summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/2geom/tests/path-test.cpp
blob: dd6f347f74e262458e504f8dd64145c05f2cdacf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
#include <cmath>
#include <vector>
#include <iterator>
#include <iostream>

#include <glib.h>

#include <2geom/bezier.h>
#include <2geom/path.h>
#include <2geom/pathvector.h>
#include <2geom/path-intersection.h>
#include <2geom/svg-path-parser.h>
#include <2geom/svg-path-writer.h>

#include "testing.h"

using namespace std;
using namespace Geom;

Path string_to_path(const char* s) {
    PathVector pv = parse_svg_path(s);
    assert(pv.size() == 1);
    return pv[0];
}

// Path fixture
class PathTest : public ::testing::Test {
protected:
    PathTest() {
        line.append(LineSegment(Point(0,0), Point(1,0)));
        square = string_to_path("M 0,0 1,0 1,1 0,1 z");
        circle = string_to_path("M 0,0 a 4.5,4.5 0 1 1 -9,0 4.5,4.5 0 1 1 9,0 z");
        arcs = string_to_path("M 0,0 a 5,10 45 0 1 10,10 a 5,10 45 0 1 0,0 z");
        diederik = string_to_path("m 262.6037,35.824151 c 0,0 -92.64892,-187.405851 30,-149.999981 104.06976,31.739531 170,109.9999815 170,109.9999815 l -10,-59.9999905 c 0,0 40,79.99999 -40,79.99999 -80,0 -70,-129.999981 -70,-129.999981 l 50,0 C 435.13571,-131.5667 652.76275,126.44872 505.74322,108.05672 358.73876,89.666591 292.6037,-14.175849 292.6037,15.824151 c 0,30 -30,20 -30,20 z");
        cmds = string_to_path("M 0,0 V 100 H 100 Q 100,0 0,0 L 200,0 C 200,100 300,100 300,0 S 200,-100 200,0");

        p_open = string_to_path("M 0,0 L 0,5 5,5 5,0");
        p_closed = p_open;
        p_closed.close(true);
        p_add = string_to_path("M -1,6 L 6,6");

        p_open.setStitching(true);
        p_closed.setStitching(true);
    }

    // Objects declared here can be used by all tests in the test case for Foo.
    Path line, square, circle, arcs, diederik, cmds;
    Path p_open, p_closed, p_add;
};

TEST_F(PathTest, CopyConstruction) {
    Path pa = p_closed;
    Path pc(p_closed);
    EXPECT_EQ(pa, p_closed);
    EXPECT_EQ(pa.closed(), p_closed.closed());
    EXPECT_EQ(pc, p_closed);
    EXPECT_EQ(pc.closed(), p_closed.closed());

    Path poa = cmds;
    Path poc(cmds);
    EXPECT_EQ(poa, cmds);
    EXPECT_EQ(poa.closed(), cmds.closed());
    EXPECT_EQ(poc, cmds);
    EXPECT_EQ(poc.closed(), cmds.closed());

    PathVector pvc(pa);
    EXPECT_EQ(pvc[0], pa);
    PathVector pva((Geom::Path()));
    pva[0] = pa;
    EXPECT_EQ(pva[0], pa);
}

TEST_F(PathTest, PathInterval) {
    PathTime n2_before(1, 0.9995), n2_after(2, 0.0005),
                 n3_before(2, 0.9995), n3_after(3, 0.0005),
                 mid2(2, 0.5), mid3(3, 0.5);

    // ival[x][0] - normal
    // ival[x][1] - reversed
    // ival[x][2] - crosses start
    // ival[x][3] - reversed, crosses start
    PathInterval ival[5][4];

    ival[0][0] = PathInterval(n2_before, n2_after, false, 4);
    ival[0][1] = PathInterval(n2_after, n2_before, false, 4);
    ival[0][2] = PathInterval(n2_before, n2_after, true, 4);
    ival[0][3] = PathInterval(n2_after, n2_before, true, 4);
    ival[1][0] = PathInterval(n2_before, n3_after, false, 4);
    ival[1][1] = PathInterval(n3_after, n2_before, false, 4);
    ival[1][2] = PathInterval(n2_before, n3_after, true, 4);
    ival[1][3] = PathInterval(n3_after, n2_before, true, 4);
    ival[2][0] = PathInterval(n2_before, mid2, false, 4);
    ival[2][1] = PathInterval(mid2, n2_before, false, 4);
    ival[2][2] = PathInterval(n2_before, mid2, true, 4);
    ival[2][3] = PathInterval(mid2, n2_before, true, 4);
    ival[3][0] = PathInterval(mid2, mid3, false, 4);
    ival[3][1] = PathInterval(mid3, mid2, false, 4);
    ival[3][2] = PathInterval(mid2, mid3, true, 4);
    ival[3][3] = PathInterval(mid3, mid2, true, 4);
    ival[4][0] = PathInterval(n2_after, n3_before, false, 4);
    ival[4][1] = PathInterval(n3_before, n2_after, false, 4);
    ival[4][2] = PathInterval(n2_after, n3_before, true, 4);
    ival[4][3] = PathInterval(n3_before, n2_after, true, 4);

    EXPECT_TRUE(ival[0][0].contains(n2_before));
    EXPECT_TRUE(ival[0][0].contains(n2_after));
    EXPECT_TRUE(ival[0][1].contains(n2_before));
    EXPECT_TRUE(ival[0][1].contains(n2_after));

    for (unsigned i = 0; i <= 4; ++i) {
        EXPECT_FALSE(ival[i][0].reverse());
        EXPECT_TRUE(ival[i][1].reverse());
        EXPECT_TRUE(ival[i][2].reverse());
        EXPECT_FALSE(ival[i][3].reverse());
    }

    for (unsigned i = 0; i <= 4; ++i) {
        for (unsigned j = 0; j <= 3; ++j) {
            //std::cout << i << " " << j << " " << ival[i][j] << std::endl;
            EXPECT_TRUE(ival[i][j].contains(ival[i][j].inside(1e-3)));
        }
    }

    PathTime n1(1, 0.0), n1x(0, 1.0),
                 n2(2, 0.0), n2x(1, 1.0),
                 n3(3, 0.0), n3x(2, 1.0);
    PathTime tests[8] = { n1, n1x, n2, n2x, n3, n3x, mid2, mid3 };

    // 0: false for both
    // 1: true for normal, false for cross_start
    // 2: false for normal, true for cross_start
    // 3: true for both

    int const NORMAL = 1, CROSS = 2, BOTH = 3;

    int includes[5][8] = {
        { CROSS,  CROSS,  NORMAL, NORMAL, CROSS,  CROSS,  CROSS,  CROSS  },
        { CROSS,  CROSS,  NORMAL, NORMAL, NORMAL, NORMAL, NORMAL, CROSS  },
        { CROSS,  CROSS,  NORMAL, NORMAL, CROSS,  CROSS,  BOTH,   CROSS  },
        { CROSS,  CROSS,  CROSS,  CROSS,  NORMAL, NORMAL, BOTH,   BOTH   },
        { CROSS,  CROSS,  CROSS,  CROSS,  CROSS,  CROSS,  NORMAL, CROSS  }
    };
    unsigned sizes[5][2] = {
        { 2, 4 },
        { 3, 3 },
        { 2, 4 },
        { 2, 4 },
        { 1, 5 }
    };

    for (unsigned i = 0; i < 5; ++i) {
        for (unsigned j = 0; j < 8; ++j) {
            EXPECT_EQ(ival[i][0].contains(tests[j]), bool(includes[i][j] & NORMAL));
            EXPECT_EQ(ival[i][1].contains(tests[j]), bool(includes[i][j] & NORMAL));
            EXPECT_EQ(ival[i][2].contains(tests[j]), bool(includes[i][j] & CROSS));
            EXPECT_EQ(ival[i][3].contains(tests[j]), bool(includes[i][j] & CROSS));
        }
        EXPECT_EQ(ival[i][0].curveCount(), sizes[i][0]);
        EXPECT_EQ(ival[i][1].curveCount(), sizes[i][0]);
        EXPECT_EQ(ival[i][2].curveCount(), sizes[i][1]);
        EXPECT_EQ(ival[i][3].curveCount(), sizes[i][1]);
    }
}

TEST_F(PathTest, Continuity) {
    line.checkContinuity();
    square.checkContinuity();
    circle.checkContinuity();
    diederik.checkContinuity();
    cmds.checkContinuity();
}

TEST_F(PathTest, RectConstructor) {
    Rect r(Point(0,0), Point(10,10));
    Path rpath(r);

    EXPECT_EQ(rpath.size(), 4u);
    EXPECT_TRUE(rpath.closed());
    for (unsigned i = 0; i < 4; ++i) {
        EXPECT_TRUE(dynamic_cast<LineSegment const *>(&rpath[i]) != NULL);
        EXPECT_EQ(rpath[i].initialPoint(), r.corner(i));
    }
}

TEST_F(PathTest, Reversed) {
    std::vector<Path> a, r;
    a.push_back(p_open);
    a.push_back(p_closed);
    a.push_back(circle);
    a.push_back(diederik);
    a.push_back(cmds);

    for (auto & i : a) {
        r.push_back(i.reversed());
    }

    for (unsigned i = 0; i < a.size(); ++i) {
        EXPECT_EQ(r[i].size(), a[i].size());
        EXPECT_EQ(r[i].initialPoint(), a[i].finalPoint());
        EXPECT_EQ(r[i].finalPoint(), a[i].initialPoint());
        EXPECT_EQ(r[i].reversed(), a[i]);
        Point p1 = r[i].pointAt(0.75);
        Point p2 = a[i].pointAt(a[i].size() - 0.75);
        EXPECT_FLOAT_EQ(p1[X], p2[X]);
        EXPECT_FLOAT_EQ(p1[Y], p2[Y]);
        EXPECT_EQ(r[i].closed(), a[i].closed());
        a[i].checkContinuity();
    }
}

TEST_F(PathTest, ValueAt) {
    EXPECT_EQ(Point(0,0), line.initialPoint());
    EXPECT_EQ(Point(1,0), line.finalPoint());

    EXPECT_EQ(Point(0.5, 0.0), line.pointAt(0.5));

    EXPECT_EQ(Point(0,0), square.initialPoint());
    EXPECT_EQ(Point(0,0), square.finalPoint());
    EXPECT_EQ(Point(1,0), square.pointAt(1));
    EXPECT_EQ(Point(0.5,1), square.pointAt(2.5));
    EXPECT_EQ(Point(0,0.5), square.pointAt(3.5));
    EXPECT_EQ(Point(0,0), square.pointAt(4));
}

TEST_F(PathTest, NearestPoint) {
    EXPECT_EQ(0, line.nearestTime(Point(0,0)).asFlatTime());
    EXPECT_EQ(0.5, line.nearestTime(Point(0.5,0)).asFlatTime());
    EXPECT_EQ(0.5, line.nearestTime(Point(0.5,1)).asFlatTime());
    EXPECT_EQ(1, line.nearestTime(Point(100,0)).asFlatTime());
    EXPECT_EQ(0, line.nearestTime(Point(-100,1000)).asFlatTime());

    EXPECT_EQ(0, square.nearestTime(Point(0,0)).asFlatTime());
    EXPECT_EQ(1, square.nearestTime(Point(1,0)).asFlatTime());
    EXPECT_EQ(3, square.nearestTime(Point(0,1)).asFlatTime());

    //cout << diederik.nearestTime(Point(247.32293,-43.339507)) << endl;

    Point p(511.75,40.85);
    EXPECT_FLOAT_EQ(6.5814033, diederik.nearestTime(p).asFlatTime());
    /*cout << diederik.pointAt(diederik.nearestTime(p)) << endl
         << diederik.pointAt(6.5814033) << endl
         << distance(diederik.pointAt(diederik.nearestTime(p)), p) << "  "
         << distance(diederik.pointAt(6.5814033), p) << endl;*/

}

TEST_F(PathTest, Winding) {
    // test points in special positions
    EXPECT_EQ(line.winding(Point(-1, 0)), 0);
    EXPECT_EQ(line.winding(Point(2, 0)), 0);
    EXPECT_EQ(line.winding(Point(0, 1)), 0);
    EXPECT_EQ(line.winding(Point(0, -1)), 0);
    EXPECT_EQ(line.winding(Point(1, 1)), 0);
    EXPECT_EQ(line.winding(Point(1, -1)), 0);

    EXPECT_EQ(square.winding(Point(0, -1)), 0);
    EXPECT_EQ(square.winding(Point(1, -1)), 0);
    EXPECT_EQ(square.winding(Point(0, 2)), 0);
    EXPECT_EQ(square.winding(Point(1, 2)), 0);
    EXPECT_EQ(square.winding(Point(-1, 0)), 0);
    EXPECT_EQ(square.winding(Point(-1, 1)), 0);
    EXPECT_EQ(square.winding(Point(2, 0)), 0);
    EXPECT_EQ(square.winding(Point(2, 1)), 0);
    EXPECT_EQ(square.winding(Point(0.5, 0.5)), 1);

    EXPECT_EQ(circle.winding(Point(-4.5,0)), 1);
    EXPECT_EQ(circle.winding(Point(-3.5,0)), 1);
    EXPECT_EQ(circle.winding(Point(-4.5,1)), 1);
    EXPECT_EQ(circle.winding(Point(-10,0)), 0);
    EXPECT_EQ(circle.winding(Point(1,0)), 0);

    Path yellipse = string_to_path("M 0,0 A 40 20 90 0 0 0,-80 40 20 90 0 0 0,0 z");
    EXPECT_EQ(yellipse.winding(Point(-1, 0)), 0);
    EXPECT_EQ(yellipse.winding(Point(-1, -80)), 0);
    EXPECT_EQ(yellipse.winding(Point(1, 0)), 0);
    EXPECT_EQ(yellipse.winding(Point(1, -80)), 0);
    EXPECT_EQ(yellipse.winding(Point(0, -40)), -1);
    std::vector<double> r[4];
    r[0] = yellipse[0].roots(0, Y);
    r[1] = yellipse[0].roots(-80, Y);
    r[2] = yellipse[1].roots(0, Y);
    r[3] = yellipse[1].roots(-80, Y);
    for (auto & i : r) {
        for (double j : i) {
            std::cout << format_coord_nice(j) << " ";
        }
        std::cout << std::endl;
    }
    std::cout << yellipse[0].unitTangentAt(0) << " "
              << yellipse[0].unitTangentAt(1) << " "
              << yellipse[1].unitTangentAt(0) << " "
              << yellipse[1].unitTangentAt(1) << std::endl;

    Path half_ellipse = string_to_path("M 0,0 A 40 20 90 0 0 0,-80 L -20,-40 z");
    EXPECT_EQ(half_ellipse.winding(Point(-1, 0)), 0);
    EXPECT_EQ(half_ellipse.winding(Point(-1, -80)), 0);
    EXPECT_EQ(half_ellipse.winding(Point(1, 0)), 0);
    EXPECT_EQ(half_ellipse.winding(Point(1, -80)), 0);
    EXPECT_EQ(half_ellipse.winding(Point(0, -40)), -1);

    // extra nasty cases with exact double roots
    Path hump = string_to_path("M 0,0 Q 1,1 2,0 L 2,2 0,2 Z");
    EXPECT_EQ(hump.winding(Point(0.25, 0.5)), 1);
    EXPECT_EQ(hump.winding(Point(1.75, 0.5)), 1);

    Path hump2 = string_to_path("M 0,0 L 2,0 2,2 Q 1,1 0,2 Z");
    EXPECT_EQ(hump2.winding(Point(0.25, 1.5)), 1);
    EXPECT_EQ(hump2.winding(Point(1.75, 1.5)), 1);
}

/// Regression test for issue https://gitlab.com/inkscape/lib2geom/-/issues/58
TEST_F(PathTest, Issue58)
{
    auto const random_point_in = [](Geom::Rect const &box) -> Point {
        Coord const x = g_random_double_range(box[X].min(), box[X].max());
        Coord const y = g_random_double_range(box[Y].min(), box[Y].max());
        return {x, y};
    };

    auto const verify_windings = [](Ellipse const &e, Path const &path, Point const &pt) {
        int const winding = path.winding(pt);
        if (e.contains(pt)) {
            EXPECT_EQ(winding, 1);
        } else {
            EXPECT_EQ(winding, 0);
        }
    };

    // Example elliptical path from issue https://gitlab.com/inkscape/lib2geom/-/issues/58
    char const *const issue_d = "M 495.8157837290847 280.07459226562503"
                                "A 166.63407933993605 132.04407218873035 0 0 1 329.1817043891487 412.11866445435544"
                                "A 166.63407933993605 132.04407218873035 0 0 1 162.54762504921263 280.07459226562503"
                                "A 166.63407933993605 132.04407218873035 0 0 1 329.1817043891487 148.0305200768947"
                                "A 166.63407933993605 132.04407218873035 0 0 1 495.8157837290847 280.07459226562503"
                                "z";
    auto const pv = parse_svg_path(issue_d);
    auto const issue_ellipse = Ellipse(Point(329.1817043891487, 280.07459226562503),
                                       Point(166.63407933993605, 132.04407218873035), 0);

    auto box = issue_ellipse.boundsExact();
    box.expandBy(1.0);

    g_random_set_seed(0xE111BB5E);
    for (size_t _ = 0; _ < 10'000; _++) {
        verify_windings(issue_ellipse, pv[0], random_point_in(box));
    }
}

TEST_F(PathTest, SVGRoundtrip) {
    SVGPathWriter sw;

    Path transformed = diederik * (Rotate(1.23456789) * Scale(1e-8) * Translate(1e-9, 1e-9));

    for (unsigned i = 0; i < 4; ++i) {
        sw.setOptimize(i & 1);
        sw.setUseShorthands(i & 2);

        sw.feed(line);
        //cout << sw.str() << endl;
        Path line_svg = string_to_path(sw.str().c_str());
        EXPECT_TRUE(line_svg == line);
        sw.clear();

        sw.feed(square);
        //cout << sw.str() << endl;
        Path square_svg = string_to_path(sw.str().c_str());
        EXPECT_TRUE(square_svg == square);
        sw.clear();

        sw.feed(circle);
        //cout << sw.str() << endl;
        Path circle_svg = string_to_path(sw.str().c_str());
        EXPECT_TRUE(circle_svg == circle);
        sw.clear();

        sw.feed(arcs);
        //cout << sw.str() << endl;
        Path arcs_svg = string_to_path(sw.str().c_str());
        EXPECT_TRUE(arcs_svg == arcs);
        sw.clear();

        sw.feed(diederik);
        //cout << sw.str() << endl;
        Path diederik_svg = string_to_path(sw.str().c_str());
        EXPECT_TRUE(diederik_svg == diederik);
        sw.clear();

        sw.feed(transformed);
        //cout << sw.str() << endl;
        Path transformed_svg = string_to_path(sw.str().c_str());
        EXPECT_TRUE(transformed_svg == transformed);
        sw.clear();

        sw.feed(cmds);
        //cout << sw.str() << endl;
        Path cmds_svg = string_to_path(sw.str().c_str());
        EXPECT_TRUE(cmds_svg == cmds);
        sw.clear();
    }
}

TEST_F(PathTest, Portion) {
    PathTime a(0, 0.5), b(3, 0.5);
    PathTime c(1, 0.25), d(1, 0.75);

    EXPECT_EQ(square.portion(a, b), string_to_path("M 0.5, 0 L 1,0 1,1 0,1 0,0.5"));
    EXPECT_EQ(square.portion(b, a), string_to_path("M 0,0.5 L 0,1 1,1 1,0 0.5,0"));
    EXPECT_EQ(square.portion(a, b, true), string_to_path("M 0.5,0 L 0,0 0,0.5"));
    EXPECT_EQ(square.portion(b, a, true), string_to_path("M 0,0.5 L 0,0 0.5,0"));
    EXPECT_EQ(square.portion(c, d), string_to_path("M 1,0.25 L 1,0.75"));
    EXPECT_EQ(square.portion(d, c), string_to_path("M 1,0.75 L 1,0.25"));
    EXPECT_EQ(square.portion(c, d, true), string_to_path("M 1,0.25 L 1,0 0,0 0,1 1,1 1,0.75"));
    EXPECT_EQ(square.portion(d, c, true), string_to_path("M 1,0.75 L 1,1 0,1 0,0 1,0 1,0.25"));

    // verify that no matter how an endpoint is specified, the result is the same
    PathTime a1(0, 1.0), a2(1, 0.0);
    PathTime b1(2, 1.0), b2(3, 0.0);
    Path result = string_to_path("M 1,0 L 1,1 0,1");
    EXPECT_EQ(square.portion(a1, b1), result);
    EXPECT_EQ(square.portion(a1, b2), result);
    EXPECT_EQ(square.portion(a2, b1), result);
    EXPECT_EQ(square.portion(a2, b2), result);
}

TEST_F(PathTest, AppendSegment) {
    Path p_open = line, p_closed = line;
    p_open.setStitching(true);
    p_open.append(new LineSegment(Point(10,20), Point(10,25)));
    EXPECT_EQ(p_open.size(), 3u);
    EXPECT_NO_THROW(p_open.checkContinuity());

    p_closed.setStitching(true);
    p_closed.close(true);
    p_closed.append(new LineSegment(Point(10,20), Point(10,25)));
    EXPECT_EQ(p_closed.size(), 4u);
    EXPECT_NO_THROW(p_closed.checkContinuity());
}

TEST_F(PathTest, AppendPath) {
    p_open.append(p_add);
    Path p_expected = string_to_path("M 0,0 L 0,5 5,5 5,0 -1,6 6,6");
    EXPECT_EQ(p_open.size(), 5u);
    EXPECT_EQ(p_open, p_expected);
    EXPECT_NO_THROW(p_open.checkContinuity());

    p_expected.close(true);
    p_closed.append(p_add);
    EXPECT_EQ(p_closed.size(), 6u);
    EXPECT_EQ(p_closed, p_expected);
    EXPECT_NO_THROW(p_closed.checkContinuity());
}

TEST_F(PathTest, AppendPortion) {
    // A closed path with two curves:
    Path bigon = string_to_path("M 0,0 Q 1,1 2,0 Q 1,-1 0,0 Z");
    Path target{Point(0, 0)};

    PathTime end_time{1, 1.0}; // End of the closed path
    PathTime mid_time{1, 0.0}; // Middle of the closed path (juncture between the two curves)
    bigon.appendPortionTo(target, end_time, mid_time, true /* do cross start */);

    // We expect that the target path now contains the entire first curve "M 0,0 Q 1,1 2,0",
    // since we started at the end of a closed path and requested to cross its start.
    EXPECT_EQ(target.size(), 1);
    EXPECT_EQ(target, string_to_path("M 0,0 Q 1,1 2,0"));

    // Similar test but with reversal (swapped times)
    Path target_reverse{Point(2, 0)};
    bigon.appendPortionTo(target_reverse, mid_time, end_time, true /* do cross start please */);
    // What do we expect? To cross start going from the midpoint to the endpoint requires
    // not taking the obvious route (bigon[1]) but rather taking bigon[0] in reverse.
    EXPECT_EQ(target_reverse.size(), 1);
    EXPECT_EQ(target_reverse, string_to_path("M 2,0 Q 1,1 0,0"));

    // Similar test but using start time
    PathTime start_time{0, 0.0};
    Path mid_target{Point(2, 0)};
    bigon.appendPortionTo(mid_target, mid_time, start_time, true /* cross start to 0:0 */);
    // We expect to go forward from mid_time and cross over the start to start_time.
    EXPECT_EQ(mid_target.size(), 1);
    EXPECT_EQ(mid_target, string_to_path("M 2,0 Q 1,-1 0,0"));

    // Use start time with reversal
    Path mid_reverse{Point(0, 0)};
    bigon.appendPortionTo(mid_reverse, start_time, mid_time, true /* Cross start, going backwards. */);
    // We expect that we don't go forwards from start_time to mid_time, but rather cross over the starting
    // point and backtrack over bigon[1] to the midpoint.
    EXPECT_EQ(mid_reverse.size(), 1);
    EXPECT_EQ(mid_reverse, string_to_path("M 0,0 Q 1,-1 2,0"));
}

TEST_F(PathTest, ReplaceMiddle) {
    p_open.replace(p_open.begin() + 1, p_open.begin() + 2, p_add);
    EXPECT_EQ(p_open.size(), 5u);
    EXPECT_NO_THROW(p_open.checkContinuity());

    p_closed.replace(p_closed.begin() + 1, p_closed.begin() + 2, p_add);
    EXPECT_EQ(p_closed.size(), 6u);
    EXPECT_NO_THROW(p_closed.checkContinuity());
}

TEST_F(PathTest, ReplaceStart) {
    p_open.replace(p_open.begin(), p_open.begin() + 2, p_add);
    EXPECT_EQ(p_open.size(), 3u);
    EXPECT_NO_THROW(p_open.checkContinuity());

    p_closed.replace(p_closed.begin(), p_closed.begin() + 2, p_add);
    EXPECT_EQ(p_closed.size(), 5u);
    EXPECT_NO_THROW(p_closed.checkContinuity());
}

TEST_F(PathTest, ReplaceEnd) {
    p_open.replace(p_open.begin() + 1, p_open.begin() + 3, p_add);
    EXPECT_EQ(p_open.size(), 3u);
    EXPECT_NO_THROW(p_open.checkContinuity());

    p_closed.replace(p_closed.begin() + 1, p_closed.begin() + 3, p_add);
    EXPECT_EQ(p_closed.size(), 5u);
    EXPECT_NO_THROW(p_closed.checkContinuity());
}

TEST_F(PathTest, ReplaceClosing) {
    p_open.replace(p_open.begin() + 1, p_open.begin() + 4, p_add);
    EXPECT_EQ(p_open.size(), 3u);
    EXPECT_NO_THROW(p_open.checkContinuity());

    p_closed.replace(p_closed.begin() + 1, p_closed.begin() + 4, p_add);
    EXPECT_EQ(p_closed.size(), 4u);
    EXPECT_NO_THROW(p_closed.checkContinuity());
}

TEST_F(PathTest, ReplaceEverything) {
    p_open.replace(p_open.begin(), p_open.end(), p_add);
    EXPECT_EQ(p_open.size(), 1u);
    EXPECT_NO_THROW(p_open.checkContinuity());

    // TODO: in this specific case, it may make sense to set the path to open...
    // Need to investigate what behavior is sensible here
    p_closed.replace(p_closed.begin(), p_closed.end(), p_add);
    EXPECT_EQ(p_closed.size(), 2u);
    EXPECT_NO_THROW(p_closed.checkContinuity());
}

TEST_F(PathTest, EraseLast) {
    p_open.erase_last();
    Path p_expected = string_to_path("M 0,0 L 0,5 5,5");
    EXPECT_EQ(p_open, p_expected);
    EXPECT_NO_THROW(p_open.checkContinuity());
}

TEST_F(PathTest, AreNear) {
    Path nudged_arcs1 = string_to_path("M 0,0 a 5,10 45 0 1 10,10.0000005 a 5,10 45 0 1 0,0 z");
    Path nudged_arcs2 = string_to_path("M 0,0 a 5,10 45 0 1 10,10.00005 a 5,10 45 0 1 0,0 z");
    EXPECT_EQ(are_near(diederik, diederik, 0), true);
    EXPECT_EQ(are_near(cmds, diederik, 1e-6), false);
    EXPECT_EQ(are_near(arcs, nudged_arcs1, 1e-6), true);
    EXPECT_EQ(are_near(arcs, nudged_arcs2, 1e-6), false);
}

TEST_F(PathTest, Roots) {
    Path path;
    path.start(Point(0, 0));
    path.appendNew<Geom::LineSegment>(Point(1, 1));
    path.appendNew<Geom::LineSegment>(Point(2, 0));

    EXPECT_FALSE(path.closed());

    // Trivial case: make sure that path is not closed
    std::vector<PathTime> roots = path.roots(0.5, Geom::X);
    EXPECT_EQ(roots.size(), 1u);
    EXPECT_EQ(path.valueAt(roots[0], Geom::Y), 0.5);

    // Now check that it is closed if we make it so
    path.close(true);
    roots = path.roots(0.5, Geom::X);
    EXPECT_EQ(roots.size(), 2u);
}

TEST_F(PathTest, PartingPoint)
{
    // === Test complete overlaps between identical curves ===
    // Line segment
    auto line = string_to_path("M 0,0 L 3.33, 7.77");
    auto pt = parting_point(line, line);
    EXPECT_TRUE(are_near(pt.point(), line.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.t, 1.0));

    // Cubic Bézier
    auto bezier = string_to_path("M 0,0 C 1,1 14,1 15,0");
    pt = parting_point(bezier, bezier);
    EXPECT_TRUE(are_near(pt.point(), bezier.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.t, 1.0));

    // Eliptical arc
    auto const arc = string_to_path("M 0,0 A 100,20 0,0,0 200,0");
    pt = parting_point(arc, arc);
    EXPECT_TRUE(are_near(pt.point(), arc.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.t, 1.0));

    // === Test complete overlap between degree-elevated and degree-shrunk Béziers ===
    auto artificially_cubic = string_to_path("M 0,0 C 10,10 20,10 30,0");
    auto really_quadratic = string_to_path("M 0,0 Q 15,15 30,0");
    pt = parting_point(artificially_cubic, really_quadratic);
    EXPECT_TRUE(are_near(pt.point(), artificially_cubic.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.asFlatTime(), 1.0));
    EXPECT_TRUE(are_near(pt.second.asFlatTime(), 1.0));

    // === Test complete overlaps between a curve and its subdivision ===
    // Straight line
    line = string_to_path("M 0,0 L 15,15");
    auto subdivided_line = string_to_path("M 0,0 L 3,3 L 4,4 L 9,9 L 15,15");
    pt = parting_point(line, subdivided_line);
    EXPECT_TRUE(are_near(pt.point(), line.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.t, 1.0));

    // Cubic Bézier
    bezier = string_to_path("M 0,0 C 0,40 50,40 50,0");
    auto de_casteljau = string_to_path("M 0,0 C 0,10 3.125,17.5 7.8125,22.5 12.5,27.5 18.75,30 25,30"
                                       " 31.25,30 37.5,27.5 42.1875,22.5 46.875,17.5 50,10 50,0");
    pt = parting_point(bezier, de_casteljau);
    EXPECT_TRUE(are_near(pt.point(), bezier.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.t, 1.0));

    // Eliptical arc
    auto subdivided_arc = string_to_path("M 0,0 A 100,20, 0,0,0 100,20 A 100,20 0,0,0 200,0");
    pt = parting_point(arc, subdivided_arc);
    EXPECT_TRUE(are_near(pt.point(), arc.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.t, 1.0));

    // === Test complete overlap between different subdivisions ===
    auto line1 = string_to_path("M 0,0 L 3,3 L 5,5 L 10,10");
    auto line2 = string_to_path("M 0,0 L 2,2 L 4.2,4.2 L 4.5,4.5 L 6,6 L 10,10");
    pt = parting_point(line1, line2);
    EXPECT_TRUE(are_near(pt.point(), line1.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.asFlatTime(),  line1.timeRange().max()));
    EXPECT_TRUE(are_near(pt.second.asFlatTime(), line2.timeRange().max()));

    // === Test complete overlaps in the presence of degenerate segments ===
    // Straight line
    line = string_to_path("M 0,0 L 15,15");
    subdivided_line = string_to_path("M 0,0 L 3,3 H 3 V 3 L 3,3 L 4,4 H 4 V 4 L 4,4 L 9,9 H 9 L 15,15");
    pt = parting_point(line, subdivided_line);
    EXPECT_TRUE(are_near(pt.point(), line.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.asFlatTime(), 1.0));

    // Eliptical arc
    auto arc_degen = string_to_path("M 0,0 A 100,20, 0,0,0 100,20 H 100 V 20 L 100,20 A 100,20 0,0,0 200,0");
    pt = parting_point(arc, arc_degen);
    EXPECT_TRUE(are_near(pt.point(), arc.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.asFlatTime(), 1.0));

    // === Paths that overlap but one is shorter than the other ===
    // Straight lines
    auto long_line = string_to_path("M 0,0 L 20,10");
    auto short_line = string_to_path("M 0,0 L 4,2");
    pt = parting_point(long_line, short_line);
    EXPECT_TRUE(are_near(pt.point(), short_line.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.t, 0.2));
    EXPECT_TRUE(are_near(pt.second.t, 1.0));

    // Cubic Bézier
    auto const s_shape = string_to_path("M 0,0 C 10, 0 0,10 10,10");
    auto half_s = string_to_path("M 0,0 C 5,0 5,2.5 5,5");
    pt = parting_point(s_shape, half_s);
    EXPECT_TRUE(are_near(pt.first.t, 0.5));
    EXPECT_TRUE(are_near(pt.second.t, 1.0));

    // Elliptical arc
    auto quarter_ellipse = string_to_path("M 0,0 A 100,20, 0,0,0 100,20");
    pt = parting_point(arc, quarter_ellipse);
    EXPECT_TRUE(are_near(pt.point(), quarter_ellipse.finalPoint()));
    EXPECT_TRUE(are_near(pt.first.t, 0.5));
    EXPECT_TRUE(are_near(pt.second.t, 1.0));

    // === Paths that overlap initially but then they split ===
    // Straight lines
    auto boring_line = string_to_path("M 0,0 L 50,10");
    auto line_then_arc = string_to_path("M 0,0 L 5,1 A 1,1 0,0,0 7,1");
    pt = parting_point(boring_line, line_then_arc);
    EXPECT_TRUE(are_near(pt.point(), Point(5, 1)));
    EXPECT_TRUE(are_near(pt.first.t, 0.1));
    EXPECT_TRUE(are_near(pt.second.asFlatTime(), 1.0));

    // Cubic Bézier
    auto half_s_then_line = string_to_path("M 0,0 C 5,0 5,2.5 5,5 L 10,10");
    pt = parting_point(s_shape, half_s_then_line);
    EXPECT_TRUE(are_near(pt.point(), Point(5, 5)));
    EXPECT_TRUE(are_near(pt.first.t, 0.5));
    EXPECT_TRUE(are_near(pt.second.asFlatTime(), 1.0));

    // Elliptical arc
    auto quarter_ellipse_then_quadratic = string_to_path("M 0,0 A 100,20, 0,0,0 100,20 Q 120,40 140,60");
    pt = parting_point(arc, quarter_ellipse_then_quadratic);
    EXPECT_TRUE(are_near(pt.point(), Point(100, 20)));
    EXPECT_TRUE(are_near(pt.first.t, 0.5));
    EXPECT_TRUE(are_near(pt.second.asFlatTime(), 1.0));

    // === Paths that split at a common node ===
    // Polylines
    auto branch_90 = string_to_path("M 0,0 H 3 H 6 V 7");
    auto branch_45 = string_to_path("M 0,0 H 2 H 6 L 7,7");
    pt = parting_point(branch_90, branch_45);
    EXPECT_TRUE(are_near(pt.point(), Point(6, 0)));
    EXPECT_TRUE(are_near(pt.first.asFlatTime(), 2.0));
    EXPECT_TRUE(are_near(pt.second.asFlatTime(), 2.0));

    // Arcs
    auto quarter_circle_then_horiz = string_to_path("M 0,0 A 1,1 0,0,0 1,1 H 10");
    auto quarter_circle_then_slant = string_to_path("M 0,0 A 1,1 0,0,0 1,1 L 10, 1.1");
    pt = parting_point(quarter_circle_then_horiz, quarter_circle_then_slant);
    EXPECT_TRUE(are_near(pt.point(), Point(1, 1)));
    EXPECT_TRUE(are_near(pt.first.asFlatTime(), 1.0));
    EXPECT_TRUE(are_near(pt.second.asFlatTime(), 1.0));

    // Last common nodes followed by degenerates
    auto degen_horiz = string_to_path("M 0,0 A 1,1 0,0,0 1,1 V 1 H 1 L 1,1 H 10");
    auto degen_slant = string_to_path("M 0,0 A 1,1 0,0,0 1,1 V 1 H 1 L 1,1 L 10, 1.1");
    pt = parting_point(quarter_circle_then_horiz, quarter_circle_then_slant);
    EXPECT_TRUE(are_near(pt.point(), Point(1, 1)));

    // === Paths that split at the starting point ===
    auto vertical = string_to_path("M 0,0 V 1");
    auto quarter = string_to_path("M 0,0 A 1,1 0,0,0, 1,1");
    pt = parting_point(vertical, quarter);
    EXPECT_TRUE(are_near(pt.point(), Point(0, 0)));
    EXPECT_TRUE(are_near(pt.first.asFlatTime(), 0.0));
    EXPECT_TRUE(are_near(pt.second.asFlatTime(), 0.0));

    // === Symmetric split (both legs of the same length) ===
    auto left_leg = string_to_path("M 1,0 L 0,10");
    auto right_leg = string_to_path("M 1,0 L 2,10");
    pt = parting_point(left_leg, right_leg);
    EXPECT_TRUE(are_near(pt.point(), Point(1, 0)));
    EXPECT_TRUE(are_near(pt.first.asFlatTime(), 0.0));
    EXPECT_TRUE(are_near(pt.second.asFlatTime(), 0.0));

    // === Different starting points ===
    auto start_at_0_0 = string_to_path("M 0,0 C 1,0 0,1 1,1");
    auto start_at_10_10 = string_to_path("M 10,10 L 50,50");
    pt = parting_point(start_at_0_0, start_at_10_10);
    EXPECT_TRUE(are_near(pt.point(), Point (5,5)));
    EXPECT_DOUBLE_EQ(pt.first.t, -1.0);
    EXPECT_DOUBLE_EQ(pt.second.t, -1.0);
    EXPECT_EQ(pt.first.curve_index, 0);
    EXPECT_EQ(pt.second.curve_index, 0);
}

TEST_F(PathTest, InitialFinalTangents) {
    // Test tangents for an open path
    auto L_shape = string_to_path("M 1,1 H 0 V 0");
    EXPECT_EQ(L_shape.initialUnitTangent(), Point(-1.0, 0.0));
    EXPECT_EQ(L_shape.finalUnitTangent(), Point(0.0, -1.0));

    // Closed path with non-degenerate closing segment
    auto triangle = string_to_path("M 0,0 H 2 L 0,3 Z");
    EXPECT_EQ(triangle.initialUnitTangent(), Point(1.0, 0.0));
    EXPECT_EQ(triangle.finalUnitTangent(), Point(0.0, -1.0));

    // Closed path with a degenerate closing segment
    auto full360 = string_to_path("M 0,0 A 1,1, 0,1,1, 0,2 A 1,1 0,1,1 0,0 Z");
    EXPECT_EQ(full360.initialUnitTangent(), Point(1.0, 0.0));
    EXPECT_EQ(full360.finalUnitTangent(), Point(1.0, 0.0));

    // Test multiple degenerate segments at the start
    auto start_degen = string_to_path("M 0,0 L 0,0 H 0 V 0 Q 1,0 1,1");
    EXPECT_EQ(start_degen.initialUnitTangent(), Point(1.0, 0.0));

    // Test multiple degenerate segments at the end
    auto end_degen = string_to_path("M 0,0 L 1,1 H 1 V 1 L 1,1");
    double comp = 1.0 / sqrt(2.0);
    EXPECT_EQ(end_degen.finalUnitTangent(), Point(comp, comp));

    // Test a long and complicated path with both tangents along the positive x-axis.
    auto complicated = string_to_path("M 0,0 H 0 L 1,0 C 2,1 3,2 1,0 L 1,0 H 1 Q 2,3 0,5 H 2");
    EXPECT_EQ(complicated.initialUnitTangent(), Point(1.0, 0.0));
    EXPECT_EQ(complicated.finalUnitTangent(), Point(1.0, 0.0));
}

TEST_F(PathTest, WithoutDegenerates) {
    // Ensure nothing changes when there are no degenerate segments to remove.
    auto plain_open = string_to_path("M 0,0 Q 5,5 10,10");
    EXPECT_EQ(plain_open, plain_open.withoutDegenerateCurves());

    auto closed_nondegen_closing = string_to_path("M 0,0 L 5,5 H 0 Z");
    EXPECT_EQ(closed_nondegen_closing,closed_nondegen_closing.withoutDegenerateCurves());

    // Ensure that a degenerate closing segment is left alone.
    auto closed_degen_closing = string_to_path("M 0,0 L 2,4 H 0 L 0,0 Z");
    EXPECT_EQ(closed_degen_closing, closed_degen_closing.withoutDegenerateCurves());

    // Ensure that a trivial path is left alone (both open and closed).
    auto trivial_open = string_to_path("M 0,0");
    EXPECT_EQ(trivial_open, trivial_open.withoutDegenerateCurves());

    auto trivial_closed = string_to_path("M 0,0 Z");
    EXPECT_EQ(trivial_closed, trivial_closed.withoutDegenerateCurves());

    // Ensure that initial degenerate segments are removed
    auto degen_start = string_to_path("M 0,0 L 0,0 H 0 V 0 Q 5,5 10,10");
    auto degen_start_cleaned = degen_start.withoutDegenerateCurves();
    EXPECT_EQ(degen_start_cleaned, string_to_path("M 0,0 Q 5,5 10,10"));
    EXPECT_NE(degen_start.size(), degen_start_cleaned.size());

    // Ensure that degenerate segments are removed from the middle
    auto degen_middle = string_to_path("M 0,0 L 1,1 H 1 V 1 L 1,1 Q 6,6 10,10");
    auto degen_middle_cleaned = degen_middle.withoutDegenerateCurves();
    EXPECT_EQ(degen_middle_cleaned, string_to_path("M 0,0 L 1,1 Q 6,6 10,10"));
    EXPECT_NE(degen_middle.size(), degen_middle_cleaned.size());

    // Ensure that degenerate segment are removed from the end of an open path
    auto end_open = string_to_path("M 0,0 L 1,1 H 1 V 1 L 1,1");
    auto end_open_cleaned = end_open.withoutDegenerateCurves();
    EXPECT_EQ(end_open_cleaned, string_to_path("M 0,0 L 1,1"));
    EXPECT_NE(end_open.size(), end_open_cleaned.size());

    // Ensure removal of degenerates just before the closing segment
    auto end_nondegen = string_to_path("M 0,0 L 1,1 L 0,1 H 0 V 1 Z");
    auto end_nondegen_cleaned = end_nondegen.withoutDegenerateCurves();
    EXPECT_EQ(end_nondegen_cleaned, string_to_path("M 0,0 L 1,1 L 0,1 Z"));
    EXPECT_NE(end_nondegen.size(), end_nondegen_cleaned.size());
}

/** Test Path::extrema() */
TEST_F(PathTest, GetExtrema) {

    // Circle of radius 4.5 centered at (-4.5, 0).
    auto extrema_x = circle.extrema(X);
    EXPECT_EQ(extrema_x.min_point, Point(-9, 0));
    EXPECT_EQ(extrema_x.max_point, Point( 0, 0));
    EXPECT_DOUBLE_EQ(extrema_x.min_time.asFlatTime(), 1.0);
    EXPECT_DOUBLE_EQ(extrema_x.max_time.asFlatTime(), 0.0);
    EXPECT_EQ(extrema_x.glance_direction_at_min, -1.0);
    EXPECT_EQ(extrema_x.glance_direction_at_max, 1.0);

    auto extrema_y = circle.extrema(Y);
    EXPECT_EQ(extrema_y.min_point, Point(-4.5, -4.5));
    EXPECT_EQ(extrema_y.max_point, Point(-4.5,  4.5));
    EXPECT_DOUBLE_EQ(extrema_y.min_time.asFlatTime(), 1.5);
    EXPECT_DOUBLE_EQ(extrema_y.max_time.asFlatTime(), 0.5);
    EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_min,  1.0);
    EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_max, -1.0);

    // Positively oriented unit square
    extrema_x = square.extrema(X);
    EXPECT_DOUBLE_EQ(extrema_x.min_point[X], 0.0);
    EXPECT_DOUBLE_EQ(extrema_x.max_point[X], 1.0);
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0);
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_max,  1.0);

    extrema_y = square.extrema(Y);
    EXPECT_DOUBLE_EQ(extrema_y.min_point[Y], 0.0);
    EXPECT_DOUBLE_EQ(extrema_y.max_point[Y], 1.0);
    EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_min, 1.0);
    EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_max, -1.0);

    // Path glancing its min X line while going towards negative Y
    auto down_glance = string_to_path("M 1,18 L 0,0 1,-20");
    extrema_x = down_glance.extrema(X);
    EXPECT_EQ(extrema_x.min_point, Point(0, 0));
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0);
    EXPECT_DOUBLE_EQ(extrema_x.min_time.asFlatTime(), 1.0);

    // Similar but not at a node
    auto down_glance_smooth = string_to_path("M 1,20 C 0,20 0,-20 1,-20");
    extrema_x = down_glance_smooth.extrema(X);
    EXPECT_TRUE(are_near(extrema_x.min_point[Y], 0.0));
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0);
    EXPECT_DOUBLE_EQ(extrema_x.min_time.asFlatTime(), 0.5);

    // Path coming down to the min X and then retreating horizontally
    auto retreat = string_to_path("M 1,20 L 0,0 H 5 L 4,-20");
    extrema_x = retreat.extrema(X);
    EXPECT_EQ(extrema_x.min_point, Point(0, 0));
    EXPECT_EQ(extrema_x.max_point, Point(5, 0));
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0);
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_max, -1.0);
    EXPECT_DOUBLE_EQ(extrema_x.min_time.asFlatTime(), 1.0);
    EXPECT_DOUBLE_EQ(extrema_x.max_time.asFlatTime(), 2.0);

    // Perfectly horizontal path
    auto horizontal = string_to_path("M 0,0 H 12");
    extrema_x = horizontal.extrema(X);
    extrema_y = horizontal.extrema(Y);
    EXPECT_EQ(extrema_x.min_point, Point(0, 0));
    EXPECT_EQ(extrema_x.max_point, Point(12, 0));
    EXPECT_DOUBLE_EQ(extrema_y.min_point[Y], 0.0);
    EXPECT_DOUBLE_EQ(extrema_y.max_point[Y], 0.0);
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, 0.0);
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_max, 0.0);
    EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_min, 1.0);
    EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_max, 1.0);
    EXPECT_DOUBLE_EQ(extrema_x.min_time.asFlatTime(), 0.0);
    EXPECT_DOUBLE_EQ(extrema_x.max_time.asFlatTime(), 1.0);

    // Perfectly vertical path
    auto vertical = string_to_path("M 0,0 V 42");
    extrema_y = vertical.extrema(Y);
    extrema_x = vertical.extrema(X);
    EXPECT_DOUBLE_EQ(extrema_x.min_point[Y], 0.0);
    EXPECT_DOUBLE_EQ(extrema_x.max_point[Y], 0.0);
    EXPECT_EQ(extrema_y.min_point, Point(0, 0));
    EXPECT_EQ(extrema_y.max_point, Point(0, 42));
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, 1.0);
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_max, 1.0);
    EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_min, 0.0);
    EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_max, 0.0);
    EXPECT_DOUBLE_EQ(extrema_y.min_time.asFlatTime(), 0.0);
    EXPECT_DOUBLE_EQ(extrema_y.max_time.asFlatTime(), 1.0);

    // Detect downward glance at the closing point (degenerate closing segment)
    auto closed = string_to_path("M 0,0 L 1,-2 H 3 V 5 H 1 L 0,0 Z");
    extrema_x = closed.extrema(X);
    EXPECT_EQ(extrema_x.min_point, Point(0, 0));
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0);

    // Same but with a non-degenerate closing segment
    auto closed_nondegen = string_to_path("M 0,0 L 1,-2 H 3 V 5 H 1 Z");
    extrema_x = closed_nondegen.extrema(X);
    EXPECT_EQ(extrema_x.min_point, Point(0, 0));
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0);

    // Collapsed Bezier not glancing up nor down
    auto collapsed = string_to_path("M 10, 0 Q -10 0 10, 0");
    extrema_x = collapsed.extrema(X);
    EXPECT_EQ(extrema_x.min_point, Point(0, 0));
    EXPECT_EQ(extrema_x.max_point, Point(10, 0));
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, 0.0);
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_max, 0.0);

    // Degenerate segments at min X
    auto degen = string_to_path("M 0.01,20 L 0, 0 H 0 V 0 L 0,0 V 0 L 0.02 -30");
    extrema_x = degen.extrema(X);
    EXPECT_EQ(extrema_x.min_point, Point(0, 0));
    EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0);
}

/** Regression test for issue https://gitlab.com/inkscape/lib2geom/-/issues/50 */
TEST_F(PathTest, PizzaSlice)
{
    auto pv = parse_svg_path("M 0 0 L 0.30901699437494745 0.9510565162951535 "
                             "A 1 1 0 0 1 -0.8090169943749473 0.5877852522924732 z");
    auto &sector = pv[0];
    Path piece;
    EXPECT_NO_THROW(piece = sector.portion(PathTime(0, 0.0), PathTime(2, 0.0), false));
    EXPECT_FALSE(piece.closed());
    EXPECT_TRUE(piece.size() == 2 ||
               (piece.size() == 3 && piece[2].isDegenerate()));
    EXPECT_EQ(piece.finalPoint(), Point(-0.8090169943749473, 0.5877852522924732));

    // Test slicing in the middle of an arc and past its end
    pv = parse_svg_path("M 0,0 H 1 A 1,1 0 0 1 0.3080657835086775,0.9513650577098072 z");
    EXPECT_NO_THROW(piece = pv[0].portion(PathTime(1, 0.5), PathTime(2, 1.0)));
    EXPECT_FALSE(piece.closed());
    EXPECT_EQ(piece.finalPoint(), pv[0].finalPoint());

    // Test slicing from before the start to a point on the arc
    EXPECT_NO_THROW(piece = pv[0].portion(PathTime(0, 0.5), PathTime(1, 0.5)));
    EXPECT_FALSE(piece.closed());
    EXPECT_EQ(piece.initialPoint(), pv[0].pointAt(PathTime(0, 0.5)));
    EXPECT_EQ(piece.finalPoint(), pv[0].pointAt(PathTime(1, 0.5)));

    // Test slicing a part of the arc
    EXPECT_NO_THROW(piece = pv[0].portion(PathTime(1, 0.25), PathTime(1, 0.75)));
    EXPECT_FALSE(piece.closed());
    EXPECT_EQ(piece.size(), 1);

    // Test slicing in reverse
    EXPECT_NO_THROW(piece = pv[0].portion(PathTime(2, 1.0), PathTime(1, 0.5)));
    EXPECT_FALSE(piece.closed());
    EXPECT_EQ(piece.finalPoint(), pv[0].pointAt(PathTime(1, 0.5)));

    EXPECT_NO_THROW(piece = pv[0].portion(PathTime(1, 0.5), PathTime(0, 0.5)));
    EXPECT_FALSE(piece.closed());
    EXPECT_EQ(piece.initialPoint(), pv[0].pointAt(PathTime(1, 0.5)));
    EXPECT_EQ(piece.finalPoint(), pv[0].pointAt(PathTime(0, 0.5)));

    EXPECT_NO_THROW(piece = pv[0].portion(PathTime(1, 0.75), PathTime(1, 0.25)));
    EXPECT_FALSE(piece.closed());
    EXPECT_EQ(piece.size(), 1);
}

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :