1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
/*---------------------------------------------------------------
* Copyright (c) 1999,2000,2001,2002,2003
* The Board of Trustees of the University of Illinois
* All Rights Reserved.
*---------------------------------------------------------------
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software (Iperf) and associated
* documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute,
* sublicense, and/or sell copies of the Software, and to permit
* persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
*
* Redistributions of source code must retain the above
* copyright notice, this list of conditions and
* the following disclaimers.
*
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimers in the documentation and/or other materials
* provided with the distribution.
*
*
* Neither the names of the University of Illinois, NCSA,
* nor the names of its contributors may be used to endorse
* or promote products derived from this Software without
* specific prior written permission.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE CONTIBUTORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
* ________________________________________________________________
* National Laboratory for Applied Network Research
* National Center for Supercomputing Applications
* University of Illinois at Urbana-Champaign
* http://www.ncsa.uiuc.edu
* ________________________________________________________________
*
* delay.c
* by Mark Gates <mgates@nlanr.net>
* updates
* by Robert J. McMahon <rmcmahon@broadcom.com> <rjmcmahon@rjmcmahon.com>
* -------------------------------------------------------------------
* attempts at accurate microsecond delays
* ------------------------------------------------------------------- */
#include "headers.h"
#include "util.h"
#include "delay.h"
#include "Thread.h"
#include <math.h>
#define MILLION 1000000
#define BILLION 1000000000
/* -------------------------------------------------------------------
* A micro-second delay function
* o Use a busy loop or nanosleep
*
* Some notes:
* o clock nanosleep with a relative is preferred (see man page for why)
* o clock_gettime() (if available) is preferred over gettimeofday()
* as it give nanosecond resolution and should be more efficient.
* It also supports CLOCK_MONOTONIC and CLOCK_MONOTONIC_RAW
* though CLOCK_REALTIME is being used by the code.
* o This code does not use Timestamp object, as the goal of these
* functions is accurate delays (vs accurate timestamps.)
* o The syscalls such as nanosleep guarantee at least the request time
* and can and will delay longer, particularly due to things like context
* switching, causing the delay to lose accuracy
* o Kalman filtering is used to predict delay error which in turn
* is used to adjust the delay, hopefully mitigating the above.
* Note: This can cause the delay to return faster than the request,
* i.e. the *at least* guarantee is not preserved for the kalman
* adjusted delay calls.
* o Remember, the Client is keeping a running average delay for the
* thread so errors in delay will also be adjusted there. (Assuming
* it's possible. It's not really possible at top line link rates
* because lost time can't be made up for by speeding up the transmits.
* Hence, don't lose time with delay calls which error on the side of
* taking too long. Kalman should help much here.)
*
* POSIX nanosleep(). This allows a higher timing resolution
* (under Linux e.g. it uses hrtimers), does not affect any signals,
* and will use up remaining time when interrupted.
* ------------------------------------------------------------------- */
void delay_loop(unsigned long usec)
{
#ifdef HAVE_CLOCK_NANOSLEEP
{
struct timespec res;
res.tv_sec = usec/MILLION;
res.tv_nsec = (usec * 1000) % BILLION;
#ifndef WIN32
clock_nanosleep(CLOCK_MONOTONIC, 0, &res, NULL);
#else
clock_nanosleep(0, 0, &res, NULL);
#endif
}
#else
#ifdef HAVE_KALMAN
delay_kalman(usec);
#else
#ifdef HAVE_NANOSLEEP
delay_nanosleep(usec);
#else
delay_busyloop(usec);
#endif
#endif
#endif
}
int clock_usleep (struct timeval *request) {
int rc = 0;
#if HAVE_THREAD_DEBUG
thread_debug("Thread called clock_usleep() until %ld.%ld", request->tv_sec, request->tv_usec);
#endif
#ifdef HAVE_CLOCK_NANOSLEEP
struct timespec tmp;
tmp.tv_sec = request->tv_sec;
tmp.tv_nsec = request->tv_usec * 1000;
// Cygwin systems have an issue with CLOCK_MONOTONIC
#if defined(CLOCK_MONOTONIC) && !defined(WIN32)
rc = clock_nanosleep(CLOCK_MONOTONIC, 0, &tmp, NULL);
#else
rc = clock_nanosleep(0, 0, &tmp, NULL);
#endif
if (rc) {
fprintf(stderr, "failed clock_nanosleep()=%d\n", rc);
}
#else
struct timeval now;
struct timeval next = *request;
#ifdef HAVE_CLOCK_GETTIME
struct timespec t1;
clock_gettime(CLOCK_REALTIME, &t1);
now.tv_sec = t1.tv_sec;
now.tv_usec = t1.tv_nsec / 1000;
#else
gettimeofday(&now, NULL);
#endif
double delta_usecs;
if ((delta_usecs = TimeDifference(next, now)) > 0.0) {
delay_loop(delta_usecs);
}
#endif
return rc;
}
int clock_usleep_abstime (struct timeval *request) {
int rc = 0;
#if defined(HAVE_CLOCK_NANOSLEEP) && defined(TIMER_ABSTIME) && !defined(WIN32)
struct timespec tmp;
tmp.tv_sec = request->tv_sec;
tmp.tv_nsec = request->tv_usec * 1000;
rc = clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &tmp, NULL);
if (rc) {
fprintf(stderr, "failed clock_nanosleep()=%d\n", rc);
}
#else
struct timeval now;
struct timeval next = *request;
#ifdef HAVE_CLOCK_GETTIME
struct timespec t1;
clock_gettime(CLOCK_REALTIME, &t1);
now.tv_sec = t1.tv_sec;
now.tv_usec = t1.tv_nsec / 1000;
#else
gettimeofday(&now, NULL);
#endif
double delta_usecs;
if ((delta_usecs = (1e6 * TimeDifference(next, now))) > 0.0) {
delay_loop(delta_usecs);
}
#endif
return rc;
}
#ifdef HAVE_NANOSLEEP
// Can use the nanosleep syscall suspending the thread
void delay_nanosleep (unsigned long usec) {
struct timespec requested, remaining;
requested.tv_sec = 0;
requested.tv_nsec = usec * 1000L;
// Note, signals will cause the nanosleep
// to return early. That's fine.
nanosleep(&requested, &remaining);
}
#endif
#if defined (HAVE_NANOSLEEP) || defined (HAVE_CLOCK_GETTIME)
static void timespec_add_ulong (struct timespec *tv0, unsigned long value) {
tv0->tv_sec += (value / BILLION);
tv0->tv_nsec += (value % BILLION);
if (tv0->tv_nsec >= BILLION) {
tv0->tv_sec++;
tv0->tv_nsec -= BILLION;
}
}
#endif
#ifdef HAVE_KALMAN
// Kalman versions attempt to support delay request
// accuracy over a minimum guaranteed delay by
// prediciting the delay error. This is
// the basic recursive algorithm.
static void kalman_update (struct kalman_state *state, double measurement) {
//prediction update
state->p = state->p + state->q;
//measurement update
state->k = state->p / (state->p + state->r);
state->x = state->x + (state->k * (measurement - state->x));
state->p = (1 - state->k) * state->p;
}
#endif
#ifdef HAVE_CLOCK_GETTIME
// Delay calls for systems with clock_gettime
// Working units are nanoseconds and structures are timespec
static void timespec_add_double (struct timespec *tv0, double value) {
tv0->tv_nsec += (unsigned long) value;
if (tv0->tv_nsec >= BILLION) {
tv0->tv_sec++;
tv0->tv_nsec -= BILLION;
}
}
// tv1 assumed greater than tv0
static double timespec_diff (struct timespec tv1, struct timespec tv0) {
double result;
if (tv1.tv_nsec < tv0.tv_nsec) {
tv1.tv_nsec += BILLION;
tv1.tv_sec--;
}
result = (double) (((tv1.tv_sec - tv0.tv_sec) * BILLION) + (tv1.tv_nsec - tv0.tv_nsec));
return result;
}
static void timespec_add( struct timespec *tv0, struct timespec *tv1)
{
tv0->tv_sec += tv1->tv_sec;
tv0->tv_nsec += tv1->tv_nsec;
if ( tv0->tv_nsec >= BILLION ) {
tv0->tv_nsec -= BILLION;
tv0->tv_sec++;
}
}
static inline
int timespec_greaterthan(struct timespec tv1, struct timespec tv0) {
if (tv1.tv_sec > tv0.tv_sec || \
((tv0.tv_sec == tv1.tv_sec) && (tv1.tv_nsec > tv0.tv_nsec))) {
return 1;
} else {
return 0;
}
}
// A cpu busy loop for systems with clock_gettime
void delay_busyloop (unsigned long usec) {
struct timespec t1, t2;
clock_gettime(CLOCK_REALTIME, &t1);
timespec_add_ulong(&t1, (usec * 1000L));
while (1) {
clock_gettime(CLOCK_REALTIME, &t2);
if (timespec_greaterthan(t2, t1))
break;
}
}
// Kalman routines for systems with clock_gettime
#ifdef HAVE_KALMAN
// Request units is microseconds
// Adjust units is nanoseconds
void delay_kalman (unsigned long usec) {
struct timespec t1, t2, finishtime, requested={0,0}, remaining;
double nsec_adjusted, err;
static struct kalman_state kalmanerr={
0.00001, //q process noise covariance
0.1, //r measurement noise covariance
0.0, //x value, error predictio (units nanoseconds)
1, //p estimation error covariance
0.75 //k kalman gain
};
// Get the current clock
clock_gettime(CLOCK_REALTIME, &t1);
// Perform the kalman adjust per the predicted delay error
nsec_adjusted = (usec * 1000.0) - kalmanerr.x;
// Set a timespec to be used by the nanosleep
// as well as for the finished time calculation
timespec_add_double(&requested, nsec_adjusted);
// Set the finish time in timespec format
finishtime = t1;
timespec_add(&finishtime, &requested);
# ifdef HAVE_NANOSLEEP
// Don't call nanosleep for values less than 10 microseconds
// as the syscall is too expensive. Let the busy loop
// provide the delay for times under that.
if (nsec_adjusted > 10000) {
nanosleep(&requested, &remaining);
}
# endif
while (1) {
clock_gettime(CLOCK_REALTIME, &t2);
if (timespec_greaterthan(t2, finishtime))
break;
}
// Compute the delay error in units of nanoseconds
// and cast to type double
err = (timespec_diff(t2, t1) - (usec * 1000));
// printf("req: %ld adj: %f err: %.5f (ns)\n", usec, nsec_adjusted, kalmanerr.x);
kalman_update(&kalmanerr, err);
}
#endif // HAVE_KALMAN
#else
// Sadly, these systems must use the not so efficient gettimeofday()
// and working units are microseconds, struct is timeval
static void timeval_add_ulong (struct timeval *tv0, unsigned long value) {
tv0->tv_usec += value;
if (tv0->tv_usec >= MILLION) {
tv0->tv_sec++;
tv0->tv_usec -= MILLION;
}
}
static inline
int timeval_greaterthan(struct timeval tv1, struct timeval tv0) {
if (tv1.tv_sec > tv0.tv_sec || \
((tv0.tv_sec == tv1.tv_sec) && (tv1.tv_usec > tv0.tv_usec))) {
return 1;
} else {
return 0;
}
}
// tv1 assumed greater than tv0
static double timeval_diff (struct timeval tv1, struct timeval tv0) {
double result;
if (tv1.tv_usec < tv0.tv_usec) {
tv1.tv_usec += MILLION;
tv1.tv_sec--;
}
result = (double) (((tv1.tv_sec - tv0.tv_sec) * MILLION) + (tv1.tv_usec - tv0.tv_usec));
return result;
}
void delay_busyloop (unsigned long usec) {
struct timeval t1, t2;
gettimeofday( &t1, NULL );
timeval_add_ulong(&t1, usec);
while (1) {
gettimeofday( &t2, NULL );
if (timeval_greaterthan(t2, t1))
break;
}
}
#ifdef HAVE_KALMAN
// Request units is microseconds
// Adjust units is microseconds
void delay_kalman (unsigned long usec) {
struct timeval t1, t2, finishtime;
long usec_adjusted;
double err;
static struct kalman_state kalmanerr={
0.00001, //q process noise covariance
0.1, //r measurement noise covariance
0.0, //x value, error predictio (units nanoseconds)
1, //p estimation error covariance
0.25 //k kalman gain
};
// Get the current clock
gettimeofday( &t1, NULL );
// Perform the kalman adjust per the predicted delay error
if (kalmanerr.x > 0) {
usec_adjusted = usec - (long) floor(kalmanerr.x);
if (usec_adjusted < 0)
usec_adjusted = 0;
}
else
usec_adjusted = usec + (long) floor(kalmanerr.x);
// Set the finishtime
finishtime = t1;
timeval_add_ulong(&finishtime, usec_adjusted);
# ifdef HAVE_NANOSLEEP
// Don't call nanosleep for values less than 10 microseconds
// as the syscall is too expensive. Let the busy loop
// provide the delay for times under that.
if (usec_adjusted > 10) {
struct timespec requested={0,0}, remaining;
timespec_add_ulong(&requested, (usec_adjusted * 1000));
nanosleep(&requested, &remaining);
}
# endif
while (1) {
gettimeofday(&t2, NULL );
if (timeval_greaterthan(t2, finishtime))
break;
}
// Compute the delay error in units of microseconds
// and cast to type double
err = (double)(timeval_diff(t2, t1) - usec);
// printf("req: %ld adj: %ld err: %.5f (us)\n", usec, usec_adjusted, kalmanerr.x);
kalman_update(&kalmanerr, err);
}
#endif // Kalman
#endif
|