/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * ss.c "sockstat", socket statistics * * Authors: Alexey Kuznetsov, */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ss_util.h" #include "utils.h" #include "ll_map.h" #include "libnetlink.h" #include "namespace.h" #include "version.h" #include "rt_names.h" #include "cg_map.h" #include "selinux.h" #include #include #include /* for MAX_ADDR_LEN */ #include #include #include #include #include #include #include #include #include #include #include #include #if HAVE_RPC #include #include #endif /* AF_VSOCK/PF_VSOCK is only provided since glibc 2.18 */ #ifndef PF_VSOCK #define PF_VSOCK 40 #endif #ifndef AF_VSOCK #define AF_VSOCK PF_VSOCK #endif #ifndef IPPROTO_MPTCP #define IPPROTO_MPTCP 262 #endif #define BUF_CHUNK (1024 * 1024) /* Buffer chunk allocation size */ #define BUF_CHUNKS_MAX 5 /* Maximum number of allocated buffer chunks */ #define LEN_ALIGN(x) (((x) + 1) & ~1) int preferred_family = AF_UNSPEC; static int show_options; int show_details; static int show_processes; static int show_threads; static int show_mem; static int show_tcpinfo; static int show_bpf; static int show_proc_ctx; static int show_sock_ctx; static int show_header = 1; static int follow_events; static int sctp_ino; static int show_tipcinfo; static int show_tos; static int show_cgroup; static int show_inet_sockopt; int oneline; enum col_id { COL_NETID, COL_STATE, COL_RECVQ, COL_SENDQ, COL_ADDR, COL_SERV, COL_RADDR, COL_RSERV, COL_PROC, COL_EXT, COL_MAX }; enum col_align { ALIGN_LEFT, ALIGN_CENTER, ALIGN_RIGHT }; struct column { const enum col_align align; const char *header; const char *ldelim; int disabled; int width; /* Calculated, including additional layout spacing */ int max_len; /* Measured maximum field length in this column */ }; static struct column columns[] = { { ALIGN_LEFT, "Netid", "", 0, 0, 0 }, { ALIGN_LEFT, "State", " ", 0, 0, 0 }, { ALIGN_LEFT, "Recv-Q", " ", 0, 0, 0 }, { ALIGN_LEFT, "Send-Q", " ", 0, 0, 0 }, { ALIGN_RIGHT, "Local Address:", " ", 0, 0, 0 }, { ALIGN_LEFT, "Port", "", 0, 0, 0 }, { ALIGN_RIGHT, "Peer Address:", " ", 0, 0, 0 }, { ALIGN_LEFT, "Port", "", 0, 0, 0 }, { ALIGN_LEFT, "Process", "", 0, 0, 0 }, { ALIGN_LEFT, "", "", 0, 0, 0 }, }; static struct column *current_field = columns; /* Output buffer: chained chunks of BUF_CHUNK bytes. Each field is written to * the buffer as a variable size token. A token consists of a 16 bits length * field, followed by a string which is not NULL-terminated. * * A new chunk is allocated and linked when the current chunk doesn't have * enough room to store the current token as a whole. */ struct buf_chunk { struct buf_chunk *next; /* Next chained chunk */ char *end; /* Current end of content */ char data[0]; }; struct buf_token { uint16_t len; /* Data length, excluding length descriptor */ char data[0]; }; static struct { struct buf_token *cur; /* Position of current token in chunk */ struct buf_chunk *head; /* First chunk */ struct buf_chunk *tail; /* Current chunk */ int chunks; /* Number of allocated chunks */ } buffer; static const char *TCP_PROTO = "tcp"; static const char *UDP_PROTO = "udp"; #ifdef HAVE_RPC static const char *TCP6_PROTO = "tcp6"; static const char *UDP6_PROTO = "udp6"; static const char *SCTP_PROTO = "sctp"; #endif static const char *RAW_PROTO = "raw"; static const char *dg_proto; enum { TCP_DB, MPTCP_DB, DCCP_DB, UDP_DB, RAW_DB, UNIX_DG_DB, UNIX_ST_DB, UNIX_SQ_DB, PACKET_DG_DB, PACKET_R_DB, NETLINK_DB, SCTP_DB, VSOCK_ST_DB, VSOCK_DG_DB, TIPC_DB, XDP_DB, MAX_DB }; #define PACKET_DBM ((1<states |= default_dbs[db].states; f->dbs |= 1 << db; } else { f->dbs &= ~(1 << db); } do_default = 0; } static int filter_db_parse(struct filter *f, const char *s) { const struct { const char *name; int dbs[MAX_DB + 1]; } db_name_tbl[] = { #define ENTRY(name, ...) { #name, { __VA_ARGS__, MAX_DB } } ENTRY(all, UDP_DB, DCCP_DB, TCP_DB, MPTCP_DB, RAW_DB, UNIX_ST_DB, UNIX_DG_DB, UNIX_SQ_DB, PACKET_R_DB, PACKET_DG_DB, NETLINK_DB, SCTP_DB, VSOCK_ST_DB, VSOCK_DG_DB, XDP_DB), ENTRY(inet, UDP_DB, DCCP_DB, TCP_DB, MPTCP_DB, SCTP_DB, RAW_DB), ENTRY(udp, UDP_DB), ENTRY(dccp, DCCP_DB), ENTRY(tcp, TCP_DB), ENTRY(mptcp, MPTCP_DB), ENTRY(sctp, SCTP_DB), ENTRY(raw, RAW_DB), ENTRY(unix, UNIX_ST_DB, UNIX_DG_DB, UNIX_SQ_DB), ENTRY(unix_stream, UNIX_ST_DB), ENTRY(u_str, UNIX_ST_DB), /* alias for unix_stream */ ENTRY(unix_dgram, UNIX_DG_DB), ENTRY(u_dgr, UNIX_DG_DB), /* alias for unix_dgram */ ENTRY(unix_seqpacket, UNIX_SQ_DB), ENTRY(u_seq, UNIX_SQ_DB), /* alias for unix_seqpacket */ ENTRY(packet, PACKET_R_DB, PACKET_DG_DB), ENTRY(packet_raw, PACKET_R_DB), ENTRY(p_raw, PACKET_R_DB), /* alias for packet_raw */ ENTRY(packet_dgram, PACKET_DG_DB), ENTRY(p_dgr, PACKET_DG_DB), /* alias for packet_dgram */ ENTRY(netlink, NETLINK_DB), ENTRY(tipc, TIPC_DB), ENTRY(vsock, VSOCK_ST_DB, VSOCK_DG_DB), ENTRY(vsock_stream, VSOCK_ST_DB), ENTRY(v_str, VSOCK_ST_DB), /* alias for vsock_stream */ ENTRY(vsock_dgram, VSOCK_DG_DB), ENTRY(v_dgr, VSOCK_DG_DB), /* alias for vsock_dgram */ ENTRY(xdp, XDP_DB), #undef ENTRY }; bool enable = true; unsigned int i; const int *dbp; if (s[0] == '!') { enable = false; s++; } for (i = 0; i < ARRAY_SIZE(db_name_tbl); i++) { if (strcmp(s, db_name_tbl[i].name)) continue; for (dbp = db_name_tbl[i].dbs; *dbp != MAX_DB; dbp++) filter_db_set(f, *dbp, enable); return 0; } return -1; } static void filter_af_set(struct filter *f, int af) { f->states |= default_afs[af].states; f->families |= FAMILY_MASK(af); do_default = 0; preferred_family = af; } static int filter_af_get(struct filter *f, int af) { return !!(f->families & FAMILY_MASK(af)); } static void filter_states_set(struct filter *f, int states) { if (states) f->states = states; } static void filter_merge_defaults(struct filter *f) { int db; int af; for (db = 0; db < MAX_DB; db++) { if (!(f->dbs & (1 << db))) continue; if (!(default_dbs[db].families & f->families)) f->families |= default_dbs[db].families; } for (af = 0; af < AF_MAX; af++) { if (!(f->families & FAMILY_MASK(af))) continue; if (!(default_afs[af].dbs & f->dbs)) f->dbs |= default_afs[af].dbs; } } static FILE *generic_proc_open(const char *env, const char *name) { const char *p = getenv(env); char store[128]; if (!p) { p = getenv("PROC_ROOT") ? : "/proc"; snprintf(store, sizeof(store)-1, "%s/%s", p, name); p = store; } return fopen(p, "r"); } #define net_tcp_open() generic_proc_open("PROC_NET_TCP", "net/tcp") #define net_tcp6_open() generic_proc_open("PROC_NET_TCP6", "net/tcp6") #define net_udp_open() generic_proc_open("PROC_NET_UDP", "net/udp") #define net_udp6_open() generic_proc_open("PROC_NET_UDP6", "net/udp6") #define net_raw_open() generic_proc_open("PROC_NET_RAW", "net/raw") #define net_raw6_open() generic_proc_open("PROC_NET_RAW6", "net/raw6") #define net_unix_open() generic_proc_open("PROC_NET_UNIX", "net/unix") #define net_packet_open() generic_proc_open("PROC_NET_PACKET", \ "net/packet") #define net_netlink_open() generic_proc_open("PROC_NET_NETLINK", \ "net/netlink") #define net_sockstat_open() generic_proc_open("PROC_NET_SOCKSTAT", \ "net/sockstat") #define net_sockstat6_open() generic_proc_open("PROC_NET_SOCKSTAT6", \ "net/sockstat6") #define net_snmp_open() generic_proc_open("PROC_NET_SNMP", "net/snmp") #define ephemeral_ports_open() generic_proc_open("PROC_IP_LOCAL_PORT_RANGE", \ "sys/net/ipv4/ip_local_port_range") struct user_ent { struct user_ent *next; unsigned int ino; int pid; int tid; int fd; char *task; char *task_ctx; char *socket_ctx; }; #define USER_ENT_HASH_SIZE 256 static struct user_ent *user_ent_hash[USER_ENT_HASH_SIZE]; static int user_ent_hashfn(unsigned int ino) { int val = (ino >> 24) ^ (ino >> 16) ^ (ino >> 8) ^ ino; return val & (USER_ENT_HASH_SIZE - 1); } static void user_ent_add(unsigned int ino, char *task, int pid, int tid, int fd, char *task_ctx, char *sock_ctx) { struct user_ent *p, **pp; p = malloc(sizeof(struct user_ent)); if (!p) { fprintf(stderr, "ss: failed to malloc buffer\n"); abort(); } p->next = NULL; p->ino = ino; p->pid = pid; p->tid = tid; p->fd = fd; p->task = strdup(task); p->task_ctx = strdup(task_ctx); p->socket_ctx = strdup(sock_ctx); pp = &user_ent_hash[user_ent_hashfn(ino)]; p->next = *pp; *pp = p; } #define MAX_PATH_LEN 1024 static void user_ent_hash_build_task(char *path, int pid, int tid) { const char *no_ctx = "unavailable"; char task[16] = {'\0', }; char stat[MAX_PATH_LEN]; int pos_id, pos_fd; char *task_context; struct dirent *d; DIR *dir; if (getpidcon(tid, &task_context) != 0) task_context = strdup(no_ctx); pos_id = strlen(path); /* $PROC_ROOT/$ID/ */ snprintf(path + pos_id, MAX_PATH_LEN - pos_id, "fd/"); dir = opendir(path); if (!dir) { freecon(task_context); return; } pos_fd = strlen(path); /* $PROC_ROOT/$ID/fd/ */ while ((d = readdir(dir)) != NULL) { const char *pattern = "socket:["; char *sock_context; unsigned int ino; ssize_t link_len; char lnk[64]; int fd; if (sscanf(d->d_name, "%d%*c", &fd) != 1) continue; snprintf(path + pos_fd, MAX_PATH_LEN - pos_fd, "%d", fd); link_len = readlink(path, lnk, sizeof(lnk) - 1); if (link_len == -1) continue; lnk[link_len] = '\0'; if (strncmp(lnk, pattern, strlen(pattern))) continue; if (sscanf(lnk, "socket:[%u]", &ino) != 1) continue; if (getfilecon(path, &sock_context) <= 0) sock_context = strdup(no_ctx); if (task[0] == '\0') { FILE *fp; strlcpy(stat, path, pos_id + 1); snprintf(stat + pos_id, sizeof(stat) - pos_id, "stat"); fp = fopen(stat, "r"); if (fp) { if (fscanf(fp, "%*d (%[^)])", task) < 1) { ; /* ignore */ } fclose(fp); } } user_ent_add(ino, task, pid, tid, fd, task_context, sock_context); freecon(sock_context); } freecon(task_context); closedir(dir); } static void user_ent_destroy(void) { struct user_ent *p, *p_next; int cnt = 0; while (cnt != USER_ENT_HASH_SIZE) { p = user_ent_hash[cnt]; while (p) { free(p->task); free(p->task_ctx); free(p->socket_ctx); p_next = p->next; free(p); p = p_next; } cnt++; } } static void user_ent_hash_build(void) { const char *root = getenv("PROC_ROOT") ? : "/proc/"; char name[MAX_PATH_LEN]; struct dirent *d; int nameoff; DIR *dir; strlcpy(name, root, sizeof(name)); if (strlen(name) == 0 || name[strlen(name) - 1] != '/') strcat(name, "/"); nameoff = strlen(name); dir = opendir(name); if (!dir) return; while ((d = readdir(dir)) != NULL) { int pid; if (sscanf(d->d_name, "%d%*c", &pid) != 1) continue; snprintf(name + nameoff, sizeof(name) - nameoff, "%d/", pid); user_ent_hash_build_task(name, pid, pid); if (show_threads) { struct dirent *task_d; DIR *task_dir; snprintf(name + nameoff, sizeof(name) - nameoff, "%d/task/", pid); task_dir = opendir(name); if (!task_dir) continue; while ((task_d = readdir(task_dir)) != NULL) { int tid; if (sscanf(task_d->d_name, "%d%*c", &tid) != 1) continue; if (tid == pid) continue; snprintf(name + nameoff, sizeof(name) - nameoff, "%d/", tid); user_ent_hash_build_task(name, pid, tid); } closedir(task_dir); } } closedir(dir); } enum entry_types { USERS, PROC_CTX, PROC_SOCK_CTX }; #define ENTRY_BUF_SIZE 512 static int find_entry(unsigned int ino, char **buf, int type) { struct user_ent *p; int cnt = 0; char *ptr; char thread_info[16] = {'\0', }; char *new_buf; int len, new_buf_len; int buf_used = 0; int buf_len = 0; if (!ino) return 0; p = user_ent_hash[user_ent_hashfn(ino)]; ptr = *buf = NULL; while (p) { if (p->ino != ino) goto next; while (1) { ptr = *buf + buf_used; if (show_threads) snprintf(thread_info, sizeof(thread_info), "tid=%d,", p->tid); switch (type) { case USERS: len = snprintf(ptr, buf_len - buf_used, "(\"%s\",pid=%d,%sfd=%d),", p->task, p->pid, thread_info, p->fd); break; case PROC_CTX: len = snprintf(ptr, buf_len - buf_used, "(\"%s\",pid=%d,%sproc_ctx=%s,fd=%d),", p->task, p->pid, thread_info, p->task_ctx, p->fd); break; case PROC_SOCK_CTX: len = snprintf(ptr, buf_len - buf_used, "(\"%s\",pid=%d,%sproc_ctx=%s,fd=%d,sock_ctx=%s),", p->task, p->pid, thread_info, p->task_ctx, p->fd, p->socket_ctx); break; default: fprintf(stderr, "ss: invalid type: %d\n", type); abort(); } if (len < 0 || len >= buf_len - buf_used) { new_buf_len = buf_len + ENTRY_BUF_SIZE; new_buf = realloc(*buf, new_buf_len); if (!new_buf) { fprintf(stderr, "ss: failed to malloc buffer\n"); abort(); } *buf = new_buf; buf_len = new_buf_len; continue; } else { buf_used += len; break; } } cnt++; next: p = p->next; } if (buf_used) { ptr = *buf + buf_used; ptr[-1] = '\0'; } return cnt; } static unsigned long long cookie_sk_get(const uint32_t *cookie) { return (((unsigned long long)cookie[1] << 31) << 1) | cookie[0]; } static const char *sctp_sstate_name[] = { [SCTP_STATE_CLOSED] = "CLOSED", [SCTP_STATE_COOKIE_WAIT] = "COOKIE_WAIT", [SCTP_STATE_COOKIE_ECHOED] = "COOKIE_ECHOED", [SCTP_STATE_ESTABLISHED] = "ESTAB", [SCTP_STATE_SHUTDOWN_PENDING] = "SHUTDOWN_PENDING", [SCTP_STATE_SHUTDOWN_SENT] = "SHUTDOWN_SENT", [SCTP_STATE_SHUTDOWN_RECEIVED] = "SHUTDOWN_RECEIVED", [SCTP_STATE_SHUTDOWN_ACK_SENT] = "ACK_SENT", }; static const char * const stype_nameg[] = { "UNKNOWN", [SOCK_STREAM] = "STREAM", [SOCK_DGRAM] = "DGRAM", [SOCK_RDM] = "RDM", [SOCK_SEQPACKET] = "SEQPACKET", }; struct sockstat { struct sockstat *next; unsigned int type; uint16_t prot; uint16_t raw_prot; inet_prefix local; inet_prefix remote; int lport; int rport; int state; int rq, wq; unsigned int ino; unsigned int uid; int refcnt; unsigned int iface; unsigned long long sk; char *name; char *peer_name; __u32 mark; __u64 cgroup_id; }; struct dctcpstat { unsigned int ce_state; unsigned int alpha; unsigned int ab_ecn; unsigned int ab_tot; bool enabled; }; struct tcpstat { struct sockstat ss; unsigned int timer; unsigned int timeout; int probes; char cong_alg[16]; double rto, ato, rtt, rttvar; int qack, ssthresh, backoff; double send_bps; int snd_wscale; int rcv_wscale; int mss; int rcv_mss; int advmss; unsigned int pmtu; unsigned int cwnd; unsigned int lastsnd; unsigned int lastrcv; unsigned int lastack; double pacing_rate; double pacing_rate_max; double delivery_rate; unsigned long long bytes_acked; unsigned long long bytes_received; unsigned int segs_out; unsigned int segs_in; unsigned int data_segs_out; unsigned int data_segs_in; unsigned int unacked; unsigned int retrans; unsigned int retrans_total; unsigned int lost; unsigned int sacked; unsigned int fackets; unsigned int reordering; unsigned int not_sent; unsigned int delivered; unsigned int delivered_ce; unsigned int dsack_dups; unsigned int reord_seen; double rcv_rtt; double min_rtt; unsigned int rcv_ooopack; unsigned int snd_wnd; unsigned int rcv_wnd; unsigned int rehash; int rcv_space; unsigned int rcv_ssthresh; unsigned long long busy_time; unsigned long long rwnd_limited; unsigned long long sndbuf_limited; unsigned long long bytes_sent; unsigned long long bytes_retrans; bool has_ts_opt; bool has_usec_ts_opt; bool has_sack_opt; bool has_ecn_opt; bool has_ecnseen_opt; bool has_fastopen_opt; bool has_wscale_opt; bool app_limited; struct dctcpstat *dctcp; struct tcp_bbr_info *bbr_info; }; /* SCTP assocs share the same inode number with their parent endpoint. So if we * have seen the inode number before, it must be an assoc instead of the next * endpoint. */ static bool is_sctp_assoc(struct sockstat *s, const char *sock_name) { if (strcmp(sock_name, "sctp")) return false; if (!sctp_ino || sctp_ino != s->ino) return false; return true; } static const char *unix_netid_name(int type) { switch (type) { case SOCK_STREAM: return "u_str"; case SOCK_SEQPACKET: return "u_seq"; case SOCK_DGRAM: default: return "u_dgr"; } } static const char *proto_name(int protocol) { switch (protocol) { case 0: return "raw"; case IPPROTO_UDP: return "udp"; case IPPROTO_TCP: return "tcp"; case IPPROTO_MPTCP: return "mptcp"; case IPPROTO_SCTP: return "sctp"; case IPPROTO_DCCP: return "dccp"; case IPPROTO_ICMPV6: return "icmp6"; } return "???"; } static const char *vsock_netid_name(int type) { switch (type) { case SOCK_STREAM: return "v_str"; case SOCK_DGRAM: return "v_dgr"; default: return "???"; } } static const char *tipc_netid_name(int type) { switch (type) { case SOCK_STREAM: return "ti_st"; case SOCK_DGRAM: return "ti_dg"; case SOCK_RDM: return "ti_rd"; case SOCK_SEQPACKET: return "ti_sq"; default: return "???"; } } /* Allocate and initialize a new buffer chunk */ static struct buf_chunk *buf_chunk_new(void) { struct buf_chunk *new = malloc(BUF_CHUNK); if (!new) abort(); new->next = NULL; /* This is also the last block */ buffer.tail = new; /* Next token will be stored at the beginning of chunk data area, and * its initial length is zero. */ buffer.cur = (struct buf_token *)new->data; buffer.cur->len = 0; new->end = buffer.cur->data; buffer.chunks++; return new; } /* Return available tail room in given chunk */ static int buf_chunk_avail(struct buf_chunk *chunk) { return BUF_CHUNK - offsetof(struct buf_chunk, data) - (chunk->end - chunk->data); } /* Update end pointer and token length, link new chunk if we hit the end of the * current one. Return -EAGAIN if we got a new chunk, caller has to print again. */ static int buf_update(int len) { struct buf_chunk *chunk = buffer.tail; struct buf_token *t = buffer.cur; /* Claim success if new content fits in the current chunk, and anyway * if this is the first token in the chunk: in the latter case, * allocating a new chunk won't help, so we'll just cut the output. */ if ((len < buf_chunk_avail(chunk) && len != -1 /* glibc < 2.0.6 */) || t == (struct buf_token *)chunk->data) { len = min(len, buf_chunk_avail(chunk)); /* Total field length can't exceed 2^16 bytes, cut as needed */ len = min(len, USHRT_MAX - t->len); chunk->end += len; t->len += len; return 0; } /* Content truncated, time to allocate more */ chunk->next = buf_chunk_new(); /* Copy current token over to new chunk, including length descriptor */ memcpy(chunk->next->data, t, sizeof(t->len) + t->len); chunk->next->end += t->len; /* Discard partially written field in old chunk */ chunk->end -= t->len + sizeof(t->len); return -EAGAIN; } /* Append content to buffer as part of the current field */ __attribute__((format(printf, 1, 2))) static void out(const char *fmt, ...) { struct column *f = current_field; va_list args; char *pos; int len; if (f->disabled) return; if (!buffer.head) buffer.head = buf_chunk_new(); again: /* Append to buffer: if we have a new chunk, print again */ pos = buffer.cur->data + buffer.cur->len; va_start(args, fmt); /* Limit to tail room. If we hit the limit, buf_update() will tell us */ len = vsnprintf(pos, buf_chunk_avail(buffer.tail), fmt, args); va_end(args); if (buf_update(len)) goto again; } static int print_left_spacing(struct column *f, int stored, int printed) { int s; if (!f->width || f->align == ALIGN_LEFT) return 0; s = f->width - stored - printed; if (f->align == ALIGN_CENTER) /* If count of total spacing is odd, shift right by one */ s = (s + 1) / 2; if (s > 0) return printf("%*c", s, ' '); return 0; } static void print_right_spacing(struct column *f, int printed) { int s; if (!f->width || f->align == ALIGN_RIGHT) return; s = f->width - printed; if (f->align == ALIGN_CENTER) s /= 2; if (s > 0) printf("%*c", s, ' '); } /* Done with field: update buffer pointer, start new token after current one */ static void field_flush(struct column *f) { struct buf_chunk *chunk; unsigned int pad; if (f->disabled) return; chunk = buffer.tail; pad = buffer.cur->len % 2; if (buffer.cur->len > f->max_len) f->max_len = buffer.cur->len; /* We need a new chunk if we can't store the next length descriptor. * Mind the gap between end of previous token and next aligned position * for length descriptor. */ if (buf_chunk_avail(chunk) - pad < sizeof(buffer.cur->len)) { chunk->end += pad; chunk->next = buf_chunk_new(); return; } buffer.cur = (struct buf_token *)(buffer.cur->data + LEN_ALIGN(buffer.cur->len)); buffer.cur->len = 0; buffer.tail->end = buffer.cur->data; } static int field_is_last(struct column *f) { return f - columns == COL_MAX - 1; } /* Get the next available token in the buffer starting from the current token */ static struct buf_token *buf_token_next(struct buf_token *cur) { struct buf_chunk *chunk = buffer.tail; /* If we reached the end of chunk contents, get token from next chunk */ if (cur->data + LEN_ALIGN(cur->len) == chunk->end) { buffer.tail = chunk = chunk->next; return chunk ? (struct buf_token *)chunk->data : NULL; } return (struct buf_token *)(cur->data + LEN_ALIGN(cur->len)); } /* Free up all allocated buffer chunks */ static void buf_free_all(void) { struct buf_chunk *tmp; for (buffer.tail = buffer.head; buffer.tail; ) { tmp = buffer.tail; buffer.tail = buffer.tail->next; free(tmp); } buffer.head = NULL; buffer.chunks = 0; } /* Get current screen width, returns -1 if TIOCGWINSZ fails */ static int render_screen_width(void) { int width = -1; if (isatty(STDOUT_FILENO)) { struct winsize w; if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &w) != -1) { if (w.ws_col > 0) width = w.ws_col; } } return width; } /* Calculate column width from contents length. If columns don't fit on one * line, break them into the least possible amount of lines and keep them * aligned across lines. Available screen space is equally spread between fields * as additional spacing. */ static void render_calc_width(void) { int screen_width, first, len = 0, linecols = 0; struct column *c, *eol = columns - 1; bool compact_output = false; screen_width = render_screen_width(); if (screen_width == -1) { screen_width = INT_MAX; compact_output = true; } /* First pass: set width for each column to measured content length */ for (first = 1, c = columns; c - columns < COL_MAX; c++) { if (c->disabled) continue; if (!first && c->max_len) c->width = c->max_len + strlen(c->ldelim); else c->width = c->max_len; /* But don't exceed screen size. If we exceed the screen size * for even a single field, it will just start on a line of its * own and then naturally wrap. */ c->width = min(c->width, screen_width); if (c->width) first = 0; } if (compact_output) { /* Compact output, skip extending columns. */ return; } /* Second pass: find out newlines and distribute available spacing */ for (c = columns; c - columns < COL_MAX; c++) { int pad, spacing, rem, last; struct column *tmp; if (!c->width) continue; linecols++; len += c->width; for (last = 1, tmp = c + 1; tmp - columns < COL_MAX; tmp++) { if (tmp->width) { last = 0; break; } } if (!last && len < screen_width) { /* Columns fit on screen so far, nothing to do yet */ continue; } if (len == screen_width) { /* Exact fit, just start with new line */ goto newline; } if (len > screen_width) { /* Screen width exceeded: go back one column */ len -= c->width; c--; linecols--; } /* Distribute remaining space to columns on this line */ pad = screen_width - len; spacing = pad / linecols; rem = pad % linecols; for (tmp = c; tmp > eol; tmp--) { if (!tmp->width) continue; tmp->width += spacing; if (rem) { tmp->width++; rem--; } } newline: /* Line break: reset line counters, mark end-of-line */ eol = c; len = 0; linecols = 0; } } /* Render buffered output with spacing and delimiters, then free up buffers */ static void render(void) { struct buf_token *token; int printed, line_started = 0; struct column *f; if (!buffer.head) return; token = (struct buf_token *)buffer.head->data; /* Ensure end alignment of last token, it wasn't necessarily flushed */ buffer.tail->end += buffer.cur->len % 2; render_calc_width(); /* Rewind and replay */ buffer.tail = buffer.head; f = columns; while (!f->width) f++; while (token) { /* Print left delimiter only if we already started a line */ if (line_started++) printed = printf("%s", f->ldelim); else printed = 0; /* Print field content from token data with spacing */ printed += print_left_spacing(f, token->len, printed); printed += fwrite(token->data, 1, token->len, stdout); print_right_spacing(f, printed); /* Go to next non-empty field, deal with end-of-line */ do { if (field_is_last(f)) { printf("\n"); f = columns; line_started = 0; } else { f++; } } while (f->disabled); token = buf_token_next(token); } /* Deal with final end-of-line when the last non-empty field printed * is not the last field. */ if (line_started) printf("\n"); buf_free_all(); current_field = columns; } /* Move to next field, and render buffer if we reached the maximum number of * chunks, at the last field in a line. */ static void field_next(void) { if (field_is_last(current_field) && buffer.chunks >= BUF_CHUNKS_MAX) { render(); return; } field_flush(current_field); if (field_is_last(current_field)) current_field = columns; else current_field++; } /* Walk through fields and flush them until we reach the desired one */ static void field_set(enum col_id id) { while (id != current_field - columns) field_next(); } /* Print header for all non-empty columns */ static void print_header(void) { while (!field_is_last(current_field)) { if (!current_field->disabled) out("%s", current_field->header); field_next(); } } static void sock_state_print(struct sockstat *s) { const char *sock_name; static const char * const sstate_name[] = { "UNKNOWN", [SS_ESTABLISHED] = "ESTAB", [SS_SYN_SENT] = "SYN-SENT", [SS_SYN_RECV] = "SYN-RECV", [SS_FIN_WAIT1] = "FIN-WAIT-1", [SS_FIN_WAIT2] = "FIN-WAIT-2", [SS_TIME_WAIT] = "TIME-WAIT", [SS_CLOSE] = "UNCONN", [SS_CLOSE_WAIT] = "CLOSE-WAIT", [SS_LAST_ACK] = "LAST-ACK", [SS_LISTEN] = "LISTEN", [SS_CLOSING] = "CLOSING", [SS_NEW_SYN_RECV] = "UNDEF", /* Never returned by kernel */ [SS_BOUND_INACTIVE] = "UNDEF", /* Never returned by kernel */ }; switch (s->local.family) { case AF_UNIX: sock_name = unix_netid_name(s->type); break; case AF_INET: case AF_INET6: sock_name = proto_name(s->type); break; case AF_PACKET: sock_name = s->type == SOCK_RAW ? "p_raw" : "p_dgr"; break; case AF_NETLINK: sock_name = "nl"; break; case AF_TIPC: sock_name = tipc_netid_name(s->type); break; case AF_VSOCK: sock_name = vsock_netid_name(s->type); break; case AF_XDP: sock_name = "xdp"; break; default: sock_name = "unknown"; } if (is_sctp_assoc(s, sock_name)) { field_set(COL_STATE); /* Empty Netid field */ out("`- %s", sctp_sstate_name[s->state]); } else { field_set(COL_NETID); out("%s", sock_name); field_set(COL_STATE); out("%s", sstate_name[s->state]); } field_set(COL_RECVQ); out("%-6d", s->rq); field_set(COL_SENDQ); out("%-6d", s->wq); field_set(COL_ADDR); } static void sock_details_print(struct sockstat *s) { if (s->uid) out(" uid:%u", s->uid); out(" ino:%u", s->ino); out(" sk:%llx", s->sk); if (s->mark) out(" fwmark:0x%x", s->mark); if (s->cgroup_id) out(" cgroup:%s", cg_id_to_path(s->cgroup_id)); } static void sock_addr_print(const char *addr, char *delim, const char *port, const char *ifname) { if (ifname) out("%s" "%%" "%s%s", addr, ifname, delim); else out("%s%s", addr, delim); field_next(); out("%s", port); field_next(); } static const char *print_ms_timer(unsigned int timeout) { static char buf[64]; int secs, msecs, minutes; secs = timeout/1000; minutes = secs/60; secs = secs%60; msecs = timeout%1000; buf[0] = 0; if (minutes) { msecs = 0; snprintf(buf, sizeof(buf)-16, "%dmin", minutes); if (minutes > 9) secs = 0; } if (secs) { if (secs > 9) msecs = 0; sprintf(buf+strlen(buf), "%d%s", secs, msecs ? "." : "sec"); } if (msecs) sprintf(buf+strlen(buf), "%03dms", msecs); return buf; } struct scache { struct scache *next; int port; char *name; const char *proto; }; static struct scache *rlist; #ifdef HAVE_RPC static CLIENT *rpc_client_create(rpcprog_t prog, rpcvers_t vers) { struct netbuf nbuf; struct sockaddr_un saddr; int sock; memset(&saddr, 0, sizeof(saddr)); sock = socket(AF_LOCAL, SOCK_STREAM, 0); if (sock < 0) return NULL; saddr.sun_family = AF_LOCAL; strcpy(saddr.sun_path, _PATH_RPCBINDSOCK); nbuf.len = SUN_LEN(&saddr); nbuf.maxlen = sizeof(struct sockaddr_un); nbuf.buf = &saddr; return clnt_vc_create(sock, &nbuf, prog, vers, 0, 0); } static void init_service_resolver(void) { struct rpcblist *rhead = NULL; struct timeval timeout; struct rpcent *rpc; enum clnt_stat res; CLIENT *client; timeout.tv_sec = 5; timeout.tv_usec = 0; client = rpc_client_create(PMAPPROG, RPCBVERS4); if (!client) return; res = clnt_call(client, RPCBPROC_DUMP, (xdrproc_t)xdr_void, NULL, (xdrproc_t)xdr_rpcblist_ptr, (char *)&rhead, timeout); if (res != RPC_SUCCESS) return; for (; rhead; rhead = rhead->rpcb_next) { char prog[128] = "rpc."; struct scache *c; int hport, lport, ok; c = malloc(sizeof(*c)); if (!c) continue; ok = sscanf(rhead->rpcb_map.r_addr, "::.%d.%d", &hport, &lport); if (!ok) ok = sscanf(rhead->rpcb_map.r_addr, "0.0.0.0.%d.%d", &hport, &lport); if (!ok) continue; c->port = hport << 8 | lport; if (strcmp(rhead->rpcb_map.r_netid, TCP_PROTO) == 0 || strcmp(rhead->rpcb_map.r_netid, TCP6_PROTO) == 0) c->proto = TCP_PROTO; else if (strcmp(rhead->rpcb_map.r_netid, UDP_PROTO) == 0 || strcmp(rhead->rpcb_map.r_netid, UDP6_PROTO) == 0) c->proto = UDP_PROTO; else if (strcmp(rhead->rpcb_map.r_netid, SCTP_PROTO) == 0) c->proto = SCTP_PROTO; else continue; rpc = getrpcbynumber(rhead->rpcb_map.r_prog); if (rpc) { strncat(prog, rpc->r_name, 128 - strlen(prog)); c->name = strdup(prog); } c->next = rlist; rlist = c; } } #endif /* Even do not try default linux ephemeral port ranges: * default /etc/services contains so much of useless crap * wouldbe "allocated" to this area that resolution * is really harmful. I shrug each time when seeing * "socks" or "cfinger" in dumps. */ static int is_ephemeral(int port) { static int min = 0, max; if (!min) { FILE *f = ephemeral_ports_open(); if (!f || fscanf(f, "%d %d", &min, &max) < 2) { min = 1024; max = 4999; } if (f) fclose(f); } return port >= min && port <= max; } static const char *__resolve_service(int port) { struct scache *c; for (c = rlist; c; c = c->next) { if (c->port == port && c->proto == dg_proto) return c->name; } if (!is_ephemeral(port)) { static int notfirst; struct servent *se; if (!notfirst) { setservent(1); notfirst = 1; } se = getservbyport(htons(port), dg_proto); if (se) return se->s_name; } return NULL; } #define SCACHE_BUCKETS 1024 static struct scache *cache_htab[SCACHE_BUCKETS]; static const char *resolve_service(int port) { static char buf[128]; struct scache *c; const char *res; int hash; if (port == 0) { buf[0] = '*'; buf[1] = 0; return buf; } if (numeric) goto do_numeric; if (dg_proto == RAW_PROTO) return inet_proto_n2a(port, buf, sizeof(buf)); hash = (port^(((unsigned long)dg_proto)>>2)) % SCACHE_BUCKETS; for (c = cache_htab[hash]; c; c = c->next) { if (c->port == port && c->proto == dg_proto) goto do_cache; } c = malloc(sizeof(*c)); if (!c) goto do_numeric; res = __resolve_service(port); c->port = port; c->name = res ? strdup(res) : NULL; c->proto = dg_proto; c->next = cache_htab[hash]; cache_htab[hash] = c; do_cache: if (c->name) return c->name; do_numeric: sprintf(buf, "%u", port); return buf; } static void inet_addr_print(const inet_prefix *a, int port, unsigned int ifindex, bool v6only) { char buf[1024]; const char *ap = buf; const char *ifname = NULL; if (a->family == AF_INET) { ap = format_host(AF_INET, 4, a->data); } else { if (!v6only && !memcmp(a->data, &in6addr_any, sizeof(in6addr_any))) { buf[0] = '*'; buf[1] = 0; } else { ap = format_host(a->family, 16, a->data); /* Numeric IPv6 addresses should be bracketed */ if (strchr(ap, ':')) { snprintf(buf, sizeof(buf), "[%s]", ap); ap = buf; } } } if (ifindex) ifname = ll_index_to_name(ifindex); sock_addr_print(ap, ":", resolve_service(port), ifname); } struct aafilter { inet_prefix addr; long port; unsigned int iface; __u32 mark; __u32 mask; __u64 cgroup_id; struct aafilter *next; }; static int inet2_addr_match(const inet_prefix *a, const inet_prefix *p, int plen) { if (!inet_addr_match(a, p, plen)) return 0; /* Cursed "v4 mapped" addresses: v4 mapped socket matches * pure IPv4 rule, but v4-mapped rule selects only v4-mapped * sockets. Fair? */ if (p->family == AF_INET && a->family == AF_INET6) { if (a->data[0] == 0 && a->data[1] == 0 && a->data[2] == htonl(0xffff)) { inet_prefix tmp = *a; tmp.data[0] = a->data[3]; return inet_addr_match(&tmp, p, plen); } } return 1; } static int unix_match(const inet_prefix *a, const inet_prefix *p) { char *addr, *pattern; memcpy(&addr, a->data, sizeof(addr)); memcpy(&pattern, p->data, sizeof(pattern)); if (pattern == NULL) return 1; if (addr == NULL) addr = ""; return !fnmatch(pattern, addr, FNM_CASEFOLD); } static int run_ssfilter(struct ssfilter *f, struct sockstat *s) { switch (f->type) { case SSF_S_AUTO: { if (s->local.family == AF_UNIX) { char *p; memcpy(&p, s->local.data, sizeof(p)); return p == NULL || (p[0] == '@' && strlen(p) == 6 && strspn(p+1, "0123456789abcdef") == 5); } if (s->local.family == AF_PACKET) return s->lport == 0 && s->local.data[0] == 0; if (s->local.family == AF_NETLINK) return s->lport < 0; if (s->local.family == AF_VSOCK) return s->lport > 1023; return is_ephemeral(s->lport); } case SSF_DCOND: { struct aafilter *a = (void *)f->pred; if (a->addr.family == AF_UNIX) return unix_match(&s->remote, &a->addr); if (a->port != -1 && a->port != s->rport) return 0; if (a->addr.bitlen) { do { if (!inet2_addr_match(&s->remote, &a->addr, a->addr.bitlen)) return 1; } while ((a = a->next) != NULL); return 0; } return 1; } case SSF_SCOND: { struct aafilter *a = (void *)f->pred; if (a->addr.family == AF_UNIX) return unix_match(&s->local, &a->addr); if (a->port != -1 && a->port != s->lport) return 0; if (a->addr.bitlen) { do { if (!inet2_addr_match(&s->local, &a->addr, a->addr.bitlen)) return 1; } while ((a = a->next) != NULL); return 0; } return 1; } case SSF_D_GE: { struct aafilter *a = (void *)f->pred; return s->rport >= a->port; } case SSF_D_LE: { struct aafilter *a = (void *)f->pred; return s->rport <= a->port; } case SSF_S_GE: { struct aafilter *a = (void *)f->pred; return s->lport >= a->port; } case SSF_S_LE: { struct aafilter *a = (void *)f->pred; return s->lport <= a->port; } case SSF_DEVCOND: { struct aafilter *a = (void *)f->pred; return s->iface == a->iface; } case SSF_MARKMASK: { struct aafilter *a = (void *)f->pred; return (s->mark & a->mask) == a->mark; } case SSF_CGROUPCOND: { struct aafilter *a = (void *)f->pred; return s->cgroup_id == a->cgroup_id; } /* Yup. It is recursion. Sorry. */ case SSF_AND: return run_ssfilter(f->pred, s) && run_ssfilter(f->post, s); case SSF_OR: return run_ssfilter(f->pred, s) || run_ssfilter(f->post, s); case SSF_NOT: return !run_ssfilter(f->pred, s); default: abort(); } } /* Relocate external jumps by reloc. */ static void ssfilter_patch(char *a, int len, int reloc) { while (len > 0) { struct inet_diag_bc_op *op = (struct inet_diag_bc_op *)a; if (op->no == len+4) op->no += reloc; len -= op->yes; a += op->yes; } if (len < 0) abort(); } static int ssfilter_bytecompile(struct ssfilter *f, char **bytecode) { switch (f->type) { case SSF_S_AUTO: { if (!(*bytecode = malloc(4))) abort(); ((struct inet_diag_bc_op *)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_AUTO, 4, 8 }; return 4; } case SSF_DCOND: case SSF_SCOND: { struct aafilter *a = (void *)f->pred; struct aafilter *b; char *ptr; int code = (f->type == SSF_DCOND ? INET_DIAG_BC_D_COND : INET_DIAG_BC_S_COND); int len = 0; for (b = a; b; b = b->next) { len += 4 + sizeof(struct inet_diag_hostcond); if (a->addr.family == AF_INET6) len += 16; else len += 4; if (b->next) len += 4; } if (!(ptr = malloc(len))) abort(); *bytecode = ptr; for (b = a; b; b = b->next) { struct inet_diag_bc_op *op = (struct inet_diag_bc_op *)ptr; int alen = (a->addr.family == AF_INET6 ? 16 : 4); int oplen = alen + 4 + sizeof(struct inet_diag_hostcond); struct inet_diag_hostcond *cond = (struct inet_diag_hostcond *)(ptr+4); *op = (struct inet_diag_bc_op){ code, oplen, oplen+4 }; cond->family = a->addr.family; cond->port = a->port; cond->prefix_len = a->addr.bitlen; memcpy(cond->addr, a->addr.data, alen); ptr += oplen; if (b->next) { op = (struct inet_diag_bc_op *)ptr; *op = (struct inet_diag_bc_op){ INET_DIAG_BC_JMP, 4, len - (ptr-*bytecode)}; ptr += 4; } } return ptr - *bytecode; } case SSF_D_GE: { struct aafilter *x = (void *)f->pred; if (!(*bytecode = malloc(8))) abort(); ((struct inet_diag_bc_op *)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_D_GE, 8, 12 }; ((struct inet_diag_bc_op *)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port }; return 8; } case SSF_D_LE: { struct aafilter *x = (void *)f->pred; if (!(*bytecode = malloc(8))) abort(); ((struct inet_diag_bc_op *)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_D_LE, 8, 12 }; ((struct inet_diag_bc_op *)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port }; return 8; } case SSF_S_GE: { struct aafilter *x = (void *)f->pred; if (!(*bytecode = malloc(8))) abort(); ((struct inet_diag_bc_op *)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_S_GE, 8, 12 }; ((struct inet_diag_bc_op *)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port }; return 8; } case SSF_S_LE: { struct aafilter *x = (void *)f->pred; if (!(*bytecode = malloc(8))) abort(); ((struct inet_diag_bc_op *)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_S_LE, 8, 12 }; ((struct inet_diag_bc_op *)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port }; return 8; } case SSF_AND: { char *a1 = NULL, *a2 = NULL, *a; int l1, l2; l1 = ssfilter_bytecompile(f->pred, &a1); l2 = ssfilter_bytecompile(f->post, &a2); if (!l1 || !l2) { free(a1); free(a2); return 0; } if (!(a = malloc(l1+l2))) abort(); memcpy(a, a1, l1); memcpy(a+l1, a2, l2); free(a1); free(a2); ssfilter_patch(a, l1, l2); *bytecode = a; return l1+l2; } case SSF_OR: { char *a1 = NULL, *a2 = NULL, *a; int l1, l2; l1 = ssfilter_bytecompile(f->pred, &a1); l2 = ssfilter_bytecompile(f->post, &a2); if (!l1 || !l2) { free(a1); free(a2); return 0; } if (!(a = malloc(l1+l2+4))) abort(); memcpy(a, a1, l1); memcpy(a+l1+4, a2, l2); free(a1); free(a2); *(struct inet_diag_bc_op *)(a+l1) = (struct inet_diag_bc_op){ INET_DIAG_BC_JMP, 4, l2+4 }; *bytecode = a; return l1+l2+4; } case SSF_NOT: { char *a1 = NULL, *a; int l1; l1 = ssfilter_bytecompile(f->pred, &a1); if (!l1) { free(a1); return 0; } if (!(a = malloc(l1+4))) abort(); memcpy(a, a1, l1); free(a1); *(struct inet_diag_bc_op *)(a+l1) = (struct inet_diag_bc_op){ INET_DIAG_BC_JMP, 4, 8 }; *bytecode = a; return l1+4; } case SSF_DEVCOND: { /* bytecompile for SSF_DEVCOND not supported yet */ return 0; } case SSF_MARKMASK: { struct aafilter *a = (void *)f->pred; struct instr { struct inet_diag_bc_op op; struct inet_diag_markcond cond; }; int inslen = sizeof(struct instr); if (!(*bytecode = malloc(inslen))) abort(); ((struct instr *)*bytecode)[0] = (struct instr) { { INET_DIAG_BC_MARK_COND, inslen, inslen + 4 }, { a->mark, a->mask}, }; return inslen; } case SSF_CGROUPCOND: { struct aafilter *a = (void *)f->pred; struct instr { struct inet_diag_bc_op op; __u64 cgroup_id; } __attribute__((packed)); int inslen = sizeof(struct instr); if (!(*bytecode = malloc(inslen))) abort(); ((struct instr *)*bytecode)[0] = (struct instr) { { INET_DIAG_BC_CGROUP_COND, inslen, inslen + 4 }, a->cgroup_id, }; return inslen; } default: abort(); } } static int remember_he(struct aafilter *a, struct hostent *he) { char **ptr = he->h_addr_list; int cnt = 0; int len; if (he->h_addrtype == AF_INET) len = 4; else if (he->h_addrtype == AF_INET6) len = 16; else return 0; while (*ptr) { struct aafilter *b = a; if (a->addr.bitlen) { if ((b = malloc(sizeof(*b))) == NULL) return cnt; *b = *a; a->next = b; } memcpy(b->addr.data, *ptr, len); b->addr.bytelen = len; b->addr.bitlen = len*8; b->addr.family = he->h_addrtype; ptr++; cnt++; } return cnt; } static int get_dns_host(struct aafilter *a, const char *addr, int fam) { static int notfirst; int cnt = 0; struct hostent *he; a->addr.bitlen = 0; if (!notfirst) { sethostent(1); notfirst = 1; } he = gethostbyname2(addr, fam == AF_UNSPEC ? AF_INET : fam); if (he) cnt = remember_he(a, he); if (fam == AF_UNSPEC) { he = gethostbyname2(addr, AF_INET6); if (he) cnt += remember_he(a, he); } return !cnt; } static int xll_initted; static void xll_init(void) { struct rtnl_handle rth; if (rtnl_open(&rth, 0) < 0) exit(1); ll_init_map(&rth); rtnl_close(&rth); xll_initted = 1; } static const char *xll_index_to_name(int index) { if (!xll_initted) xll_init(); return ll_index_to_name(index); } static int xll_name_to_index(const char *dev) { if (!xll_initted) xll_init(); return ll_name_to_index(dev); } void *parse_devcond(char *name) { struct aafilter a = { .iface = 0 }; struct aafilter *res; a.iface = xll_name_to_index(name); if (a.iface == 0) { char *end; unsigned long n; n = strtoul(name, &end, 0); if (!end || end == name || *end || n > UINT_MAX) return NULL; a.iface = n; } res = malloc(sizeof(*res)); *res = a; return res; } static void vsock_set_inet_prefix(inet_prefix *a, __u32 cid) { *a = (inet_prefix){ .bytelen = sizeof(cid), .family = AF_VSOCK, }; memcpy(a->data, &cid, sizeof(cid)); } static char* find_port(char *addr, bool is_port) { char *port = NULL; if (is_port) port = addr; else port = strchr(addr, ':'); if (port && *port == ':') *port++ = '\0'; return port; } void *parse_hostcond(char *addr, bool is_port) { char *port = NULL; struct aafilter a = { .port = -1 }; struct aafilter *res; int fam = preferred_family; struct filter *f = ¤t_filter; if (strncmp(addr, "unix:", 5) == 0) { fam = AF_UNIX; addr += 5; } else if (strncmp(addr, "link:", 5) == 0) { fam = AF_PACKET; addr += 5; } else if (strncmp(addr, "netlink:", 8) == 0) { fam = AF_NETLINK; addr += 8; } else if (strncmp(addr, "vsock:", 6) == 0) { fam = AF_VSOCK; addr += 6; } else if (strncmp(addr, "inet:", 5) == 0) { fam = AF_INET; addr += 5; } else if (strncmp(addr, "inet6:", 6) == 0) { fam = AF_INET6; addr += 6; } if (fam == AF_UNIX) { char *p; a.addr.family = AF_UNIX; p = strdup(addr); a.addr.bitlen = 8*strlen(p); memcpy(a.addr.data, &p, sizeof(p)); goto out; } if (fam == AF_PACKET) { a.addr.family = AF_PACKET; a.addr.bitlen = 0; port = find_port(addr, is_port); if (port) { if (*port && strcmp(port, "*")) { if (get_long(&a.port, port, 0)) { if ((a.port = xll_name_to_index(port)) <= 0) return NULL; } } } if (!is_port && addr[0] && strcmp(addr, "*")) { unsigned short tmp; a.addr.bitlen = 32; if (ll_proto_a2n(&tmp, addr)) return NULL; a.addr.data[0] = ntohs(tmp); } goto out; } if (fam == AF_NETLINK) { a.addr.family = AF_NETLINK; a.addr.bitlen = 0; port = find_port(addr, is_port); if (port) { if (*port && strcmp(port, "*")) { if (get_long(&a.port, port, 0)) { if (strcmp(port, "kernel") == 0) a.port = 0; else return NULL; } } } if (!is_port && addr[0] && strcmp(addr, "*")) { a.addr.bitlen = 32; if (nl_proto_a2n(&a.addr.data[0], addr) == -1) return NULL; } goto out; } if (fam == AF_VSOCK) { __u32 cid = ~(__u32)0; a.addr.family = AF_VSOCK; port = find_port(addr, is_port); if (port && strcmp(port, "*") && get_u32((__u32 *)&a.port, port, 0)) return NULL; if (!is_port && addr[0] && strcmp(addr, "*")) { a.addr.bitlen = 32; if (get_u32(&cid, addr, 0)) return NULL; } vsock_set_inet_prefix(&a.addr, cid); goto out; } /* URL-like literal [] */ if (addr[0] == '[') { addr++; if ((port = strchr(addr, ']')) == NULL) return NULL; *port++ = 0; } else if (addr[0] == '*') { port = addr+1; } else { port = strrchr(strchr(addr, '/') ? : addr, ':'); } if (is_port) port = addr; if (port && *port) { if (*port == ':') *port++ = 0; if (*port && *port != '*') { if (get_long(&a.port, port, 0)) { struct servent *se1 = NULL; struct servent *se2 = NULL; if (current_filter.dbs&(1<s_port != se2->s_port) { fprintf(stderr, "Error: ambiguous port \"%s\".\n", port); return NULL; } if (!se1) se1 = se2; if (se1) { a.port = ntohs(se1->s_port); } else { struct scache *s; for (s = rlist; s; s = s->next) { if ((s->proto == UDP_PROTO && (current_filter.dbs&(1<proto == TCP_PROTO && (current_filter.dbs&(1<name && strcmp(s->name, port) == 0) { if (a.port > 0 && a.port != s->port) { fprintf(stderr, "Error: ambiguous port \"%s\".\n", port); return NULL; } a.port = s->port; } } } if (a.port <= 0) { fprintf(stderr, "Error: \"%s\" does not look like a port.\n", port); return NULL; } } } } } if (!is_port && *addr && *addr != '*') { if (get_prefix_1(&a.addr, addr, fam)) { if (get_dns_host(&a, addr, fam)) { fprintf(stderr, "Error: an inet prefix is expected rather than \"%s\".\n", addr); return NULL; } } } out: if (fam != AF_UNSPEC) { int states = f->states; f->families = 0; filter_af_set(f, fam); filter_states_set(f, states); } res = malloc(sizeof(*res)); if (res) memcpy(res, &a, sizeof(a)); return res; } void *parse_markmask(const char *markmask) { struct aafilter a, *res; if (strchr(markmask, '/')) { if (sscanf(markmask, "%i/%i", &a.mark, &a.mask) != 2) return NULL; } else { a.mask = 0xffffffff; if (sscanf(markmask, "%i", &a.mark) != 1) return NULL; } res = malloc(sizeof(*res)); if (res) memcpy(res, &a, sizeof(a)); return res; } void *parse_cgroupcond(const char *path) { struct aafilter *res; __u64 id; id = get_cgroup2_id(path); if (!id) return NULL; res = malloc(sizeof(*res)); if (res) res->cgroup_id = id; return res; } static void proc_ctx_print(struct sockstat *s) { char *buf; if (show_proc_ctx || show_sock_ctx) { if (find_entry(s->ino, &buf, (show_proc_ctx & show_sock_ctx) ? PROC_SOCK_CTX : PROC_CTX) > 0) { out(" users:(%s)", buf); free(buf); } } else if (show_processes || show_threads) { if (find_entry(s->ino, &buf, USERS) > 0) { out(" users:(%s)", buf); free(buf); } } field_next(); } static void inet_stats_print(struct sockstat *s, bool v6only) { sock_state_print(s); inet_addr_print(&s->local, s->lport, s->iface, v6only); inet_addr_print(&s->remote, s->rport, 0, v6only); proc_ctx_print(s); } static int proc_parse_inet_addr(char *loc, char *rem, int family, struct sockstat * s) { s->local.family = s->remote.family = family; if (family == AF_INET) { sscanf(loc, "%x:%x", s->local.data, (unsigned *)&s->lport); sscanf(rem, "%x:%x", s->remote.data, (unsigned *)&s->rport); s->local.bytelen = s->remote.bytelen = 4; return 0; } else { sscanf(loc, "%08x%08x%08x%08x:%x", s->local.data, s->local.data + 1, s->local.data + 2, s->local.data + 3, &s->lport); sscanf(rem, "%08x%08x%08x%08x:%x", s->remote.data, s->remote.data + 1, s->remote.data + 2, s->remote.data + 3, &s->rport); s->local.bytelen = s->remote.bytelen = 16; return 0; } return -1; } static int proc_inet_split_line(char *line, char **loc, char **rem, char **data) { char *p; if ((p = strchr(line, ':')) == NULL) return -1; *loc = p+2; if ((p = strchr(*loc, ':')) == NULL) return -1; p[5] = 0; *rem = p+6; if ((p = strchr(*rem, ':')) == NULL) return -1; p[5] = 0; *data = p+6; return 0; } /* * Display bandwidth in standard units * See: https://en.wikipedia.org/wiki/Data-rate_units * bw is in bits per second */ static char *sprint_bw(char *buf, double bw) { if (numeric) sprintf(buf, "%.0f", bw); else if (bw >= 1e12) sprintf(buf, "%.3gT", bw / 1e12); else if (bw >= 1e9) sprintf(buf, "%.3gG", bw / 1e9); else if (bw >= 1e6) sprintf(buf, "%.3gM", bw / 1e6); else if (bw >= 1e3) sprintf(buf, "%.3gk", bw / 1e3); else sprintf(buf, "%g", bw); return buf; } static void sctp_stats_print(struct sctp_info *s) { if (s->sctpi_tag) out(" tag:%x", s->sctpi_tag); if (s->sctpi_state) out(" state:%s", sctp_sstate_name[s->sctpi_state]); if (s->sctpi_rwnd) out(" rwnd:%d", s->sctpi_rwnd); if (s->sctpi_unackdata) out(" unackdata:%d", s->sctpi_unackdata); if (s->sctpi_penddata) out(" penddata:%d", s->sctpi_penddata); if (s->sctpi_instrms) out(" instrms:%d", s->sctpi_instrms); if (s->sctpi_outstrms) out(" outstrms:%d", s->sctpi_outstrms); if (s->sctpi_inqueue) out(" inqueue:%d", s->sctpi_inqueue); if (s->sctpi_outqueue) out(" outqueue:%d", s->sctpi_outqueue); if (s->sctpi_overall_error) out(" overerr:%d", s->sctpi_overall_error); if (s->sctpi_max_burst) out(" maxburst:%d", s->sctpi_max_burst); if (s->sctpi_maxseg) out(" maxseg:%d", s->sctpi_maxseg); if (s->sctpi_peer_rwnd) out(" prwnd:%d", s->sctpi_peer_rwnd); if (s->sctpi_peer_tag) out(" ptag:%x", s->sctpi_peer_tag); if (s->sctpi_peer_capable) out(" pcapable:%d", s->sctpi_peer_capable); if (s->sctpi_peer_sack) out(" psack:%d", s->sctpi_peer_sack); if (s->sctpi_s_autoclose) out(" autoclose:%d", s->sctpi_s_autoclose); if (s->sctpi_s_adaptation_ind) out(" adapind:%d", s->sctpi_s_adaptation_ind); if (s->sctpi_s_pd_point) out(" pdpoint:%d", s->sctpi_s_pd_point); if (s->sctpi_s_nodelay) out(" nodelay:%d", s->sctpi_s_nodelay); if (s->sctpi_s_disable_fragments) out(" nofrag:%d", s->sctpi_s_disable_fragments); if (s->sctpi_s_v4mapped) out(" v4mapped:%d", s->sctpi_s_v4mapped); if (s->sctpi_s_frag_interleave) out(" fraginl:%d", s->sctpi_s_frag_interleave); } static void tcp_stats_print(struct tcpstat *s) { char b1[64]; if (s->has_ts_opt) out(" ts"); if (s->has_usec_ts_opt) out(" usec_ts"); if (s->has_sack_opt) out(" sack"); if (s->has_ecn_opt) out(" ecn"); if (s->has_ecnseen_opt) out(" ecnseen"); if (s->has_fastopen_opt) out(" fastopen"); if (s->cong_alg[0]) out(" %s", s->cong_alg); if (s->has_wscale_opt) out(" wscale:%d,%d", s->snd_wscale, s->rcv_wscale); if (s->rto) out(" rto:%g", s->rto); if (s->backoff) out(" backoff:%u", s->backoff); if (s->rtt) out(" rtt:%g/%g", s->rtt, s->rttvar); if (s->ato) out(" ato:%g", s->ato); if (s->qack) out(" qack:%d", s->qack); if (s->qack & 1) out(" bidir"); if (s->mss) out(" mss:%d", s->mss); if (s->pmtu) out(" pmtu:%u", s->pmtu); if (s->rcv_mss) out(" rcvmss:%d", s->rcv_mss); if (s->advmss) out(" advmss:%d", s->advmss); if (s->cwnd) out(" cwnd:%u", s->cwnd); if (s->ssthresh) out(" ssthresh:%d", s->ssthresh); if (s->bytes_sent) out(" bytes_sent:%llu", s->bytes_sent); if (s->bytes_retrans) out(" bytes_retrans:%llu", s->bytes_retrans); if (s->bytes_acked) out(" bytes_acked:%llu", s->bytes_acked); if (s->bytes_received) out(" bytes_received:%llu", s->bytes_received); if (s->segs_out) out(" segs_out:%u", s->segs_out); if (s->segs_in) out(" segs_in:%u", s->segs_in); if (s->data_segs_out) out(" data_segs_out:%u", s->data_segs_out); if (s->data_segs_in) out(" data_segs_in:%u", s->data_segs_in); if (s->dctcp && s->dctcp->enabled) { struct dctcpstat *dctcp = s->dctcp; out(" dctcp:(ce_state:%u,alpha:%u,ab_ecn:%u,ab_tot:%u)", dctcp->ce_state, dctcp->alpha, dctcp->ab_ecn, dctcp->ab_tot); } else if (s->dctcp) { out(" dctcp:fallback_mode"); } if (s->bbr_info) { __u64 bw; bw = s->bbr_info->bbr_bw_hi; bw <<= 32; bw |= s->bbr_info->bbr_bw_lo; out(" bbr:(bw:%sbps,mrtt:%g", sprint_bw(b1, bw * 8.0), (double)s->bbr_info->bbr_min_rtt / 1000.0); if (s->bbr_info->bbr_pacing_gain) out(",pacing_gain:%g", (double)s->bbr_info->bbr_pacing_gain / 256.0); if (s->bbr_info->bbr_cwnd_gain) out(",cwnd_gain:%g", (double)s->bbr_info->bbr_cwnd_gain / 256.0); out(")"); } if (s->send_bps) out(" send %sbps", sprint_bw(b1, s->send_bps)); if (s->lastsnd) out(" lastsnd:%u", s->lastsnd); if (s->lastrcv) out(" lastrcv:%u", s->lastrcv); if (s->lastack) out(" lastack:%u", s->lastack); if (s->pacing_rate) { out(" pacing_rate %sbps", sprint_bw(b1, s->pacing_rate)); if (s->pacing_rate_max) out("/%sbps", sprint_bw(b1, s->pacing_rate_max)); } if (s->delivery_rate) out(" delivery_rate %sbps", sprint_bw(b1, s->delivery_rate)); if (s->delivered) out(" delivered:%u", s->delivered); if (s->delivered_ce) out(" delivered_ce:%u", s->delivered_ce); if (s->app_limited) out(" app_limited"); if (s->busy_time) { out(" busy:%llums", s->busy_time / 1000); if (s->rwnd_limited) out(" rwnd_limited:%llums(%.1f%%)", s->rwnd_limited / 1000, 100.0 * s->rwnd_limited / s->busy_time); if (s->sndbuf_limited) out(" sndbuf_limited:%llums(%.1f%%)", s->sndbuf_limited / 1000, 100.0 * s->sndbuf_limited / s->busy_time); } if (s->unacked) out(" unacked:%u", s->unacked); if (s->retrans || s->retrans_total) out(" retrans:%u/%u", s->retrans, s->retrans_total); if (s->lost) out(" lost:%u", s->lost); if (s->sacked && s->ss.state != SS_LISTEN) out(" sacked:%u", s->sacked); if (s->dsack_dups) out(" dsack_dups:%u", s->dsack_dups); if (s->fackets) out(" fackets:%u", s->fackets); if (s->reordering != 3) out(" reordering:%d", s->reordering); if (s->reord_seen) out(" reord_seen:%d", s->reord_seen); if (s->rcv_rtt) out(" rcv_rtt:%g", s->rcv_rtt); if (s->rcv_space) out(" rcv_space:%d", s->rcv_space); if (s->rcv_ssthresh) out(" rcv_ssthresh:%u", s->rcv_ssthresh); if (s->not_sent) out(" notsent:%u", s->not_sent); if (s->min_rtt) out(" minrtt:%g", s->min_rtt); if (s->rcv_ooopack) out(" rcv_ooopack:%u", s->rcv_ooopack); if (s->snd_wnd) out(" snd_wnd:%u", s->snd_wnd); if (s->rcv_wnd) out(" rcv_wnd:%u", s->rcv_wnd); if (s->rehash) out(" rehash:%u", s->rehash); } static void tcp_timer_print(struct tcpstat *s) { static const char * const tmr_name[] = { "off", "on", "keepalive", "timewait", "persist", "unknown" }; if (s->timer) { if (s->timer > 4) s->timer = 5; out(" timer:(%s,%s,%d)", tmr_name[s->timer], print_ms_timer(s->timeout), s->retrans); } } static void sctp_timer_print(struct tcpstat *s) { if (s->timer) out(" timer:(T3_RTX,%s,%d)", print_ms_timer(s->timeout), s->retrans); } static int tcp_show_line(char *line, const struct filter *f, int family) { int rto = 0, ato = 0; struct tcpstat s = {}; char *loc, *rem, *data; char opt[256]; int n; int hz = get_user_hz(); if (proc_inet_split_line(line, &loc, &rem, &data)) return -1; int state = (data[1] >= 'A') ? (data[1] - 'A' + 10) : (data[1] - '0'); if (!(f->states & (1 << state))) return 0; proc_parse_inet_addr(loc, rem, family, &s.ss); if (f->f && run_ssfilter(f->f, &s.ss) == 0) return 0; opt[0] = 0; n = sscanf(data, "%x %x:%x %x:%x %x %d %d %u %d %llx %d %d %d %u %d %[^\n]\n", &s.ss.state, &s.ss.wq, &s.ss.rq, &s.timer, &s.timeout, &s.retrans, &s.ss.uid, &s.probes, &s.ss.ino, &s.ss.refcnt, &s.ss.sk, &rto, &ato, &s.qack, &s.cwnd, &s.ssthresh, opt); if (n < 17) opt[0] = 0; if (n < 12) { rto = 0; s.cwnd = 2; s.ssthresh = -1; ato = s.qack = 0; } s.retrans = s.timer != 1 ? s.probes : s.retrans; s.timeout = (s.timeout * 1000 + hz - 1) / hz; s.ato = (double)ato / hz; s.qack /= 2; s.rto = (double)rto; s.ssthresh = s.ssthresh == -1 ? 0 : s.ssthresh; s.rto = s.rto != 3 * hz ? s.rto / hz : 0; s.ss.type = IPPROTO_TCP; inet_stats_print(&s.ss, false); if (show_options) tcp_timer_print(&s); if (show_details) { sock_details_print(&s.ss); if (opt[0]) out(" opt:\"%s\"", opt); } if (show_tcpinfo) tcp_stats_print(&s); return 0; } static int generic_record_read(FILE *fp, int (*worker)(char*, const struct filter *, int), const struct filter *f, int fam) { char line[256]; /* skip header */ if (fgets(line, sizeof(line), fp) == NULL) goto outerr; while (fgets(line, sizeof(line), fp) != NULL) { int n = strlen(line); if (n == 0 || line[n-1] != '\n') { errno = -EINVAL; return -1; } line[n-1] = 0; if (worker(line, f, fam) < 0) return 0; } outerr: return ferror(fp) ? -1 : 0; } static void print_skmeminfo(struct rtattr *tb[], int attrtype) { const __u32 *skmeminfo; if (!tb[attrtype]) { if (attrtype == INET_DIAG_SKMEMINFO) { if (!tb[INET_DIAG_MEMINFO]) return; const struct inet_diag_meminfo *minfo = RTA_DATA(tb[INET_DIAG_MEMINFO]); out(" mem:(r%u,w%u,f%u,t%u)", minfo->idiag_rmem, minfo->idiag_wmem, minfo->idiag_fmem, minfo->idiag_tmem); } return; } skmeminfo = RTA_DATA(tb[attrtype]); out(" skmem:(r%u,rb%u,t%u,tb%u,f%u,w%u,o%u", skmeminfo[SK_MEMINFO_RMEM_ALLOC], skmeminfo[SK_MEMINFO_RCVBUF], skmeminfo[SK_MEMINFO_WMEM_ALLOC], skmeminfo[SK_MEMINFO_SNDBUF], skmeminfo[SK_MEMINFO_FWD_ALLOC], skmeminfo[SK_MEMINFO_WMEM_QUEUED], skmeminfo[SK_MEMINFO_OPTMEM]); if (RTA_PAYLOAD(tb[attrtype]) >= (SK_MEMINFO_BACKLOG + 1) * sizeof(__u32)) out(",bl%u", skmeminfo[SK_MEMINFO_BACKLOG]); if (RTA_PAYLOAD(tb[attrtype]) >= (SK_MEMINFO_DROPS + 1) * sizeof(__u32)) out(",d%u", skmeminfo[SK_MEMINFO_DROPS]); out(")"); } /* like lib/utils.c print_escape_buf(), but use out(), not printf()! */ static void out_escape_buf(const __u8 *buf, size_t len, const char *escape) { size_t i; for (i = 0; i < len; ++i) { if (isprint(buf[i]) && buf[i] != '\\' && !strchr(escape, buf[i])) out("%c", buf[i]); else out("\\%03o", buf[i]); } } static void print_md5sig(struct tcp_diag_md5sig *sig) { out("%s/%d=", format_host(sig->tcpm_family, sig->tcpm_family == AF_INET6 ? 16 : 4, &sig->tcpm_addr), sig->tcpm_prefixlen); out_escape_buf(sig->tcpm_key, sig->tcpm_keylen, " ,"); } static void tcp_tls_version(struct rtattr *attr) { u_int16_t val; if (!attr) return; val = rta_getattr_u16(attr); switch (val) { case TLS_1_2_VERSION: out(" version: 1.2"); break; case TLS_1_3_VERSION: out(" version: 1.3"); break; default: out(" version: unknown(%hu)", val); break; } } static void tcp_tls_cipher(struct rtattr *attr) { u_int16_t val; if (!attr) return; val = rta_getattr_u16(attr); switch (val) { case TLS_CIPHER_AES_GCM_128: out(" cipher: aes-gcm-128"); break; case TLS_CIPHER_AES_GCM_256: out(" cipher: aes-gcm-256"); break; } } static void tcp_tls_conf(const char *name, struct rtattr *attr) { u_int16_t val; if (!attr) return; val = rta_getattr_u16(attr); switch (val) { case TLS_CONF_BASE: out(" %s: none", name); break; case TLS_CONF_SW: out(" %s: sw", name); break; case TLS_CONF_HW: out(" %s: hw", name); break; case TLS_CONF_HW_RECORD: out(" %s: hw-record", name); break; default: out(" %s: unknown(%hu)", name, val); break; } } static void mptcp_subflow_info(struct rtattr *tb[]) { u_int32_t flags = 0; if (tb[MPTCP_SUBFLOW_ATTR_FLAGS]) { char caps[32 + 1] = { 0 }, *cap = &caps[0]; flags = rta_getattr_u32(tb[MPTCP_SUBFLOW_ATTR_FLAGS]); if (flags & MPTCP_SUBFLOW_FLAG_MCAP_REM) *cap++ = 'M'; if (flags & MPTCP_SUBFLOW_FLAG_MCAP_LOC) *cap++ = 'm'; if (flags & MPTCP_SUBFLOW_FLAG_JOIN_REM) *cap++ = 'J'; if (flags & MPTCP_SUBFLOW_FLAG_JOIN_LOC) *cap++ = 'j'; if (flags & MPTCP_SUBFLOW_FLAG_BKUP_REM) *cap++ = 'B'; if (flags & MPTCP_SUBFLOW_FLAG_BKUP_LOC) *cap++ = 'b'; if (flags & MPTCP_SUBFLOW_FLAG_FULLY_ESTABLISHED) *cap++ = 'e'; if (flags & MPTCP_SUBFLOW_FLAG_CONNECTED) *cap++ = 'c'; if (flags & MPTCP_SUBFLOW_FLAG_MAPVALID) *cap++ = 'v'; if (flags) out(" flags:%s", caps); } if (tb[MPTCP_SUBFLOW_ATTR_TOKEN_REM] && tb[MPTCP_SUBFLOW_ATTR_TOKEN_LOC] && tb[MPTCP_SUBFLOW_ATTR_ID_REM] && tb[MPTCP_SUBFLOW_ATTR_ID_LOC]) out(" token:%04x(id:%hhu)/%04x(id:%hhu)", rta_getattr_u32(tb[MPTCP_SUBFLOW_ATTR_TOKEN_REM]), rta_getattr_u8(tb[MPTCP_SUBFLOW_ATTR_ID_REM]), rta_getattr_u32(tb[MPTCP_SUBFLOW_ATTR_TOKEN_LOC]), rta_getattr_u8(tb[MPTCP_SUBFLOW_ATTR_ID_LOC])); if (tb[MPTCP_SUBFLOW_ATTR_MAP_SEQ]) out(" seq:%llx", rta_getattr_u64(tb[MPTCP_SUBFLOW_ATTR_MAP_SEQ])); if (tb[MPTCP_SUBFLOW_ATTR_MAP_SFSEQ]) out(" sfseq:%x", rta_getattr_u32(tb[MPTCP_SUBFLOW_ATTR_MAP_SFSEQ])); if (tb[MPTCP_SUBFLOW_ATTR_SSN_OFFSET]) out(" ssnoff:%x", rta_getattr_u32(tb[MPTCP_SUBFLOW_ATTR_SSN_OFFSET])); if (tb[MPTCP_SUBFLOW_ATTR_MAP_DATALEN]) out(" maplen:%x", rta_getattr_u32(tb[MPTCP_SUBFLOW_ATTR_MAP_DATALEN])); } #define TCPI_HAS_OPT(info, opt) !!(info->tcpi_options & (opt)) static void tcp_show_info(const struct nlmsghdr *nlh, struct inet_diag_msg *r, struct rtattr *tb[]) { double rtt = 0; struct tcpstat s = {}; s.ss.state = r->idiag_state; print_skmeminfo(tb, INET_DIAG_SKMEMINFO); if (tb[INET_DIAG_INFO]) { struct tcp_info *info; int len = RTA_PAYLOAD(tb[INET_DIAG_INFO]); /* workaround for older kernels with less fields */ if (len < sizeof(*info)) { info = alloca(sizeof(*info)); memcpy(info, RTA_DATA(tb[INET_DIAG_INFO]), len); memset((char *)info + len, 0, sizeof(*info) - len); } else info = RTA_DATA(tb[INET_DIAG_INFO]); if (show_options) { s.has_ts_opt = TCPI_HAS_OPT(info, TCPI_OPT_TIMESTAMPS); s.has_usec_ts_opt = TCPI_HAS_OPT(info, TCPI_OPT_USEC_TS); s.has_sack_opt = TCPI_HAS_OPT(info, TCPI_OPT_SACK); s.has_ecn_opt = TCPI_HAS_OPT(info, TCPI_OPT_ECN); s.has_ecnseen_opt = TCPI_HAS_OPT(info, TCPI_OPT_ECN_SEEN); s.has_fastopen_opt = TCPI_HAS_OPT(info, TCPI_OPT_SYN_DATA); } if (tb[INET_DIAG_CONG]) strncpy(s.cong_alg, rta_getattr_str(tb[INET_DIAG_CONG]), sizeof(s.cong_alg) - 1); if (TCPI_HAS_OPT(info, TCPI_OPT_WSCALE)) { s.has_wscale_opt = true; s.snd_wscale = info->tcpi_snd_wscale; s.rcv_wscale = info->tcpi_rcv_wscale; } if (info->tcpi_rto && info->tcpi_rto != 3000000) s.rto = (double)info->tcpi_rto / 1000; s.backoff = info->tcpi_backoff; s.rtt = (double)info->tcpi_rtt / 1000; s.rttvar = (double)info->tcpi_rttvar / 1000; s.ato = (double)info->tcpi_ato / 1000; s.mss = info->tcpi_snd_mss; s.rcv_mss = info->tcpi_rcv_mss; s.advmss = info->tcpi_advmss; s.rcv_space = info->tcpi_rcv_space; s.rcv_rtt = (double)info->tcpi_rcv_rtt / 1000; s.lastsnd = info->tcpi_last_data_sent; s.lastrcv = info->tcpi_last_data_recv; s.lastack = info->tcpi_last_ack_recv; s.unacked = info->tcpi_unacked; s.retrans = info->tcpi_retrans; s.retrans_total = info->tcpi_total_retrans; s.lost = info->tcpi_lost; s.sacked = info->tcpi_sacked; s.fackets = info->tcpi_fackets; s.reordering = info->tcpi_reordering; s.rcv_ssthresh = info->tcpi_rcv_ssthresh; s.cwnd = info->tcpi_snd_cwnd; s.pmtu = info->tcpi_pmtu; if (info->tcpi_snd_ssthresh < 0xFFFF) s.ssthresh = info->tcpi_snd_ssthresh; rtt = (double) info->tcpi_rtt; if (tb[INET_DIAG_VEGASINFO]) { const struct tcpvegas_info *vinfo = RTA_DATA(tb[INET_DIAG_VEGASINFO]); if (vinfo->tcpv_enabled && vinfo->tcpv_rtt && vinfo->tcpv_rtt != 0x7fffffff) rtt = vinfo->tcpv_rtt; } if (tb[INET_DIAG_DCTCPINFO]) { struct dctcpstat *dctcp = malloc(sizeof(struct dctcpstat)); const struct tcp_dctcp_info *dinfo = RTA_DATA(tb[INET_DIAG_DCTCPINFO]); dctcp->enabled = !!dinfo->dctcp_enabled; dctcp->ce_state = dinfo->dctcp_ce_state; dctcp->alpha = dinfo->dctcp_alpha; dctcp->ab_ecn = dinfo->dctcp_ab_ecn; dctcp->ab_tot = dinfo->dctcp_ab_tot; s.dctcp = dctcp; } if (tb[INET_DIAG_BBRINFO]) { const void *bbr_info = RTA_DATA(tb[INET_DIAG_BBRINFO]); int len = min(RTA_PAYLOAD(tb[INET_DIAG_BBRINFO]), sizeof(*s.bbr_info)); s.bbr_info = calloc(1, sizeof(*s.bbr_info)); if (s.bbr_info && bbr_info) memcpy(s.bbr_info, bbr_info, len); } if (rtt > 0 && info->tcpi_snd_mss && info->tcpi_snd_cwnd) { s.send_bps = (double) info->tcpi_snd_cwnd * (double)info->tcpi_snd_mss * 8000000. / rtt; } if (info->tcpi_pacing_rate && info->tcpi_pacing_rate != ~0ULL) { s.pacing_rate = info->tcpi_pacing_rate * 8.; if (info->tcpi_max_pacing_rate && info->tcpi_max_pacing_rate != ~0ULL) s.pacing_rate_max = info->tcpi_max_pacing_rate * 8.; } s.bytes_acked = info->tcpi_bytes_acked; s.bytes_received = info->tcpi_bytes_received; s.segs_out = info->tcpi_segs_out; s.segs_in = info->tcpi_segs_in; s.data_segs_out = info->tcpi_data_segs_out; s.data_segs_in = info->tcpi_data_segs_in; s.not_sent = info->tcpi_notsent_bytes; if (info->tcpi_min_rtt && info->tcpi_min_rtt != ~0U) s.min_rtt = (double) info->tcpi_min_rtt / 1000; s.delivery_rate = info->tcpi_delivery_rate * 8.; s.app_limited = info->tcpi_delivery_rate_app_limited; s.busy_time = info->tcpi_busy_time; s.rwnd_limited = info->tcpi_rwnd_limited; s.sndbuf_limited = info->tcpi_sndbuf_limited; s.delivered = info->tcpi_delivered; s.delivered_ce = info->tcpi_delivered_ce; s.dsack_dups = info->tcpi_dsack_dups; s.reord_seen = info->tcpi_reord_seen; s.bytes_sent = info->tcpi_bytes_sent; s.bytes_retrans = info->tcpi_bytes_retrans; s.rcv_ooopack = info->tcpi_rcv_ooopack; s.snd_wnd = info->tcpi_snd_wnd; s.rcv_wnd = info->tcpi_rcv_wnd; s.rehash = info->tcpi_rehash; tcp_stats_print(&s); free(s.dctcp); free(s.bbr_info); } if (tb[INET_DIAG_MD5SIG]) { struct tcp_diag_md5sig *sig = RTA_DATA(tb[INET_DIAG_MD5SIG]); int len = RTA_PAYLOAD(tb[INET_DIAG_MD5SIG]); out(" md5keys:"); print_md5sig(sig++); for (len -= sizeof(*sig); len > 0; len -= sizeof(*sig)) { out(","); print_md5sig(sig++); } } if (tb[INET_DIAG_ULP_INFO]) { struct rtattr *ulpinfo[INET_ULP_INFO_MAX + 1] = { 0 }; parse_rtattr_nested(ulpinfo, INET_ULP_INFO_MAX, tb[INET_DIAG_ULP_INFO]); if (ulpinfo[INET_ULP_INFO_NAME]) out(" tcp-ulp-%s", rta_getattr_str(ulpinfo[INET_ULP_INFO_NAME])); if (ulpinfo[INET_ULP_INFO_TLS]) { struct rtattr *tlsinfo[TLS_INFO_MAX + 1] = { 0 }; parse_rtattr_nested(tlsinfo, TLS_INFO_MAX, ulpinfo[INET_ULP_INFO_TLS]); tcp_tls_version(tlsinfo[TLS_INFO_VERSION]); tcp_tls_cipher(tlsinfo[TLS_INFO_CIPHER]); tcp_tls_conf("rxconf", tlsinfo[TLS_INFO_RXCONF]); tcp_tls_conf("txconf", tlsinfo[TLS_INFO_TXCONF]); if (!!tlsinfo[TLS_INFO_ZC_RO_TX]) out(" zc_ro_tx"); if (!!tlsinfo[TLS_INFO_RX_NO_PAD]) out(" no_pad_rx"); } if (ulpinfo[INET_ULP_INFO_MPTCP]) { struct rtattr *sfinfo[MPTCP_SUBFLOW_ATTR_MAX + 1] = { 0 }; parse_rtattr_nested(sfinfo, MPTCP_SUBFLOW_ATTR_MAX, ulpinfo[INET_ULP_INFO_MPTCP]); mptcp_subflow_info(sfinfo); } } } static void mptcp_stats_print(struct mptcp_info *s) { if (s->mptcpi_subflows) out(" subflows:%u", s->mptcpi_subflows); if (s->mptcpi_add_addr_signal) out(" add_addr_signal:%u", s->mptcpi_add_addr_signal); if (s->mptcpi_add_addr_accepted) out(" add_addr_accepted:%u", s->mptcpi_add_addr_accepted); if (s->mptcpi_subflows_max) out(" subflows_max:%u", s->mptcpi_subflows_max); if (s->mptcpi_add_addr_signal_max) out(" add_addr_signal_max:%u", s->mptcpi_add_addr_signal_max); if (s->mptcpi_add_addr_accepted_max) out(" add_addr_accepted_max:%u", s->mptcpi_add_addr_accepted_max); if (s->mptcpi_flags & MPTCP_INFO_FLAG_FALLBACK) out(" fallback"); if (s->mptcpi_flags & MPTCP_INFO_FLAG_REMOTE_KEY_RECEIVED) out(" remote_key"); if (s->mptcpi_token) out(" token:%x", s->mptcpi_token); if (s->mptcpi_write_seq) out(" write_seq:%llu", s->mptcpi_write_seq); if (s->mptcpi_snd_una) out(" snd_una:%llu", s->mptcpi_snd_una); if (s->mptcpi_rcv_nxt) out(" rcv_nxt:%llu", s->mptcpi_rcv_nxt); if (s->mptcpi_local_addr_used) out(" local_addr_used:%u", s->mptcpi_local_addr_used); if (s->mptcpi_local_addr_max) out(" local_addr_max:%u", s->mptcpi_local_addr_max); if (s->mptcpi_csum_enabled) out(" csum_enabled:%u", s->mptcpi_csum_enabled); if (s->mptcpi_retransmits) out(" retransmits:%u", s->mptcpi_retransmits); if (s->mptcpi_bytes_retrans) out(" bytes_retrans:%llu", s->mptcpi_bytes_retrans); if (s->mptcpi_bytes_sent) out(" bytes_sent:%llu", s->mptcpi_bytes_sent); if (s->mptcpi_bytes_received) out(" bytes_received:%llu", s->mptcpi_bytes_received); if (s->mptcpi_bytes_acked) out(" bytes_acked:%llu", s->mptcpi_bytes_acked); if (s->mptcpi_subflows_total) out(" subflows_total:%u", s->mptcpi_subflows_total); } static void mptcp_show_info(const struct nlmsghdr *nlh, struct inet_diag_msg *r, struct rtattr *tb[]) { print_skmeminfo(tb, INET_DIAG_SKMEMINFO); if (tb[INET_DIAG_INFO]) { struct mptcp_info *info; int len = RTA_PAYLOAD(tb[INET_DIAG_INFO]); /* workaround for older kernels with less fields */ if (len < sizeof(*info)) { info = alloca(sizeof(*info)); memcpy(info, RTA_DATA(tb[INET_DIAG_INFO]), len); memset((char *)info + len, 0, sizeof(*info) - len); } else info = RTA_DATA(tb[INET_DIAG_INFO]); mptcp_stats_print(info); } } static const char *format_host_sa(struct sockaddr_storage *sa) { union { struct sockaddr_in sin; struct sockaddr_in6 sin6; } *saddr = (void *)sa; switch (sa->ss_family) { case AF_INET: return format_host(AF_INET, 4, &saddr->sin.sin_addr); case AF_INET6: return format_host(AF_INET6, 16, &saddr->sin6.sin6_addr); default: return ""; } } static void sctp_show_info(const struct nlmsghdr *nlh, struct inet_diag_msg *r, struct rtattr *tb[]) { struct sockaddr_storage *sa; int len; print_skmeminfo(tb, INET_DIAG_SKMEMINFO); if (tb[INET_DIAG_LOCALS]) { len = RTA_PAYLOAD(tb[INET_DIAG_LOCALS]); sa = RTA_DATA(tb[INET_DIAG_LOCALS]); out(" locals:%s", format_host_sa(sa)); for (sa++, len -= sizeof(*sa); len > 0; sa++, len -= sizeof(*sa)) out(",%s", format_host_sa(sa)); } if (tb[INET_DIAG_PEERS]) { len = RTA_PAYLOAD(tb[INET_DIAG_PEERS]); sa = RTA_DATA(tb[INET_DIAG_PEERS]); out(" peers:%s", format_host_sa(sa)); for (sa++, len -= sizeof(*sa); len > 0; sa++, len -= sizeof(*sa)) out(",%s", format_host_sa(sa)); } if (tb[INET_DIAG_INFO]) { struct sctp_info *info; len = RTA_PAYLOAD(tb[INET_DIAG_INFO]); /* workaround for older kernels with less fields */ if (len < sizeof(*info)) { info = alloca(sizeof(*info)); memcpy(info, RTA_DATA(tb[INET_DIAG_INFO]), len); memset((char *)info + len, 0, sizeof(*info) - len); } else info = RTA_DATA(tb[INET_DIAG_INFO]); sctp_stats_print(info); } } static void parse_diag_msg(struct nlmsghdr *nlh, struct sockstat *s) { struct rtattr *tb[INET_DIAG_MAX+1]; struct inet_diag_msg *r = NLMSG_DATA(nlh); parse_rtattr(tb, INET_DIAG_MAX, (struct rtattr *)(r+1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r))); s->state = r->idiag_state; s->local.family = s->remote.family = r->idiag_family; s->lport = ntohs(r->id.idiag_sport); s->rport = ntohs(r->id.idiag_dport); s->wq = r->idiag_wqueue; s->rq = r->idiag_rqueue; s->ino = r->idiag_inode; s->uid = r->idiag_uid; s->iface = r->id.idiag_if; s->sk = cookie_sk_get(&r->id.idiag_cookie[0]); s->mark = 0; if (tb[INET_DIAG_MARK]) s->mark = rta_getattr_u32(tb[INET_DIAG_MARK]); s->cgroup_id = 0; if (tb[INET_DIAG_CGROUP_ID]) s->cgroup_id = rta_getattr_u64(tb[INET_DIAG_CGROUP_ID]); if (tb[INET_DIAG_PROTOCOL]) s->raw_prot = rta_getattr_u8(tb[INET_DIAG_PROTOCOL]); else s->raw_prot = 0; if (s->local.family == AF_INET) s->local.bytelen = s->remote.bytelen = 4; else s->local.bytelen = s->remote.bytelen = 16; memcpy(s->local.data, r->id.idiag_src, s->local.bytelen); memcpy(s->remote.data, r->id.idiag_dst, s->local.bytelen); } static int inet_show_sock(struct nlmsghdr *nlh, struct sockstat *s) { struct rtattr *tb[INET_DIAG_MAX+1]; struct inet_diag_msg *r = NLMSG_DATA(nlh); unsigned char v6only = 0; parse_rtattr(tb, INET_DIAG_MAX, (struct rtattr *)(r+1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r))); if (tb[INET_DIAG_PROTOCOL]) s->type = rta_getattr_u8(tb[INET_DIAG_PROTOCOL]); if (s->local.family == AF_INET6 && tb[INET_DIAG_SKV6ONLY]) v6only = rta_getattr_u8(tb[INET_DIAG_SKV6ONLY]); inet_stats_print(s, v6only); if (show_options) { struct tcpstat t = {}; t.timer = r->idiag_timer; t.timeout = r->idiag_expires; t.retrans = r->idiag_retrans; if (s->type == IPPROTO_SCTP) sctp_timer_print(&t); else tcp_timer_print(&t); } if (show_details) { sock_details_print(s); if (s->local.family == AF_INET6 && tb[INET_DIAG_SKV6ONLY]) out(" v6only:%u", v6only); if (tb[INET_DIAG_SHUTDOWN]) { unsigned char mask; mask = rta_getattr_u8(tb[INET_DIAG_SHUTDOWN]); out(" %c-%c", mask & 1 ? '-' : '<', mask & 2 ? '-' : '>'); } } if (show_tos) { if (tb[INET_DIAG_TOS]) out(" tos:%#x", rta_getattr_u8(tb[INET_DIAG_TOS])); if (tb[INET_DIAG_TCLASS]) out(" tclass:%#x", rta_getattr_u8(tb[INET_DIAG_TCLASS])); if (tb[INET_DIAG_CLASS_ID]) out(" class_id:%#x", rta_getattr_u32(tb[INET_DIAG_CLASS_ID])); } if (show_cgroup) { if (tb[INET_DIAG_CGROUP_ID]) out(" cgroup:%s", cg_id_to_path(rta_getattr_u64(tb[INET_DIAG_CGROUP_ID]))); } if (show_inet_sockopt) { if (tb[INET_DIAG_SOCKOPT] && RTA_PAYLOAD(tb[INET_DIAG_SOCKOPT]) >= sizeof(struct inet_diag_sockopt)) { const struct inet_diag_sockopt *sockopt = RTA_DATA(tb[INET_DIAG_SOCKOPT]); if (!oneline) out("\n\tinet-sockopt: ("); else out(" inet-sockopt: ("); if (sockopt->recverr) out(" recverr"); if (sockopt->is_icsk) out(" is_icsk"); if (sockopt->freebind) out(" freebind"); if (sockopt->hdrincl) out(" hdrincl"); if (sockopt->mc_loop) out(" mc_loop"); if (sockopt->transparent) out(" transparent"); if (sockopt->mc_all) out(" mc_all"); if (sockopt->nodefrag) out(" nodefrag"); if (sockopt->bind_address_no_port) out(" bind_addr_no_port"); if (sockopt->recverr_rfc4884) out(" recverr_rfc4884"); if (sockopt->defer_connect) out(" defer_connect"); out(")"); } } if (show_mem || (show_tcpinfo && s->type != IPPROTO_UDP)) { if (!oneline) out("\n\t"); if (s->type == IPPROTO_SCTP) sctp_show_info(nlh, r, tb); else if (s->type == IPPROTO_MPTCP) mptcp_show_info(nlh, r, tb); else tcp_show_info(nlh, r, tb); } sctp_ino = s->ino; return 0; } static int tcpdiag_send(int fd, int protocol, struct filter *f) { struct sockaddr_nl nladdr = { .nl_family = AF_NETLINK }; struct { struct nlmsghdr nlh; struct inet_diag_req r; } req = { .nlh.nlmsg_len = sizeof(req), .nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST, .nlh.nlmsg_seq = MAGIC_SEQ, .r.idiag_family = AF_INET, .r.idiag_states = f->states, }; char *bc = NULL; int bclen; struct msghdr msg; struct rtattr rta; struct iovec iov[3]; int iovlen = 1; if (protocol == IPPROTO_TCP) req.nlh.nlmsg_type = TCPDIAG_GETSOCK; else if (protocol == IPPROTO_DCCP) req.nlh.nlmsg_type = DCCPDIAG_GETSOCK; else return -1; if (show_mem) { req.r.idiag_ext |= (1<<(INET_DIAG_MEMINFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_SKMEMINFO-1)); } if (show_tcpinfo) { req.r.idiag_ext |= (1<<(INET_DIAG_INFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_VEGASINFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_CONG-1)); } if (show_tos) { req.r.idiag_ext |= (1<<(INET_DIAG_TOS-1)); req.r.idiag_ext |= (1<<(INET_DIAG_TCLASS-1)); } iov[0] = (struct iovec){ .iov_base = &req, .iov_len = sizeof(req) }; if (f->f) { bclen = ssfilter_bytecompile(f->f, &bc); if (bclen) { rta.rta_type = INET_DIAG_REQ_BYTECODE; rta.rta_len = RTA_LENGTH(bclen); iov[1] = (struct iovec){ &rta, sizeof(rta) }; iov[2] = (struct iovec){ bc, bclen }; req.nlh.nlmsg_len += RTA_LENGTH(bclen); iovlen = 3; } } msg = (struct msghdr) { .msg_name = (void *)&nladdr, .msg_namelen = sizeof(nladdr), .msg_iov = iov, .msg_iovlen = iovlen, }; if (sendmsg(fd, &msg, 0) < 0) { close(fd); return -1; } return 0; } static int sockdiag_send(int family, int fd, int protocol, struct filter *f) { struct sockaddr_nl nladdr = { .nl_family = AF_NETLINK }; DIAG_REQUEST(req, struct inet_diag_req_v2 r); char *bc = NULL; int bclen; __u32 proto; struct msghdr msg; struct rtattr rta_bc; struct rtattr rta_proto; struct iovec iov[5]; int iovlen = 1; if (family == PF_UNSPEC) return tcpdiag_send(fd, protocol, f); memset(&req.r, 0, sizeof(req.r)); req.r.sdiag_family = family; req.r.sdiag_protocol = protocol; req.r.idiag_states = f->states; if (show_mem) { req.r.idiag_ext |= (1<<(INET_DIAG_MEMINFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_SKMEMINFO-1)); } if (show_tcpinfo) { req.r.idiag_ext |= (1<<(INET_DIAG_INFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_VEGASINFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_CONG-1)); } if (show_tos) { req.r.idiag_ext |= (1<<(INET_DIAG_TOS-1)); req.r.idiag_ext |= (1<<(INET_DIAG_TCLASS-1)); } iov[0] = (struct iovec){ .iov_base = &req, .iov_len = sizeof(req) }; if (f->f) { bclen = ssfilter_bytecompile(f->f, &bc); if (bclen) { rta_bc.rta_type = INET_DIAG_REQ_BYTECODE; rta_bc.rta_len = RTA_LENGTH(bclen); iov[1] = (struct iovec){ &rta_bc, sizeof(rta_bc) }; iov[2] = (struct iovec){ bc, bclen }; req.nlh.nlmsg_len += RTA_LENGTH(bclen); iovlen = 3; } } /* put extended protocol attribute, if required */ if (protocol > 255) { rta_proto.rta_type = INET_DIAG_REQ_PROTOCOL; rta_proto.rta_len = RTA_LENGTH(sizeof(proto)); proto = protocol; iov[iovlen] = (struct iovec){ &rta_proto, sizeof(rta_proto) }; iov[iovlen + 1] = (struct iovec){ &proto, sizeof(proto) }; req.nlh.nlmsg_len += RTA_LENGTH(sizeof(proto)); iovlen += 2; } msg = (struct msghdr) { .msg_name = (void *)&nladdr, .msg_namelen = sizeof(nladdr), .msg_iov = iov, .msg_iovlen = iovlen, }; if (sendmsg(fd, &msg, 0) < 0) { close(fd); return -1; } return 0; } struct inet_diag_arg { struct filter *f; int protocol; struct rtnl_handle *rth; }; static int kill_inet_sock(struct nlmsghdr *h, void *arg, struct sockstat *s) { struct inet_diag_msg *d = NLMSG_DATA(h); struct inet_diag_arg *diag_arg = arg; struct rtnl_handle *rth = diag_arg->rth; DIAG_REQUEST(req, struct inet_diag_req_v2 r); req.nlh.nlmsg_type = SOCK_DESTROY; req.nlh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; req.nlh.nlmsg_seq = ++rth->seq; req.r.sdiag_family = d->idiag_family; req.r.sdiag_protocol = diag_arg->protocol; req.r.id = d->id; if (diag_arg->protocol == IPPROTO_RAW) { struct inet_diag_req_raw *raw = (void *)&req.r; BUILD_BUG_ON(sizeof(req.r) != sizeof(*raw)); raw->sdiag_raw_protocol = s->raw_prot; } return rtnl_talk(rth, &req.nlh, NULL); } static int show_one_inet_sock(struct nlmsghdr *h, void *arg) { int err; struct inet_diag_arg *diag_arg = arg; struct inet_diag_msg *r = NLMSG_DATA(h); struct sockstat s = {}; if (!(diag_arg->f->families & FAMILY_MASK(r->idiag_family))) return 0; parse_diag_msg(h, &s); s.type = diag_arg->protocol; if (diag_arg->f->f && run_ssfilter(diag_arg->f->f, &s) == 0) return 0; if (diag_arg->f->kill && kill_inet_sock(h, arg, &s) != 0) { if (errno == EOPNOTSUPP || errno == ENOENT) { /* Socket can't be closed, or is already closed. */ return 0; } else { perror("SOCK_DESTROY answers"); return -1; } } err = inet_show_sock(h, &s); if (err < 0) return err; return 0; } static int inet_show_netlink(struct filter *f, FILE *dump_fp, int protocol) { int err = 0; struct rtnl_handle rth, rth2; int family = PF_INET; struct inet_diag_arg arg = { .f = f, .protocol = protocol }; if (rtnl_open_byproto(&rth, 0, NETLINK_SOCK_DIAG)) return -1; if (f->kill) { if (rtnl_open_byproto(&rth2, 0, NETLINK_SOCK_DIAG)) { rtnl_close(&rth); return -1; } arg.rth = &rth2; } rth.dump = MAGIC_SEQ; rth.dump_fp = dump_fp; if (preferred_family == PF_INET6) family = PF_INET6; /* extended protocol will use INET_DIAG_REQ_PROTOCOL, * not supported by older kernels. On such kernel * rtnl_dump will bail with rtnl_dump_error(). * Suppress the error to avoid confusing the user */ if (protocol > 255) rth.flags |= RTNL_HANDLE_F_SUPPRESS_NLERR; again: if ((err = sockdiag_send(family, rth.fd, protocol, f))) goto Exit; if ((err = rtnl_dump_filter(&rth, show_one_inet_sock, &arg))) { if (family != PF_UNSPEC) { family = PF_UNSPEC; goto again; } goto Exit; } if (family == PF_INET && preferred_family != PF_INET) { family = PF_INET6; goto again; } Exit: rtnl_close(&rth); if (arg.rth) rtnl_close(arg.rth); return err; } static int tcp_show_netlink_file(struct filter *f) { FILE *fp; char buf[16384]; int err = -1; if ((fp = fopen(getenv("TCPDIAG_FILE"), "r")) == NULL) { perror("fopen($TCPDIAG_FILE)"); return err; } while (1) { int err2; size_t status, nitems; struct nlmsghdr *h = (struct nlmsghdr *)buf; struct sockstat s = {}; status = fread(buf, 1, sizeof(*h), fp); if (status != sizeof(*h)) { if (ferror(fp)) perror("Reading header from $TCPDIAG_FILE"); if (feof(fp)) fprintf(stderr, "Unexpected EOF reading $TCPDIAG_FILE"); break; } nitems = NLMSG_ALIGN(h->nlmsg_len - sizeof(*h)); status = fread(h+1, 1, nitems, fp); if (status != nitems) { if (ferror(fp)) perror("Reading $TCPDIAG_FILE"); if (feof(fp)) fprintf(stderr, "Unexpected EOF reading $TCPDIAG_FILE"); break; } /* The only legal exit point */ if (h->nlmsg_type == NLMSG_DONE) { err = 0; break; } if (h->nlmsg_type == NLMSG_ERROR) { struct nlmsgerr *err = (struct nlmsgerr *)NLMSG_DATA(h); if (h->nlmsg_len < NLMSG_LENGTH(sizeof(struct nlmsgerr))) { fprintf(stderr, "ERROR truncated\n"); } else { errno = -err->error; perror("TCPDIAG answered"); } break; } parse_diag_msg(h, &s); s.type = IPPROTO_TCP; if (f && f->f && run_ssfilter(f->f, &s) == 0) continue; err2 = inet_show_sock(h, &s); if (err2 < 0) { err = err2; break; } } fclose(fp); return err; } static int tcp_show(struct filter *f) { FILE *fp = NULL; char *buf = NULL; int bufsize = 1024*1024; if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6)) return 0; dg_proto = TCP_PROTO; if (getenv("TCPDIAG_FILE")) return tcp_show_netlink_file(f); if (!getenv("PROC_NET_TCP") && !getenv("PROC_ROOT") && inet_show_netlink(f, NULL, IPPROTO_TCP) == 0) return 0; /* Sigh... We have to parse /proc/net/tcp... */ while (bufsize >= 64*1024) { if ((buf = malloc(bufsize)) != NULL) break; bufsize /= 2; } if (buf == NULL) { errno = ENOMEM; return -1; } if (f->families & FAMILY_MASK(AF_INET)) { if ((fp = net_tcp_open()) == NULL) goto outerr; setbuffer(fp, buf, bufsize); if (generic_record_read(fp, tcp_show_line, f, AF_INET)) goto outerr; fclose(fp); } if ((f->families & FAMILY_MASK(AF_INET6)) && (fp = net_tcp6_open()) != NULL) { setbuffer(fp, buf, bufsize); if (generic_record_read(fp, tcp_show_line, f, AF_INET6)) goto outerr; fclose(fp); } free(buf); return 0; outerr: do { int saved_errno = errno; free(buf); if (fp) fclose(fp); errno = saved_errno; return -1; } while (0); } static int mptcp_show(struct filter *f) { if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6)) return 0; if (!getenv("PROC_NET_MPTCP") && !getenv("PROC_ROOT") && inet_show_netlink(f, NULL, IPPROTO_MPTCP) == 0) return 0; return 0; } static int dccp_show(struct filter *f) { if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6)) return 0; if (!getenv("PROC_NET_DCCP") && !getenv("PROC_ROOT") && inet_show_netlink(f, NULL, IPPROTO_DCCP) == 0) return 0; return 0; } static int sctp_show(struct filter *f) { if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6)) return 0; if (!getenv("PROC_NET_SCTP") && !getenv("PROC_ROOT") && inet_show_netlink(f, NULL, IPPROTO_SCTP) == 0) return 0; return 0; } static int dgram_show_line(char *line, const struct filter *f, int family) { struct sockstat s = {}; char *loc, *rem, *data; char opt[256]; int n; if (proc_inet_split_line(line, &loc, &rem, &data)) return -1; int state = (data[1] >= 'A') ? (data[1] - 'A' + 10) : (data[1] - '0'); if (!(f->states & (1 << state))) return 0; proc_parse_inet_addr(loc, rem, family, &s); if (f->f && run_ssfilter(f->f, &s) == 0) return 0; opt[0] = 0; n = sscanf(data, "%x %x:%x %*x:%*x %*x %d %*d %u %d %llx %[^\n]\n", &s.state, &s.wq, &s.rq, &s.uid, &s.ino, &s.refcnt, &s.sk, opt); if (n < 9) opt[0] = 0; s.type = dg_proto == UDP_PROTO ? IPPROTO_UDP : 0; inet_stats_print(&s, false); if (show_details && opt[0]) out(" opt:\"%s\"", opt); return 0; } static int udp_show(struct filter *f) { FILE *fp = NULL; if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6)) return 0; dg_proto = UDP_PROTO; if (!getenv("PROC_NET_UDP") && !getenv("PROC_ROOT") && inet_show_netlink(f, NULL, IPPROTO_UDP) == 0) return 0; if (f->families&FAMILY_MASK(AF_INET)) { if ((fp = net_udp_open()) == NULL) goto outerr; if (generic_record_read(fp, dgram_show_line, f, AF_INET)) goto outerr; fclose(fp); } if ((f->families&FAMILY_MASK(AF_INET6)) && (fp = net_udp6_open()) != NULL) { if (generic_record_read(fp, dgram_show_line, f, AF_INET6)) goto outerr; fclose(fp); } return 0; outerr: do { int saved_errno = errno; if (fp) fclose(fp); errno = saved_errno; return -1; } while (0); } static int raw_show(struct filter *f) { FILE *fp = NULL; if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6)) return 0; dg_proto = RAW_PROTO; if (!getenv("PROC_NET_RAW") && !getenv("PROC_ROOT") && inet_show_netlink(f, NULL, IPPROTO_RAW) == 0) return 0; if (f->families&FAMILY_MASK(AF_INET)) { if ((fp = net_raw_open()) == NULL) goto outerr; if (generic_record_read(fp, dgram_show_line, f, AF_INET)) goto outerr; fclose(fp); } if ((f->families&FAMILY_MASK(AF_INET6)) && (fp = net_raw6_open()) != NULL) { if (generic_record_read(fp, dgram_show_line, f, AF_INET6)) goto outerr; fclose(fp); } return 0; outerr: do { int saved_errno = errno; if (fp) fclose(fp); errno = saved_errno; return -1; } while (0); } #define MAX_UNIX_REMEMBER (1024*1024/sizeof(struct sockstat)) static void unix_list_drop_first(struct sockstat **list) { struct sockstat *s = *list; (*list) = (*list)->next; free(s->name); free(s); } static bool unix_type_skip(struct sockstat *s, struct filter *f) { if (s->type == SOCK_STREAM && !(f->dbs&(1<type == SOCK_DGRAM && !(f->dbs&(1<type == SOCK_SEQPACKET && !(f->dbs&(1<name ?: "*", " ", uint_to_str(s->lport, port_name), NULL); sock_addr_print(s->peer_name ?: "*", " ", uint_to_str(s->rport, port_name), NULL); proc_ctx_print(s); } static int unix_show_sock(struct nlmsghdr *nlh, void *arg) { struct filter *f = (struct filter *)arg; struct unix_diag_msg *r = NLMSG_DATA(nlh); struct rtattr *tb[UNIX_DIAG_MAX+1]; char name[128]; struct sockstat stat = { .name = "*", .peer_name = "*" }; parse_rtattr(tb, UNIX_DIAG_MAX, (struct rtattr *)(r+1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r))); stat.type = r->udiag_type; stat.state = r->udiag_state; stat.ino = stat.lport = r->udiag_ino; stat.local.family = stat.remote.family = AF_UNIX; if (unix_type_skip(&stat, f)) return 0; if (tb[UNIX_DIAG_RQLEN]) { struct unix_diag_rqlen *rql = RTA_DATA(tb[UNIX_DIAG_RQLEN]); stat.rq = rql->udiag_rqueue; stat.wq = rql->udiag_wqueue; } if (tb[UNIX_DIAG_NAME]) { int len = RTA_PAYLOAD(tb[UNIX_DIAG_NAME]); memcpy(name, RTA_DATA(tb[UNIX_DIAG_NAME]), len); name[len] = '\0'; if (name[0] == '\0') { int i; for (i = 0; i < len; i++) if (name[i] == '\0') name[i] = '@'; } stat.name = &name[0]; memcpy(stat.local.data, &stat.name, sizeof(stat.name)); } if (tb[UNIX_DIAG_PEER]) stat.rport = rta_getattr_u32(tb[UNIX_DIAG_PEER]); if (f->f && run_ssfilter(f->f, &stat) == 0) return 0; unix_stats_print(&stat, f); if (show_mem) print_skmeminfo(tb, UNIX_DIAG_MEMINFO); if (show_details) { if (tb[UNIX_DIAG_SHUTDOWN]) { unsigned char mask; mask = rta_getattr_u8(tb[UNIX_DIAG_SHUTDOWN]); out(" %c-%c", mask & 1 ? '-' : '<', mask & 2 ? '-' : '>'); } if (tb[UNIX_DIAG_VFS]) { struct unix_diag_vfs *uv = RTA_DATA(tb[UNIX_DIAG_VFS]); out(" ino:%u dev:%u/%u", uv->udiag_vfs_ino, major(uv->udiag_vfs_dev), minor(uv->udiag_vfs_dev)); } if (tb[UNIX_DIAG_ICONS]) { int len = RTA_PAYLOAD(tb[UNIX_DIAG_ICONS]); __u32 *peers = RTA_DATA(tb[UNIX_DIAG_ICONS]); int i; out(" peers:"); for (i = 0; i < len / sizeof(__u32); i++) out(" %u", peers[i]); } } return 0; } static int handle_netlink_request(struct filter *f, struct nlmsghdr *req, size_t size, rtnl_filter_t show_one_sock) { int ret = -1; struct rtnl_handle rth; if (rtnl_open_byproto(&rth, 0, NETLINK_SOCK_DIAG)) return -1; rth.dump = MAGIC_SEQ; if (rtnl_send(&rth, req, size) < 0) goto Exit; if (rtnl_dump_filter(&rth, show_one_sock, f)) goto Exit; ret = 0; Exit: rtnl_close(&rth); return ret; } static int unix_show_netlink(struct filter *f) { DIAG_REQUEST(req, struct unix_diag_req r); req.r.sdiag_family = AF_UNIX; req.r.udiag_states = f->states; req.r.udiag_show = UDIAG_SHOW_NAME | UDIAG_SHOW_PEER | UDIAG_SHOW_RQLEN; if (show_mem) req.r.udiag_show |= UDIAG_SHOW_MEMINFO; if (show_details) req.r.udiag_show |= UDIAG_SHOW_VFS | UDIAG_SHOW_ICONS; return handle_netlink_request(f, &req.nlh, sizeof(req), unix_show_sock); } static int unix_show(struct filter *f) { FILE *fp; char buf[256]; char name[128]; int newformat = 0; int cnt; struct sockstat *list = NULL; const int unix_state_map[] = { SS_CLOSE, SS_SYN_SENT, SS_ESTABLISHED, SS_CLOSING }; if (!filter_af_get(f, AF_UNIX)) return 0; if (!getenv("PROC_NET_UNIX") && !getenv("PROC_ROOT") && unix_show_netlink(f) == 0) return 0; if ((fp = net_unix_open()) == NULL) return -1; if (!fgets(buf, sizeof(buf), fp)) { fclose(fp); return -1; } if (memcmp(buf, "Peer", 4) == 0) newformat = 1; cnt = 0; while (fgets(buf, sizeof(buf), fp)) { struct sockstat *u, **insp; int flags; if (!(u = calloc(1, sizeof(*u)))) break; if (sscanf(buf, "%x: %x %x %x %x %x %d %s", &u->rport, &u->rq, &u->wq, &flags, &u->type, &u->state, &u->ino, name) < 8) name[0] = 0; u->lport = u->ino; u->local.family = u->remote.family = AF_UNIX; if (flags & (1 << 16)) { u->state = SS_LISTEN; } else if (u->state > 0 && u->state <= ARRAY_SIZE(unix_state_map)) { u->state = unix_state_map[u->state-1]; if (u->type == SOCK_DGRAM && u->state == SS_CLOSE && u->rport) u->state = SS_ESTABLISHED; } if (unix_type_skip(u, f) || !(f->states & (1 << u->state))) { free(u); continue; } if (!newformat) { u->rport = 0; u->rq = 0; u->wq = 0; } if (name[0]) { u->name = strdup(name); if (!u->name) { free(u); break; } } if (u->rport) { struct sockstat *p; for (p = list; p; p = p->next) { if (u->rport == p->lport) break; } if (!p) u->peer_name = "?"; else u->peer_name = p->name ? : "*"; } if (f->f) { struct sockstat st = { .local.family = AF_UNIX, .remote.family = AF_UNIX, }; memcpy(st.local.data, &u->name, sizeof(u->name)); /* when parsing the old format rport is set to 0 and * therefore peer_name remains NULL */ if (u->peer_name && strcmp(u->peer_name, "*")) memcpy(st.remote.data, &u->peer_name, sizeof(u->peer_name)); if (run_ssfilter(f->f, &st) == 0) { free(u->name); free(u); continue; } } insp = &list; while (*insp) { if (u->type < (*insp)->type || (u->type == (*insp)->type && u->ino < (*insp)->ino)) break; insp = &(*insp)->next; } u->next = *insp; *insp = u; if (++cnt > MAX_UNIX_REMEMBER) { while (list) { unix_stats_print(list, f); unix_list_drop_first(&list); } cnt = 0; } } fclose(fp); while (list) { unix_stats_print(list, f); unix_list_drop_first(&list); } return 0; } static int packet_stats_print(struct sockstat *s, const struct filter *f) { const char *addr, *port; char ll_name[16]; s->local.family = s->remote.family = AF_PACKET; if (f->f) { s->local.data[0] = s->prot; if (run_ssfilter(f->f, s) == 0) return 1; } sock_state_print(s); if (s->prot == 3) addr = "*"; else addr = ll_proto_n2a(htons(s->prot), ll_name, sizeof(ll_name)); if (s->iface == 0) port = "*"; else port = xll_index_to_name(s->iface); sock_addr_print(addr, ":", port, NULL); sock_addr_print("", "*", "", NULL); proc_ctx_print(s); if (show_details) sock_details_print(s); return 0; } static void packet_show_ring(struct packet_diag_ring *ring) { out("blk_size:%d", ring->pdr_block_size); out(",blk_nr:%d", ring->pdr_block_nr); out(",frm_size:%d", ring->pdr_frame_size); out(",frm_nr:%d", ring->pdr_frame_nr); out(",tmo:%d", ring->pdr_retire_tmo); out(",features:0x%x", ring->pdr_features); } static int packet_show_sock(struct nlmsghdr *nlh, void *arg) { const struct filter *f = arg; struct packet_diag_msg *r = NLMSG_DATA(nlh); struct packet_diag_info *pinfo = NULL; struct packet_diag_ring *ring_rx = NULL, *ring_tx = NULL; struct rtattr *tb[PACKET_DIAG_MAX+1]; struct sockstat stat = {}; uint32_t fanout = 0; bool has_fanout = false; parse_rtattr(tb, PACKET_DIAG_MAX, (struct rtattr *)(r+1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r))); /* use /proc/net/packet if all info are not available */ if (!tb[PACKET_DIAG_MEMINFO]) return -1; stat.type = r->pdiag_type; stat.prot = r->pdiag_num; stat.ino = r->pdiag_ino; stat.state = SS_CLOSE; stat.sk = cookie_sk_get(&r->pdiag_cookie[0]); if (tb[PACKET_DIAG_MEMINFO]) { __u32 *skmeminfo = RTA_DATA(tb[PACKET_DIAG_MEMINFO]); stat.rq = skmeminfo[SK_MEMINFO_RMEM_ALLOC]; } if (tb[PACKET_DIAG_INFO]) { pinfo = RTA_DATA(tb[PACKET_DIAG_INFO]); stat.lport = stat.iface = pinfo->pdi_index; } if (tb[PACKET_DIAG_UID]) stat.uid = rta_getattr_u32(tb[PACKET_DIAG_UID]); if (tb[PACKET_DIAG_RX_RING]) ring_rx = RTA_DATA(tb[PACKET_DIAG_RX_RING]); if (tb[PACKET_DIAG_TX_RING]) ring_tx = RTA_DATA(tb[PACKET_DIAG_TX_RING]); if (tb[PACKET_DIAG_FANOUT]) { has_fanout = true; fanout = rta_getattr_u32(tb[PACKET_DIAG_FANOUT]); } if (packet_stats_print(&stat, f)) return 0; if (show_details) { if (pinfo) { if (oneline) out(" ver:%d", pinfo->pdi_version); else out("\n\tver:%d", pinfo->pdi_version); out(" cpy_thresh:%d", pinfo->pdi_copy_thresh); out(" flags( "); if (pinfo->pdi_flags & PDI_RUNNING) out("running"); if (pinfo->pdi_flags & PDI_AUXDATA) out(" auxdata"); if (pinfo->pdi_flags & PDI_ORIGDEV) out(" origdev"); if (pinfo->pdi_flags & PDI_VNETHDR) out(" vnethdr"); if (pinfo->pdi_flags & PDI_LOSS) out(" loss"); if (!pinfo->pdi_flags) out("0"); out(" )"); } if (ring_rx) { if (oneline) out(" ring_rx("); else out("\n\tring_rx("); packet_show_ring(ring_rx); out(")"); } if (ring_tx) { if (oneline) out(" ring_tx("); else out("\n\tring_tx("); packet_show_ring(ring_tx); out(")"); } if (has_fanout) { uint16_t type = (fanout >> 16) & 0xffff; if (oneline) out(" fanout("); else out("\n\tfanout("); out("id:%d,", fanout & 0xffff); out("type:"); if (type == 0) out("hash"); else if (type == 1) out("lb"); else if (type == 2) out("cpu"); else if (type == 3) out("roll"); else if (type == 4) out("random"); else if (type == 5) out("qm"); else out("0x%x", type); out(")"); } } if (show_bpf && tb[PACKET_DIAG_FILTER]) { struct sock_filter *fil = RTA_DATA(tb[PACKET_DIAG_FILTER]); int num = RTA_PAYLOAD(tb[PACKET_DIAG_FILTER]) / sizeof(struct sock_filter); if (oneline) out(" bpf filter (%d): ", num); else out("\n\tbpf filter (%d): ", num); while (num) { out(" 0x%02x %u %u %u,", fil->code, fil->jt, fil->jf, fil->k); num--; fil++; } } if (show_mem) print_skmeminfo(tb, PACKET_DIAG_MEMINFO); return 0; } static int packet_show_netlink(struct filter *f) { DIAG_REQUEST(req, struct packet_diag_req r); req.r.sdiag_family = AF_PACKET; req.r.pdiag_show = PACKET_SHOW_INFO | PACKET_SHOW_MEMINFO | PACKET_SHOW_FILTER | PACKET_SHOW_RING_CFG | PACKET_SHOW_FANOUT; return handle_netlink_request(f, &req.nlh, sizeof(req), packet_show_sock); } static int packet_show_line(char *buf, const struct filter *f, int fam) { unsigned long long sk; struct sockstat stat = {}; int type, prot, iface, state, rq, uid, ino; sscanf(buf, "%llx %*d %d %x %d %d %u %u %u", &sk, &type, &prot, &iface, &state, &rq, &uid, &ino); if (type == SOCK_RAW && !(f->dbs & (1<dbs & (1<states & (1 << SS_CLOSE))) return 0; if (!getenv("PROC_NET_PACKET") && !getenv("PROC_ROOT") && packet_show_netlink(f) == 0) return 0; if ((fp = net_packet_open()) == NULL) return -1; if (generic_record_read(fp, packet_show_line, f, AF_PACKET)) rc = -1; fclose(fp); return rc; } static int xdp_stats_print(struct sockstat *s, const struct filter *f) { const char *addr, *port; char q_str[16]; s->local.family = s->remote.family = AF_XDP; if (f->f) { if (run_ssfilter(f->f, s) == 0) return 1; } sock_state_print(s); if (s->iface) { addr = xll_index_to_name(s->iface); snprintf(q_str, sizeof(q_str), "q%d", s->lport); port = q_str; sock_addr_print(addr, ":", port, NULL); } else { sock_addr_print("", "*", "", NULL); } sock_addr_print("", "*", "", NULL); proc_ctx_print(s); if (show_details) sock_details_print(s); return 0; } static void xdp_show_ring(const char *name, struct xdp_diag_ring *ring) { if (oneline) out(" %s(", name); else out("\n\t%s(", name); out("entries:%u", ring->entries); out(")"); } static void xdp_show_umem(struct xdp_diag_umem *umem, struct xdp_diag_ring *fr, struct xdp_diag_ring *cr) { if (oneline) out(" tumem("); else out("\n\tumem("); out("id:%u", umem->id); out(",size:%llu", umem->size); out(",num_pages:%u", umem->num_pages); out(",chunk_size:%u", umem->chunk_size); out(",headroom:%u", umem->headroom); out(",ifindex:%u", umem->ifindex); out(",qid:%u", umem->queue_id); out(",zc:%u", umem->flags & XDP_DU_F_ZEROCOPY); out(",refs:%u", umem->refs); out(")"); if (fr) xdp_show_ring("fr", fr); if (cr) xdp_show_ring("cr", cr); } static void xdp_show_stats(struct xdp_diag_stats *stats) { if (oneline) out(" stats("); else out("\n\tstats("); out("rx dropped:%llu", stats->n_rx_dropped); out(",rx invalid:%llu", stats->n_rx_invalid); out(",rx queue full:%llu", stats->n_rx_full); out(",rx fill ring empty:%llu", stats->n_fill_ring_empty); out(",tx invalid:%llu", stats->n_tx_invalid); out(",tx ring empty:%llu", stats->n_tx_ring_empty); out(")"); } static int xdp_show_sock(struct nlmsghdr *nlh, void *arg) { struct xdp_diag_ring *rx = NULL, *tx = NULL, *fr = NULL, *cr = NULL; struct xdp_diag_msg *msg = NLMSG_DATA(nlh); struct rtattr *tb[XDP_DIAG_MAX + 1]; struct xdp_diag_info *info = NULL; struct xdp_diag_umem *umem = NULL; struct xdp_diag_stats *stats = NULL; const struct filter *f = arg; struct sockstat stat = {}; parse_rtattr(tb, XDP_DIAG_MAX, (struct rtattr *)(msg + 1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*msg))); stat.type = msg->xdiag_type; stat.ino = msg->xdiag_ino; stat.state = SS_CLOSE; stat.sk = cookie_sk_get(&msg->xdiag_cookie[0]); if (tb[XDP_DIAG_INFO]) { info = RTA_DATA(tb[XDP_DIAG_INFO]); stat.iface = info->ifindex; stat.lport = info->queue_id; } if (tb[XDP_DIAG_UID]) stat.uid = rta_getattr_u32(tb[XDP_DIAG_UID]); if (tb[XDP_DIAG_RX_RING]) rx = RTA_DATA(tb[XDP_DIAG_RX_RING]); if (tb[XDP_DIAG_TX_RING]) tx = RTA_DATA(tb[XDP_DIAG_TX_RING]); if (tb[XDP_DIAG_UMEM]) umem = RTA_DATA(tb[XDP_DIAG_UMEM]); if (tb[XDP_DIAG_UMEM_FILL_RING]) fr = RTA_DATA(tb[XDP_DIAG_UMEM_FILL_RING]); if (tb[XDP_DIAG_UMEM_COMPLETION_RING]) cr = RTA_DATA(tb[XDP_DIAG_UMEM_COMPLETION_RING]); if (tb[XDP_DIAG_MEMINFO]) { __u32 *skmeminfo = RTA_DATA(tb[XDP_DIAG_MEMINFO]); stat.rq = skmeminfo[SK_MEMINFO_RMEM_ALLOC]; } if (tb[XDP_DIAG_STATS]) stats = RTA_DATA(tb[XDP_DIAG_STATS]); if (xdp_stats_print(&stat, f)) return 0; if (show_details) { if (rx) xdp_show_ring("rx", rx); if (tx) xdp_show_ring("tx", tx); if (umem) xdp_show_umem(umem, fr, cr); if (stats) xdp_show_stats(stats); } if (show_mem) print_skmeminfo(tb, XDP_DIAG_MEMINFO); // really? return 0; } static int xdp_show(struct filter *f) { DIAG_REQUEST(req, struct xdp_diag_req r); if (!filter_af_get(f, AF_XDP) || !(f->states & (1 << SS_CLOSE))) return 0; req.r.sdiag_family = AF_XDP; req.r.xdiag_show = XDP_SHOW_INFO | XDP_SHOW_RING_CFG | XDP_SHOW_UMEM | XDP_SHOW_MEMINFO | XDP_SHOW_STATS; return handle_netlink_request(f, &req.nlh, sizeof(req), xdp_show_sock); } static int netlink_show_one(struct filter *f, int prot, int pid, unsigned int groups, int state, int dst_pid, unsigned int dst_group, int rq, int wq, unsigned long long sk, unsigned long long cb) { struct sockstat st = { .state = SS_CLOSE, .rq = rq, .wq = wq, .local.family = AF_NETLINK, .remote.family = AF_NETLINK, }; SPRINT_BUF(prot_buf) = {}; const char *prot_name; char procname[64] = {}; if (f->f) { st.rport = -1; st.lport = pid; st.local.data[0] = prot; if (run_ssfilter(f->f, &st) == 0) return 1; } sock_state_print(&st); prot_name = nl_proto_n2a(prot, prot_buf, sizeof(prot_buf)); if (pid == -1) { procname[0] = '*'; } else if (!numeric) { int done = 0; if (!pid) { done = 1; strncpy(procname, "kernel", 7); } else if (pid > 0) { FILE *fp; snprintf(procname, sizeof(procname), "%s/%d/stat", getenv("PROC_ROOT") ? : "/proc", pid); if ((fp = fopen(procname, "r")) != NULL) { if (fscanf(fp, "%*d (%[^)])", procname) == 1) { snprintf(procname+strlen(procname), sizeof(procname)-strlen(procname), "/%d", pid); done = 1; } fclose(fp); } } if (!done) int_to_str(pid, procname); } else { int_to_str(pid, procname); } sock_addr_print(prot_name, ":", procname, NULL); if (state == NETLINK_CONNECTED) { char dst_group_buf[30]; char dst_pid_buf[30]; sock_addr_print(int_to_str(dst_group, dst_group_buf), ":", int_to_str(dst_pid, dst_pid_buf), NULL); } else { sock_addr_print("", "*", "", NULL); } char *pid_context = NULL; if (show_proc_ctx) { /* The pid value will either be: * 0 if destination kernel - show kernel initial context. * A valid process pid - use getpidcon. * A unique value allocated by the kernel or netlink user * to the process - show context as "not available". */ if (!pid) security_get_initial_context("kernel", &pid_context); else if (pid > 0) getpidcon(pid, &pid_context); out(" proc_ctx=%s", pid_context ? : "unavailable"); freecon(pid_context); } if (show_details) { out(" sk=%llx cb=%llx groups=0x%08x", sk, cb, groups); } return 0; } static int netlink_show_sock(struct nlmsghdr *nlh, void *arg) { struct filter *f = (struct filter *)arg; struct netlink_diag_msg *r = NLMSG_DATA(nlh); struct rtattr *tb[NETLINK_DIAG_MAX+1]; int rq = 0, wq = 0; unsigned long groups = 0; parse_rtattr(tb, NETLINK_DIAG_MAX, (struct rtattr *)(r+1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r))); if (tb[NETLINK_DIAG_GROUPS] && RTA_PAYLOAD(tb[NETLINK_DIAG_GROUPS])) groups = *(unsigned long *) RTA_DATA(tb[NETLINK_DIAG_GROUPS]); if (tb[NETLINK_DIAG_MEMINFO]) { const __u32 *skmeminfo; skmeminfo = RTA_DATA(tb[NETLINK_DIAG_MEMINFO]); rq = skmeminfo[SK_MEMINFO_RMEM_ALLOC]; wq = skmeminfo[SK_MEMINFO_WMEM_ALLOC]; } if (netlink_show_one(f, r->ndiag_protocol, r->ndiag_portid, groups, r->ndiag_state, r->ndiag_dst_portid, r->ndiag_dst_group, rq, wq, 0, 0)) { return 0; } if (show_mem) { out("\t"); print_skmeminfo(tb, NETLINK_DIAG_MEMINFO); } return 0; } static int netlink_show_netlink(struct filter *f) { DIAG_REQUEST(req, struct netlink_diag_req r); req.r.sdiag_family = AF_NETLINK; req.r.sdiag_protocol = NDIAG_PROTO_ALL; req.r.ndiag_show = NDIAG_SHOW_GROUPS | NDIAG_SHOW_MEMINFO; return handle_netlink_request(f, &req.nlh, sizeof(req), netlink_show_sock); } static int netlink_show(struct filter *f) { FILE *fp; char buf[256]; int prot, pid; unsigned int groups; int rq, wq, rc; unsigned long long sk, cb; if (!filter_af_get(f, AF_NETLINK) || !(f->states & (1 << SS_CLOSE))) return 0; if (!getenv("PROC_NET_NETLINK") && !getenv("PROC_ROOT") && netlink_show_netlink(f) == 0) return 0; if ((fp = net_netlink_open()) == NULL) return -1; if (!fgets(buf, sizeof(buf), fp)) { fclose(fp); return -1; } while (fgets(buf, sizeof(buf), fp)) { sscanf(buf, "%llx %d %d %x %d %d %llx %d", &sk, &prot, &pid, &groups, &rq, &wq, &cb, &rc); netlink_show_one(f, prot, pid, groups, 0, 0, 0, rq, wq, sk, cb); } fclose(fp); return 0; } static bool vsock_type_skip(struct sockstat *s, struct filter *f) { if (s->type == SOCK_STREAM && !(f->dbs & (1 << VSOCK_ST_DB))) return true; if (s->type == SOCK_DGRAM && !(f->dbs & (1 << VSOCK_DG_DB))) return true; return false; } static void vsock_addr_print(inet_prefix *a, __u32 port) { char cid_str[sizeof("4294967295")]; char port_str[sizeof("4294967295")]; __u32 cid; memcpy(&cid, a->data, sizeof(cid)); if (cid == ~(__u32)0) snprintf(cid_str, sizeof(cid_str), "*"); else snprintf(cid_str, sizeof(cid_str), "%u", cid); if (port == ~(__u32)0) snprintf(port_str, sizeof(port_str), "*"); else snprintf(port_str, sizeof(port_str), "%u", port); sock_addr_print(cid_str, ":", port_str, NULL); } static void vsock_stats_print(struct sockstat *s, struct filter *f) { sock_state_print(s); vsock_addr_print(&s->local, s->lport); vsock_addr_print(&s->remote, s->rport); proc_ctx_print(s); } static int vsock_show_sock(struct nlmsghdr *nlh, void *arg) { struct filter *f = (struct filter *)arg; struct vsock_diag_msg *r = NLMSG_DATA(nlh); struct sockstat stat = { .type = r->vdiag_type, .lport = r->vdiag_src_port, .rport = r->vdiag_dst_port, .state = r->vdiag_state, .ino = r->vdiag_ino, }; vsock_set_inet_prefix(&stat.local, r->vdiag_src_cid); vsock_set_inet_prefix(&stat.remote, r->vdiag_dst_cid); if (vsock_type_skip(&stat, f)) return 0; if (f->f && run_ssfilter(f->f, &stat) == 0) return 0; vsock_stats_print(&stat, f); return 0; } static int vsock_show(struct filter *f) { DIAG_REQUEST(req, struct vsock_diag_req r); if (!filter_af_get(f, AF_VSOCK)) return 0; req.r.sdiag_family = AF_VSOCK; req.r.vdiag_states = f->states; return handle_netlink_request(f, &req.nlh, sizeof(req), vsock_show_sock); } static void tipc_sock_addr_print(struct rtattr *net_addr, struct rtattr *id) { uint32_t node = rta_getattr_u32(net_addr); uint32_t identity = rta_getattr_u32(id); SPRINT_BUF(addr) = {}; SPRINT_BUF(port) = {}; sprintf(addr, "%u", node); sprintf(port, "%u", identity); sock_addr_print(addr, ":", port, NULL); } static int tipc_show_sock(struct nlmsghdr *nlh, void *arg) { struct rtattr *stat[TIPC_NLA_SOCK_STAT_MAX + 1] = {}; struct rtattr *attrs[TIPC_NLA_SOCK_MAX + 1] = {}; struct rtattr *con[TIPC_NLA_CON_MAX + 1] = {}; struct rtattr *info[TIPC_NLA_MAX + 1] = {}; struct rtattr *msg_ref; struct sockstat ss = {}; parse_rtattr(info, TIPC_NLA_MAX, NLMSG_DATA(nlh), NLMSG_PAYLOAD(nlh, 0)); if (!info[TIPC_NLA_SOCK]) return 0; msg_ref = info[TIPC_NLA_SOCK]; parse_rtattr(attrs, TIPC_NLA_SOCK_MAX, RTA_DATA(msg_ref), RTA_PAYLOAD(msg_ref)); msg_ref = attrs[TIPC_NLA_SOCK_STAT]; parse_rtattr(stat, TIPC_NLA_SOCK_STAT_MAX, RTA_DATA(msg_ref), RTA_PAYLOAD(msg_ref)); ss.local.family = AF_TIPC; ss.type = rta_getattr_u32(attrs[TIPC_NLA_SOCK_TYPE]); ss.state = rta_getattr_u32(attrs[TIPC_NLA_SOCK_TIPC_STATE]); ss.uid = rta_getattr_u32(attrs[TIPC_NLA_SOCK_UID]); ss.ino = rta_getattr_u32(attrs[TIPC_NLA_SOCK_INO]); ss.rq = rta_getattr_u32(stat[TIPC_NLA_SOCK_STAT_RCVQ]); ss.wq = rta_getattr_u32(stat[TIPC_NLA_SOCK_STAT_SENDQ]); ss.sk = rta_getattr_u64(attrs[TIPC_NLA_SOCK_COOKIE]); sock_state_print (&ss); tipc_sock_addr_print(attrs[TIPC_NLA_SOCK_ADDR], attrs[TIPC_NLA_SOCK_REF]); msg_ref = attrs[TIPC_NLA_SOCK_CON]; if (msg_ref) { parse_rtattr(con, TIPC_NLA_CON_MAX, RTA_DATA(msg_ref), RTA_PAYLOAD(msg_ref)); tipc_sock_addr_print(con[TIPC_NLA_CON_NODE], con[TIPC_NLA_CON_SOCK]); } else sock_addr_print("", "-", "", NULL); if (show_details) sock_details_print(&ss); proc_ctx_print(&ss); if (show_tipcinfo) { if (oneline) out(" type:%s", stype_nameg[ss.type]); else out("\n type:%s", stype_nameg[ss.type]); out(" cong:%s ", stat[TIPC_NLA_SOCK_STAT_LINK_CONG] ? "link" : stat[TIPC_NLA_SOCK_STAT_CONN_CONG] ? "conn" : "none"); out(" drop:%d ", rta_getattr_u32(stat[TIPC_NLA_SOCK_STAT_DROP])); if (attrs[TIPC_NLA_SOCK_HAS_PUBL]) out(" publ"); if (con[TIPC_NLA_CON_FLAG]) out(" via {%u,%u} ", rta_getattr_u32(con[TIPC_NLA_CON_TYPE]), rta_getattr_u32(con[TIPC_NLA_CON_INST])); } return 0; } static int tipc_show(struct filter *f) { DIAG_REQUEST(req, struct tipc_sock_diag_req r); memset(&req.r, 0, sizeof(req.r)); req.r.sdiag_family = AF_TIPC; req.r.tidiag_states = f->states; return handle_netlink_request(f, &req.nlh, sizeof(req), tipc_show_sock); } struct sock_diag_msg { __u8 sdiag_family; }; static int generic_show_sock(struct nlmsghdr *nlh, void *arg) { struct sock_diag_msg *r = NLMSG_DATA(nlh); struct inet_diag_arg inet_arg = { .f = arg, .protocol = IPPROTO_MAX }; int ret; switch (r->sdiag_family) { case AF_INET: case AF_INET6: inet_arg.rth = inet_arg.f->rth_for_killing; ret = show_one_inet_sock(nlh, &inet_arg); break; case AF_UNIX: ret = unix_show_sock(nlh, arg); break; case AF_PACKET: ret = packet_show_sock(nlh, arg); break; case AF_NETLINK: ret = netlink_show_sock(nlh, arg); break; case AF_VSOCK: ret = vsock_show_sock(nlh, arg); break; case AF_XDP: ret = xdp_show_sock(nlh, arg); break; default: ret = -1; } render(); return ret; } static int handle_follow_request(struct filter *f) { int ret = 0; int groups = 0; struct rtnl_handle rth, rth2; if (f->families & FAMILY_MASK(AF_INET) && f->dbs & (1 << TCP_DB)) groups |= 1 << (SKNLGRP_INET_TCP_DESTROY - 1); if (f->families & FAMILY_MASK(AF_INET) && f->dbs & (1 << UDP_DB)) groups |= 1 << (SKNLGRP_INET_UDP_DESTROY - 1); if (f->families & FAMILY_MASK(AF_INET6) && f->dbs & (1 << TCP_DB)) groups |= 1 << (SKNLGRP_INET6_TCP_DESTROY - 1); if (f->families & FAMILY_MASK(AF_INET6) && f->dbs & (1 << UDP_DB)) groups |= 1 << (SKNLGRP_INET6_UDP_DESTROY - 1); if (groups == 0) return -1; if (rtnl_open_byproto(&rth, groups, NETLINK_SOCK_DIAG)) return -1; rth.dump = 0; rth.local.nl_pid = 0; if (f->kill) { if (rtnl_open_byproto(&rth2, groups, NETLINK_SOCK_DIAG)) { rtnl_close(&rth); return -1; } f->rth_for_killing = &rth2; } if (rtnl_dump_filter(&rth, generic_show_sock, f)) ret = -1; rtnl_close(&rth); if (f->rth_for_killing) rtnl_close(f->rth_for_killing); return ret; } static int get_snmp_int(char *proto, char *key, int *result) { char buf[1024]; FILE *fp; int protolen = strlen(proto); int keylen = strlen(key); *result = 0; if ((fp = net_snmp_open()) == NULL) return -1; while (fgets(buf, sizeof(buf), fp) != NULL) { char *p = buf; int pos = 0; if (memcmp(buf, proto, protolen)) continue; while ((p = strchr(p, ' ')) != NULL) { pos++; p++; if (memcmp(p, key, keylen) == 0 && (p[keylen] == ' ' || p[keylen] == '\n')) break; } if (fgets(buf, sizeof(buf), fp) == NULL) break; if (memcmp(buf, proto, protolen)) break; p = buf; while ((p = strchr(p, ' ')) != NULL) { p++; if (--pos == 0) { sscanf(p, "%d", result); fclose(fp); return 0; } } } fclose(fp); errno = ESRCH; return -1; } /* Get stats from sockstat */ struct ssummary { int socks; int tcp_mem; int tcp_total; int tcp_orphans; int tcp_tws; int tcp4_hashed; int udp4; int raw4; int frag4; int frag4_mem; int tcp6_hashed; int udp6; int raw6; int frag6; int frag6_mem; }; static void get_sockstat_line(char *line, struct ssummary *s) { char id[256], rem[256]; if (sscanf(line, "%[^ ] %[^\n]\n", id, rem) != 2) return; if (strcmp(id, "sockets:") == 0) sscanf(rem, "%*s%d", &s->socks); else if (strcmp(id, "UDP:") == 0) sscanf(rem, "%*s%d", &s->udp4); else if (strcmp(id, "UDP6:") == 0) sscanf(rem, "%*s%d", &s->udp6); else if (strcmp(id, "RAW:") == 0) sscanf(rem, "%*s%d", &s->raw4); else if (strcmp(id, "RAW6:") == 0) sscanf(rem, "%*s%d", &s->raw6); else if (strcmp(id, "TCP6:") == 0) sscanf(rem, "%*s%d", &s->tcp6_hashed); else if (strcmp(id, "FRAG:") == 0) sscanf(rem, "%*s%d%*s%d", &s->frag4, &s->frag4_mem); else if (strcmp(id, "FRAG6:") == 0) sscanf(rem, "%*s%d%*s%d", &s->frag6, &s->frag6_mem); else if (strcmp(id, "TCP:") == 0) sscanf(rem, "%*s%d%*s%d%*s%d%*s%d%*s%d", &s->tcp4_hashed, &s->tcp_orphans, &s->tcp_tws, &s->tcp_total, &s->tcp_mem); } static int get_sockstat(struct ssummary *s) { char buf[256]; FILE *fp; memset(s, 0, sizeof(*s)); if ((fp = net_sockstat_open()) == NULL) return -1; while (fgets(buf, sizeof(buf), fp) != NULL) get_sockstat_line(buf, s); fclose(fp); if ((fp = net_sockstat6_open()) == NULL) return 0; while (fgets(buf, sizeof(buf), fp) != NULL) get_sockstat_line(buf, s); fclose(fp); return 0; } static int print_summary(void) { struct ssummary s; int tcp_estab; if (get_sockstat(&s) < 0) perror("ss: get_sockstat"); if (get_snmp_int("Tcp:", "CurrEstab", &tcp_estab) < 0) perror("ss: get_snmpstat"); printf("Total: %d\n", s.socks); printf("TCP: %d (estab %d, closed %d, orphaned %d, timewait %d)\n", s.tcp_total + s.tcp_tws, tcp_estab, s.tcp_total - (s.tcp4_hashed + s.tcp6_hashed - s.tcp_tws), s.tcp_orphans, s.tcp_tws); printf("\n"); printf("Transport Total IP IPv6\n"); printf("RAW %-9d %-9d %-9d\n", s.raw4+s.raw6, s.raw4, s.raw6); printf("UDP %-9d %-9d %-9d\n", s.udp4+s.udp6, s.udp4, s.udp6); printf("TCP %-9d %-9d %-9d\n", s.tcp4_hashed+s.tcp6_hashed, s.tcp4_hashed, s.tcp6_hashed); printf("INET %-9d %-9d %-9d\n", s.raw4+s.udp4+s.tcp4_hashed+ s.raw6+s.udp6+s.tcp6_hashed, s.raw4+s.udp4+s.tcp4_hashed, s.raw6+s.udp6+s.tcp6_hashed); printf("FRAG %-9d %-9d %-9d\n", s.frag4+s.frag6, s.frag4, s.frag6); printf("\n"); return 0; } static void _usage(FILE *dest) { fprintf(dest, "Usage: ss [ OPTIONS ]\n" " ss [ OPTIONS ] [ FILTER ]\n" " -h, --help this message\n" " -V, --version output version information\n" " -n, --numeric don't resolve service names\n" " -r, --resolve resolve host names\n" " -a, --all display all sockets\n" " -l, --listening display listening sockets\n" " -B, --bound-inactive display TCP bound but inactive sockets\n" " -o, --options show timer information\n" " -e, --extended show detailed socket information\n" " -m, --memory show socket memory usage\n" " -p, --processes show process using socket\n" " -T, --threads show thread using socket\n" " -i, --info show internal TCP information\n" " --tipcinfo show internal tipc socket information\n" " -s, --summary show socket usage summary\n" " --tos show tos and priority information\n" " --cgroup show cgroup information\n" " -b, --bpf show bpf filter socket information\n" " -E, --events continually display sockets as they are destroyed\n" " -Z, --context display task SELinux security contexts\n" " -z, --contexts display task and socket SELinux security contexts\n" " -N, --net switch to the specified network namespace name\n" "\n" " -4, --ipv4 display only IP version 4 sockets\n" " -6, --ipv6 display only IP version 6 sockets\n" " -0, --packet display PACKET sockets\n" " -t, --tcp display only TCP sockets\n" " -M, --mptcp display only MPTCP sockets\n" " -S, --sctp display only SCTP sockets\n" " -u, --udp display only UDP sockets\n" " -d, --dccp display only DCCP sockets\n" " -w, --raw display only RAW sockets\n" " -x, --unix display only Unix domain sockets\n" " --tipc display only TIPC sockets\n" " --vsock display only vsock sockets\n" " --xdp display only XDP sockets\n" " -f, --family=FAMILY display sockets of type FAMILY\n" " FAMILY := {inet|inet6|link|unix|netlink|vsock|tipc|xdp|help}\n" "\n" " -K, --kill forcibly close sockets, display what was closed\n" " -H, --no-header Suppress header line\n" " -O, --oneline socket's data printed on a single line\n" " --inet-sockopt show various inet socket options\n" "\n" " -A, --query=QUERY, --socket=QUERY\n" " QUERY := {all|inet|tcp|mptcp|udp|raw|unix|unix_dgram|unix_stream|unix_seqpacket|packet|packet_raw|packet_dgram|netlink|dccp|sctp|vsock_stream|vsock_dgram|tipc|xdp}[,QUERY]\n" "\n" " -D, --diag=FILE Dump raw information about TCP sockets to FILE\n" " -F, --filter=FILE read filter information from FILE\n" " FILTER := [ state STATE-FILTER ] [ EXPRESSION ]\n" " STATE-FILTER := {all|connected|synchronized|bucket|big|TCP-STATES}\n" " TCP-STATES := {established|syn-sent|syn-recv|fin-wait-{1,2}|time-wait|closed|close-wait|last-ack|listening|closing}\n" " connected := {established|syn-sent|syn-recv|fin-wait-{1,2}|time-wait|close-wait|last-ack|closing}\n" " synchronized := {established|syn-recv|fin-wait-{1,2}|time-wait|close-wait|last-ack|closing}\n" " bucket := {syn-recv|time-wait}\n" " big := {established|syn-sent|fin-wait-{1,2}|closed|close-wait|last-ack|listening|closing}\n" ); } static void help(void) __attribute__((noreturn)); static void help(void) { _usage(stdout); exit(0); } static void usage(void) __attribute__((noreturn)); static void usage(void) { _usage(stderr); exit(-1); } static int scan_state(const char *state) { static const char * const sstate_namel[] = { "UNKNOWN", [SS_ESTABLISHED] = "established", [SS_SYN_SENT] = "syn-sent", [SS_SYN_RECV] = "syn-recv", [SS_FIN_WAIT1] = "fin-wait-1", [SS_FIN_WAIT2] = "fin-wait-2", [SS_TIME_WAIT] = "time-wait", [SS_CLOSE] = "unconnected", [SS_CLOSE_WAIT] = "close-wait", [SS_LAST_ACK] = "last-ack", [SS_LISTEN] = "listening", [SS_CLOSING] = "closing", [SS_NEW_SYN_RECV] = "new-syn-recv", [SS_BOUND_INACTIVE] = "bound-inactive", }; int i; /* NEW_SYN_RECV is a kernel implementation detail. It shouldn't be used * or even be visible by users. */ if (strcasecmp(state, "new-syn-recv") == 0) goto wrong_state; if (strcasecmp(state, "close") == 0 || strcasecmp(state, "closed") == 0) return (1< 0) { if (strcmp(*argv, "state") == 0) { NEXT_ARG(); if (!saw_states) state_filter = 0; state_filter |= scan_state(*argv); saw_states = 1; } else if (strcmp(*argv, "exclude") == 0 || strcmp(*argv, "excl") == 0) { NEXT_ARG(); if (!saw_states) state_filter = SS_ALL; state_filter &= ~scan_state(*argv); saw_states = 1; } else { break; } argc--; argv++; } if (do_default) { state_filter = state_filter ? state_filter : SS_CONN; filter_db_parse(¤t_filter, "all"); } filter_states_set(¤t_filter, state_filter); filter_merge_defaults(¤t_filter); #ifdef HAVE_RPC if (!numeric && resolve_hosts && (current_filter.dbs & (UNIX_DBM|INET_L4_DBM))) init_service_resolver(); #endif if (current_filter.dbs == 0) { fprintf(stderr, "ss: no socket tables to show with such filter.\n"); exit(0); } if (current_filter.families == 0) { fprintf(stderr, "ss: no families to show with such filter.\n"); exit(0); } if (current_filter.states == 0) { fprintf(stderr, "ss: no socket states to show with such filter.\n"); exit(0); } if (dump_tcpdiag) { FILE *dump_fp = stdout; if (!(current_filter.dbs & (1<