number of leaves under this node unsigned long mi; // minimum impact }; /* -- algorithm principle: - inspired by the octree method, we associate a tree to a given color map - nodes in those trees have this shape: parent | color_prefix(stored in rgb):width colors_sum(stored in rs,gs,bs)/weight / | \ child1 child2 child3 - (grayscale) trees associated to pixels with colors 87 = 0b1010111 and 69 = 0b1000101 are: . . <-- roots of the trees | | 1010111:0 and 1000101:0 <-- color prefixes, written in binary form 87/1 69/1 <-- color sums, written in decimal form - the result of merging the two trees is: . | 10:5 <----- longest common prefix and binary width 156/2 <---. of the covered color range. / \ | 1000101:0 1010111:0 '- sum of colors and quantity of pixels 69/1 87/1 this node accounts for one should consider three cases when two trees are to be merged: - one tree range is included in the range of the other one, and the first tree has to be inserted as a child (or merged with the corresponding child) of the other. - their ranges are the same, and their children have to be merged under a single root. - ranges have no intersection, and a fork node has to be created (like in the given example). - a tree for an image is built dividing the image in 2 parts and merging the trees obtained recursively for the two parts. a tree for a one pixel part is a leaf like one of those which were given above. - last, this tree is reduced a specified number of leaves, deleting first leaves with minimal impact i.e. [ weight * 2^(2*parentwidth) ] value : a fair approximation of the impact a leaf removal would have on the final result : it's the corresponding covered area times the square of the introduced color distance. deletion of a node A below a node with only two children is done as follows : - when the sibling is a leaf, the sibling is deleted as well, both nodes are then represented by their parent. | | . ==> . / \ A . - otherwise the deletion of A deletes also its parent, which plays no role anymore: | | . ==> \ / \ | A . . / \ / \ in that way, every leaf removal operation really decreases the remaining total number of leaves by one. - very last, color indexes are attributed to leaves; associated colors are averages, computed from weight and color components sums. -- improvements to the usual octree method: - since this algorithm shall often be used to perform quantization using a very low (2-16) set of colors and not with a usual 256 value, we choose more carefully which nodes are to be deleted. - depth of leaves is not fixed to an arbitrary number (which should be 8 when color components are in 0-255), so there is no need to go down to a depth of 8 for each pixel (at full precision), unless it is really required. - tree merging also fastens the overall tree building, and intermediate processing could be done. - a huge optimization against the stupid removal algorithm (i.e. find a best match over the whole tree, remove it and do it again) was implemented: nodes are marked with the minimal impact of the removal of a leaf below it. we proceed to the removal recursively. we stop when current removal level is above the current node minimal, otherwise reached leaves are removed, and every change over minimal impacts is propagated back to the whole tree when the recursion ends. -- specific optimizations - pool allocation is used to allocate nodes (increased performance on large images). */ RGB operator>>(RGB rgb, int s) { RGB res; res.r = rgb.r >> s; res.g = rgb.g >> s; res.b = rgb.b >> s; return res; } bool operator==(RGB rgb1, RGB rgb2) { return rgb1.r == rgb2.r && rgb1.g == rgb2.g && rgb1.b == rgb2.b; } int childIndex(RGB rgb) { return ((rgb.r & 1) << 2) | ((rgb.g & 1) << 1) | (rgb.b & 1); } /** * allocate a new node */ Ocnode *ocnodeNew(Pool &pool) { Ocnode *node = pool.draw(); node->ref = nullptr; node->parent = nullptr; node->nchild = 0; for (auto &i : node->child) { i = nullptr; } node->mi = 0; return node; } void ocnodeFree(Pool &pool, Ocnode *node) { pool.drop(node); } /** * free a full octree */ void octreeDelete(Pool &pool, Ocnode *node) { if (!node) return; for (auto &i : node->child) { octreeDelete(pool, i); } ocnodeFree(pool, node); } /** * pretty-print an octree, debugging purposes */ #if 0 void ocnodePrint(Ocnode *node, int indent) { if (!node) return; printf("width:%d weight:%lu rgb:%6x nleaf:%d mi:%lu\n", node->width, node->weight, (unsigned int)( ((node->rs / node->weight) << 16) + ((node->gs / node->weight) << 8) + (node->bs / node->weight)), node->nleaf, node->mi ); for (int i = 0; i < 8; i++) if (node->child[i]) { for (int k = 0; k < indent; k++) printf(" ");//indentation printf("[%d:%p] ", i, node->child[i]); ocnodePrint(node->child[i], indent+2); } } void octreePrint(Ocnode *node) { printf("<>\n"); if (node) printf("[r:%p] ", node); ocnodePrint(node, 2); } #endif /** * builds a single color leaf at location */ void ocnodeLeaf(Pool &pool, Ocnode **ref, RGB rgb) { assert(ref); Ocnode *node = ocnodeNew(pool); node->width = 0; node->rgb = rgb; node->rs = rgb.r; node->gs = rgb.g; node->bs = rgb.b; node->weight = 1; node->nleaf = 1; node->mi = 0; node->ref = ref; *ref = node; } /** * merge nodes and at location with parent */ int octreeMerge(Pool &pool, Ocnode *parent, Ocnode **ref, Ocnode *node1, Ocnode *node2) { assert(ref); if (!node1 && !node2) return 0; assert(node1 != node2); if (parent && !*ref) parent->nchild++; if (!node1) { *ref = node2; node2->ref = ref; node2->parent = parent; return node2->nleaf; } if (!node2) { *ref = node1; node1->ref = ref; node1->parent = parent; return node1->nleaf; } int dwitdth = node1->width - node2->width; if (dwitdth > 0 && node1->rgb == node2->rgb >> dwitdth) { // place node2 below node1 *ref = node1; node1->ref = ref; node1->parent = parent; int i = childIndex(node2->rgb >> (dwitdth - 1)); node1->rs += node2->rs; node1->gs += node2->gs; node1->bs += node2->bs; node1->weight += node2->weight; node1->mi = 0; if (node1->child[i]) node1->nleaf -= node1->child[i]->nleaf; node1->nleaf += octreeMerge(pool, node1, &node1->child[i], node1->child[i], node2); return node1->nleaf; } else if (dwitdth < 0 && node2->rgb == node1->rgb >> (-dwitdth)) { // place node1 below node2 *ref = node2; node2->ref = ref; node2->parent = parent; int i = childIndex(node1->rgb >> (-dwitdth - 1)); node2->rs += node1->rs; node2->gs += node1->gs; node2->bs += node1->bs; node2->weight += node1->weight; node2->mi = 0; if (node2->child[i]) node2->nleaf -= node2->child[i]->nleaf; node2->nleaf += octreeMerge(pool, node2, &node2->child[i], node2->child[i], node1); return node2->nleaf; } else { // nodes have either no intersection or the same root Ocnode *newnode; newnode = ocnodeNew(pool); newnode->rs = node1->rs + node2->rs; newnode->gs = node1->gs + node2->gs; newnode->bs = node1->bs + node2->bs; newnode->weight = node1->weight + node2->weight; *ref = newnode; newnode->ref = ref; newnode->parent = parent; if (dwitdth == 0 && node1->rgb == node2->rgb) { // merge the nodes in newnode->width = node1->width; // == node2->width newnode->rgb = node1->rgb; // == node2->rgb newnode->nchild = 0; newnode->nleaf = 0; if (node1->nchild == 0 && node2->nchild == 0) { newnode->nleaf = 1; } else { for (int i = 0; i < 8; i++) { if (node1->child[i] || node2->child[i]) { newnode->nleaf += octreeMerge(pool, newnode, &newnode->child[i], node1->child[i], node2->child[i]); } } } ocnodeFree(pool, node1); ocnodeFree(pool, node2); return newnode->nleaf; } else { // use as a fork node with children and int newwidth = std::max(node1->width, node2->width); RGB rgb1 = node1->rgb >> (newwidth - node1->width); RGB rgb2 = node2->rgb >> (newwidth - node2->width); // according to the previous tests != before the loop while (!(rgb1 == rgb2)) { rgb1 = rgb1 >> 1; rgb2 = rgb2 >> 1; newwidth++; } newnode->width = newwidth; newnode->rgb = rgb1; // == rgb2 newnode->nchild = 2; newnode->nleaf = node1->nleaf + node2->nleaf; int i1 = childIndex(node1->rgb >> (newwidth - node1->width - 1)); int i2 = childIndex(node2->rgb >> (newwidth - node2->width - 1)); node1->parent = newnode; node1->ref = &newnode->child[i1]; newnode->child[i1] = node1; node2->parent = newnode; node2->ref = &newnode->child[i2]; newnode->child[i2] = node2; return newnode->nleaf; } } } /** * upatade mi value for leaves */ void ocnodeMi(Ocnode *node) { node->mi = node->parent ? node->weight << (2 * node->parent->width) : 0; } /** * remove leaves whose prune impact value is lower than . at most * leaves are removed, and is decreased on each removal. * all parameters including minimal impact values are regenerated. */ void ocnodeStrip(Pool &pool, Ocnode **ref, int &count, unsigned long lvl) { Ocnode *node = *ref; if (!node) return; assert(ref == node->ref); if (node->nchild == 0) { // leaf node if (!node->mi) ocnodeMi(node); // mi generation may be required if (node->mi > lvl) return; // leaf is above strip level ocnodeFree(pool, node); *ref = nullptr; count--; } else { if (node->mi && node->mi > lvl) return; // node is above strip level node->nchild = 0; node->nleaf = 0; node->mi = 0; Ocnode **lonelychild = nullptr; for (auto & i : node->child) { if (i) { ocnodeStrip(pool, &i, count, lvl); if (i) { lonelychild = &i; node->nchild++; node->nleaf += i->nleaf; if (!node->mi || node->mi > i->mi) { node->mi = i->mi; } } } } // tree adjustments if (node->nchild == 0) { count++; node->nleaf = 1; ocnodeMi(node); } else if (node->nchild == 1) { if ((*lonelychild)->nchild == 0) { // remove the leaf under a 1 child node node->nchild = 0; node->nleaf = 1; ocnodeMi(node); ocnodeFree(pool, *lonelychild); *lonelychild = nullptr; } else { // make a bridge to over a 1 child node (*lonelychild)->parent = node->parent; (*lonelychild)->ref = ref; ocnodeFree(pool, node); *ref = *lonelychild; } } } } /** * reduce the leaves of an octree to a given number */ void octreePrune(Pool &pool, Ocnode **ref, int ncolor) { assert(ref); assert(ncolor > 0); int n = (*ref)->nleaf - ncolor; if (!*ref || n <= 0) return; while (n > 0) { ocnodeStrip(pool, ref, n, (*ref)->mi); } } /** * build an octree associated to the area of a color map , * included in the specified (x1,y1)--(x2,y2) rectangle. */ void octreeBuildArea(Pool &pool, RgbMap const &rgbmap, Ocnode **ref, int x1, int y1, int x2, int y2, int ncolor) { int dx = x2 - x1, dy = y2 - y1; int xm = x1 + dx / 2, ym = y1 + dy / 2; Ocnode *ref1 = nullptr; Ocnode *ref2 = nullptr; if (dx == 1 && dy == 1) { ocnodeLeaf(pool, ref, rgbmap.getPixel(x1, y1)); } else if (dx > dy) { octreeBuildArea(pool, rgbmap, &ref1, x1, y1, xm, y2, ncolor); octreeBuildArea(pool, rgbmap, &ref2, xm, y1, x2, y2, ncolor); octreeMerge(pool, nullptr, ref, ref1, ref2); } else { octreeBuildArea(pool, rgbmap, &ref1, x1, y1, x2, ym, ncolor); octreeBuildArea(pool, rgbmap, &ref2, x1, ym, x2, y2, ncolor); octreeMerge(pool, nullptr, ref, ref1, ref2); } // octreePrune(ref, 2 * ncolor); // affects result quality for almost same performance :/ } /** * build an octree associated to the color map, * pruned to colors. */ Ocnode *octreeBuild(Pool &pool, RgbMap const &rgbmap, int ncolor) { // create the octree Ocnode *node = nullptr; octreeBuildArea(pool, rgbmap, &node, 0, 0, rgbmap.width, rgbmap.height, ncolor); // prune the octree octreePrune(pool, &node, ncolor); return node; } /** * compute the color palette associated to an octree. */ void octreeIndex(Ocnode *node, RGB *rgbpal, int &index) { if (!node) return; if (node->nchild == 0) { rgbpal[index].r = node->rs / node->weight; rgbpal[index].g = node->gs / node->weight; rgbpal[index].b = node->bs / node->weight; index++; } else { for (auto &i : node->child) { if (i) { octreeIndex(i, rgbpal, index); } } } } /** * compute the squared distance between two colors */ int distRGB(RGB rgb1, RGB rgb2) { return (rgb1.r - rgb2.r) * (rgb1.r - rgb2.r) + (rgb1.g - rgb2.g) * (rgb1.g - rgb2.g) + (rgb1.b - rgb2.b) * (rgb1.b - rgb2.b); } /** * find the index of closest color in a palette */ int findRGB(RGB const *rgbs, int ncolor, RGB rgb) { int index = -1, dist = 0; for (int k = 0; k < ncolor; k++) { int d = distRGB(rgbs[k], rgb); if (index == -1 || d < dist) { dist = d; index = k; } } return index; } } // namespace /** * quantize an RGB image to a reduced number of colors. */ IndexedMap rgbMapQuantize(RgbMap const &rgbmap, int ncolor) { assert(ncolor > 0); auto imap = IndexedMap(rgbmap.width, rgbmap.height); Pool pool; auto tree = octreeBuild(pool, rgbmap, ncolor); auto rgbs = std::make_unique(ncolor); int index = 0; octreeIndex(tree, rgbs.get(), index); octreeDelete(pool, tree); // stacking with increasing contrasts std::sort(rgbs.get(), rgbs.get() + ncolor, [] (auto &ra, auto &rb) { return (ra.r + ra.g + ra.b) < (rb.r + rb.g + rb.b); }); // make the new map // fill in the color lookup table for (int i = 0; i < index; i++) { imap.clut[i] = rgbs[i]; } imap.nrColors = index; // fill in new map pixels for (int y = 0; y < rgbmap.height; y++) { for (int x = 0; x < rgbmap.width; x++) { auto rgb = rgbmap.getPixel(x, y); int index = findRGB(rgbs.get(), ncolor, rgb); imap.setPixel(x, y, index); } } return imap; } } // namespace Trace } // namespace Inkscape