// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Fair Queue * * Copyright (C) 2013-2015 Eric Dumazet */ #include #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" static void explain(void) { fprintf(stderr, "Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]\n" " [ quantum BYTES ] [ initial_quantum BYTES ]\n" " [ maxrate RATE ] [ buckets NUMBER ]\n" " [ [no]pacing ] [ refill_delay TIME ]\n" " [ bands 3 priomap P0 P1 ... P14 P15 ]\n" " [ weights W1 W2 W3 ]\n" " [ low_rate_threshold RATE ]\n" " [ orphan_mask MASK]\n" " [ timer_slack TIME]\n" " [ ce_threshold TIME ]\n" " [ horizon TIME ]\n" " [ horizon_{cap|drop} ]\n"); } static unsigned int ilog2(unsigned int val) { unsigned int res = 0; val--; while (val) { res++; val >>= 1; } return res; } static int fq_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev) { struct tc_prio_qopt prio2band; unsigned int plimit; unsigned int flow_plimit; unsigned int quantum; unsigned int initial_quantum; unsigned int buckets = 0; unsigned int maxrate; unsigned int low_rate_threshold; unsigned int defrate; unsigned int refill_delay; unsigned int orphan_mask; unsigned int ce_threshold; unsigned int timer_slack; unsigned int horizon; __u8 horizon_drop = 255; bool set_plimit = false; bool set_flow_plimit = false; bool set_quantum = false; bool set_initial_quantum = false; bool set_maxrate = false; bool set_defrate = false; bool set_refill_delay = false; bool set_orphan_mask = false; bool set_low_rate_threshold = false; bool set_ce_threshold = false; bool set_timer_slack = false; bool set_horizon = false; bool set_priomap = false; bool set_weights = false; int weights[FQ_BANDS]; int pacing = -1; struct rtattr *tail; while (argc > 0) { if (strcmp(*argv, "limit") == 0) { NEXT_ARG(); if (get_unsigned(&plimit, *argv, 0)) { fprintf(stderr, "Illegal \"limit\"\n"); return -1; } set_plimit = true; } else if (strcmp(*argv, "flow_limit") == 0) { NEXT_ARG(); if (get_unsigned(&flow_plimit, *argv, 0)) { fprintf(stderr, "Illegal \"flow_limit\"\n"); return -1; } set_flow_plimit = true; } else if (strcmp(*argv, "buckets") == 0) { NEXT_ARG(); if (get_unsigned(&buckets, *argv, 0)) { fprintf(stderr, "Illegal \"buckets\"\n"); return -1; } } else if (strcmp(*argv, "maxrate") == 0) { NEXT_ARG(); if (strchr(*argv, '%')) { if (get_percent_rate(&maxrate, *argv, dev)) { fprintf(stderr, "Illegal \"maxrate\"\n"); return -1; } } else if (get_rate(&maxrate, *argv)) { fprintf(stderr, "Illegal \"maxrate\"\n"); return -1; } set_maxrate = true; } else if (strcmp(*argv, "low_rate_threshold") == 0) { NEXT_ARG(); if (get_rate(&low_rate_threshold, *argv)) { fprintf(stderr, "Illegal \"low_rate_threshold\"\n"); return -1; } set_low_rate_threshold = true; } else if (strcmp(*argv, "ce_threshold") == 0) { NEXT_ARG(); if (get_time(&ce_threshold, *argv)) { fprintf(stderr, "Illegal \"ce_threshold\"\n"); return -1; } set_ce_threshold = true; } else if (strcmp(*argv, "timer_slack") == 0) { __s64 t64; NEXT_ARG(); if (get_time64(&t64, *argv)) { fprintf(stderr, "Illegal \"timer_slack\"\n"); return -1; } timer_slack = t64; if (timer_slack != t64) { fprintf(stderr, "Illegal (out of range) \"timer_slack\"\n"); return -1; } set_timer_slack = true; } else if (strcmp(*argv, "horizon_drop") == 0) { horizon_drop = 1; } else if (strcmp(*argv, "horizon_cap") == 0) { horizon_drop = 0; } else if (strcmp(*argv, "horizon") == 0) { NEXT_ARG(); if (get_time(&horizon, *argv)) { fprintf(stderr, "Illegal \"horizon\"\n"); return -1; } set_horizon = true; } else if (strcmp(*argv, "defrate") == 0) { NEXT_ARG(); if (strchr(*argv, '%')) { if (get_percent_rate(&defrate, *argv, dev)) { fprintf(stderr, "Illegal \"defrate\"\n"); return -1; } } else if (get_rate(&defrate, *argv)) { fprintf(stderr, "Illegal \"defrate\"\n"); return -1; } set_defrate = true; } else if (strcmp(*argv, "quantum") == 0) { NEXT_ARG(); if (get_unsigned(&quantum, *argv, 0)) { fprintf(stderr, "Illegal \"quantum\"\n"); return -1; } set_quantum = true; } else if (strcmp(*argv, "initial_quantum") == 0) { NEXT_ARG(); if (get_unsigned(&initial_quantum, *argv, 0)) { fprintf(stderr, "Illegal \"initial_quantum\"\n"); return -1; } set_initial_quantum = true; } else if (strcmp(*argv, "orphan_mask") == 0) { NEXT_ARG(); if (get_unsigned(&orphan_mask, *argv, 0)) { fprintf(stderr, "Illegal \"initial_quantum\"\n"); return -1; } set_orphan_mask = true; } else if (strcmp(*argv, "refill_delay") == 0) { NEXT_ARG(); if (get_time(&refill_delay, *argv)) { fprintf(stderr, "Illegal \"refill_delay\"\n"); return -1; } set_refill_delay = true; } else if (strcmp(*argv, "pacing") == 0) { pacing = 1; } else if (strcmp(*argv, "nopacing") == 0) { pacing = 0; } else if (strcmp(*argv, "bands") == 0) { int idx; if (set_priomap) { fprintf(stderr, "Duplicate \"bands\"\n"); return -1; } memset(&prio2band, 0, sizeof(prio2band)); NEXT_ARG(); if (get_integer(&prio2band.bands, *argv, 10)) { fprintf(stderr, "Illegal \"bands\"\n"); return -1; } if (prio2band.bands != 3) { fprintf(stderr, "\"bands\" must be 3\n"); return -1; } NEXT_ARG(); if (strcmp(*argv, "priomap") != 0) { fprintf(stderr, "\"priomap\" expected\n"); return -1; } for (idx = 0; idx <= TC_PRIO_MAX; ++idx) { unsigned band; if (!NEXT_ARG_OK()) { fprintf(stderr, "Not enough elements in priomap\n"); return -1; } NEXT_ARG(); if (get_unsigned(&band, *argv, 10)) { fprintf(stderr, "Illegal \"priomap\" element, number in [0..%u] expected\n", prio2band.bands - 1); return -1; } if (band >= prio2band.bands) { fprintf(stderr, "\"priomap\" element %u too big\n", band); return -1; } prio2band.priomap[idx] = band; } set_priomap = true; } else if (strcmp(*argv, "weights") == 0) { int idx; if (set_weights) { fprintf(stderr, "Duplicate \"weights\"\n"); return -1; } NEXT_ARG(); for (idx = 0; idx < FQ_BANDS; ++idx) { int val; if (!NEXT_ARG_OK()) { fprintf(stderr, "Not enough elements in weights\n"); return -1; } NEXT_ARG(); if (get_integer(&val, *argv, 10)) { fprintf(stderr, "Illegal \"weights\" element, positive number expected\n"); return -1; } if (val < FQ_MIN_WEIGHT) { fprintf(stderr, "\"weight\" element %d too small\n", val); return -1; } weights[idx] = val; } set_weights = true; } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } tail = addattr_nest(n, 1024, TCA_OPTIONS); if (buckets) { unsigned int log = ilog2(buckets); addattr_l(n, 1024, TCA_FQ_BUCKETS_LOG, &log, sizeof(log)); } if (set_plimit) addattr_l(n, 1024, TCA_FQ_PLIMIT, &plimit, sizeof(plimit)); if (set_flow_plimit) addattr_l(n, 1024, TCA_FQ_FLOW_PLIMIT, &flow_plimit, sizeof(flow_plimit)); if (set_quantum) addattr_l(n, 1024, TCA_FQ_QUANTUM, &quantum, sizeof(quantum)); if (set_initial_quantum) addattr_l(n, 1024, TCA_FQ_INITIAL_QUANTUM, &initial_quantum, sizeof(initial_quantum)); if (pacing != -1) addattr_l(n, 1024, TCA_FQ_RATE_ENABLE, &pacing, sizeof(pacing)); if (set_maxrate) addattr_l(n, 1024, TCA_FQ_FLOW_MAX_RATE, &maxrate, sizeof(maxrate)); if (set_low_rate_threshold) addattr_l(n, 1024, TCA_FQ_LOW_RATE_THRESHOLD, &low_rate_threshold, sizeof(low_rate_threshold)); if (set_defrate) addattr_l(n, 1024, TCA_FQ_FLOW_DEFAULT_RATE, &defrate, sizeof(defrate)); if (set_refill_delay) addattr_l(n, 1024, TCA_FQ_FLOW_REFILL_DELAY, &refill_delay, sizeof(refill_delay)); if (set_orphan_mask) addattr_l(n, 1024, TCA_FQ_ORPHAN_MASK, &orphan_mask, sizeof(orphan_mask)); if (set_ce_threshold) addattr_l(n, 1024, TCA_FQ_CE_THRESHOLD, &ce_threshold, sizeof(ce_threshold)); if (set_timer_slack) addattr_l(n, 1024, TCA_FQ_TIMER_SLACK, &timer_slack, sizeof(timer_slack)); if (set_horizon) addattr_l(n, 1024, TCA_FQ_HORIZON, &horizon, sizeof(horizon)); if (horizon_drop != 255) addattr_l(n, 1024, TCA_FQ_HORIZON_DROP, &horizon_drop, sizeof(horizon_drop)); if (set_priomap) addattr_l(n, 1024, TCA_FQ_PRIOMAP, &prio2band, sizeof(prio2band)); if (set_weights) addattr_l(n, 1024, TCA_FQ_WEIGHTS, weights, sizeof(weights)); addattr_nest_end(n, tail); return 0; } static int fq_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_FQ_MAX + 1]; unsigned int plimit, flow_plimit; unsigned int buckets_log; int pacing; unsigned int rate, quantum; unsigned int refill_delay; unsigned int orphan_mask; unsigned int ce_threshold; unsigned int timer_slack; unsigned int horizon; __u8 horizon_drop; SPRINT_BUF(b1); if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_FQ_MAX, opt); if (tb[TCA_FQ_PLIMIT] && RTA_PAYLOAD(tb[TCA_FQ_PLIMIT]) >= sizeof(__u32)) { plimit = rta_getattr_u32(tb[TCA_FQ_PLIMIT]); print_uint(PRINT_ANY, "limit", "limit %up ", plimit); } if (tb[TCA_FQ_FLOW_PLIMIT] && RTA_PAYLOAD(tb[TCA_FQ_FLOW_PLIMIT]) >= sizeof(__u32)) { flow_plimit = rta_getattr_u32(tb[TCA_FQ_FLOW_PLIMIT]); print_uint(PRINT_ANY, "flow_limit", "flow_limit %up ", flow_plimit); } if (tb[TCA_FQ_BUCKETS_LOG] && RTA_PAYLOAD(tb[TCA_FQ_BUCKETS_LOG]) >= sizeof(__u32)) { buckets_log = rta_getattr_u32(tb[TCA_FQ_BUCKETS_LOG]); print_uint(PRINT_ANY, "buckets", "buckets %u ", 1U << buckets_log); } if (tb[TCA_FQ_ORPHAN_MASK] && RTA_PAYLOAD(tb[TCA_FQ_ORPHAN_MASK]) >= sizeof(__u32)) { orphan_mask = rta_getattr_u32(tb[TCA_FQ_ORPHAN_MASK]); print_uint(PRINT_ANY, "orphan_mask", "orphan_mask %u ", orphan_mask); } if (tb[TCA_FQ_RATE_ENABLE] && RTA_PAYLOAD(tb[TCA_FQ_RATE_ENABLE]) >= sizeof(int)) { pacing = rta_getattr_u32(tb[TCA_FQ_RATE_ENABLE]); if (pacing == 0) print_bool(PRINT_ANY, "pacing", "nopacing ", false); } if (tb[TCA_FQ_PRIOMAP] && RTA_PAYLOAD(tb[TCA_FQ_PRIOMAP]) >= sizeof(struct tc_prio_qopt)) { struct tc_prio_qopt *prio2band = RTA_DATA(tb[TCA_FQ_PRIOMAP]); int i; print_uint(PRINT_ANY, "bands", "bands %u ", prio2band->bands); open_json_array(PRINT_ANY, "priomap "); for (i = 0; i <= TC_PRIO_MAX; i++) print_uint(PRINT_ANY, NULL, "%d ", prio2band->priomap[i]); close_json_array(PRINT_ANY, ""); } if (tb[TCA_FQ_WEIGHTS] && RTA_PAYLOAD(tb[TCA_FQ_WEIGHTS]) >= FQ_BANDS * sizeof(int)) { const int *weights = RTA_DATA(tb[TCA_FQ_WEIGHTS]); int i; open_json_array(PRINT_ANY, "weights "); for (i = 0; i < FQ_BANDS; ++i) print_uint(PRINT_ANY, NULL, "%d ", weights[i]); close_json_array(PRINT_ANY, ""); } if (tb[TCA_FQ_QUANTUM] && RTA_PAYLOAD(tb[TCA_FQ_QUANTUM]) >= sizeof(__u32)) { quantum = rta_getattr_u32(tb[TCA_FQ_QUANTUM]); print_size(PRINT_ANY, "quantum", "quantum %s ", quantum); } if (tb[TCA_FQ_INITIAL_QUANTUM] && RTA_PAYLOAD(tb[TCA_FQ_INITIAL_QUANTUM]) >= sizeof(__u32)) { quantum = rta_getattr_u32(tb[TCA_FQ_INITIAL_QUANTUM]); print_size(PRINT_ANY, "initial_quantum", "initial_quantum %s ", quantum); } if (tb[TCA_FQ_FLOW_MAX_RATE] && RTA_PAYLOAD(tb[TCA_FQ_FLOW_MAX_RATE]) >= sizeof(__u32)) { rate = rta_getattr_u32(tb[TCA_FQ_FLOW_MAX_RATE]); if (rate != ~0U) tc_print_rate(PRINT_ANY, "maxrate", "maxrate %s ", rate); } if (tb[TCA_FQ_FLOW_DEFAULT_RATE] && RTA_PAYLOAD(tb[TCA_FQ_FLOW_DEFAULT_RATE]) >= sizeof(__u32)) { rate = rta_getattr_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]); if (rate != 0) tc_print_rate(PRINT_ANY, "defrate", "defrate %s ", rate); } if (tb[TCA_FQ_LOW_RATE_THRESHOLD] && RTA_PAYLOAD(tb[TCA_FQ_LOW_RATE_THRESHOLD]) >= sizeof(__u32)) { rate = rta_getattr_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]); if (rate != 0) tc_print_rate(PRINT_ANY, "low_rate_threshold", "low_rate_threshold %s ", rate); } if (tb[TCA_FQ_FLOW_REFILL_DELAY] && RTA_PAYLOAD(tb[TCA_FQ_FLOW_REFILL_DELAY]) >= sizeof(__u32)) { refill_delay = rta_getattr_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]); print_uint(PRINT_JSON, "refill_delay", NULL, refill_delay); print_string(PRINT_FP, NULL, "refill_delay %s ", sprint_time(refill_delay, b1)); } if (tb[TCA_FQ_CE_THRESHOLD] && RTA_PAYLOAD(tb[TCA_FQ_CE_THRESHOLD]) >= sizeof(__u32)) { ce_threshold = rta_getattr_u32(tb[TCA_FQ_CE_THRESHOLD]); if (ce_threshold != ~0U) { print_uint(PRINT_JSON, "ce_threshold", NULL, ce_threshold); print_string(PRINT_FP, NULL, "ce_threshold %s ", sprint_time(ce_threshold, b1)); } } if (tb[TCA_FQ_TIMER_SLACK] && RTA_PAYLOAD(tb[TCA_FQ_TIMER_SLACK]) >= sizeof(__u32)) { timer_slack = rta_getattr_u32(tb[TCA_FQ_TIMER_SLACK]); print_uint(PRINT_JSON, "timer_slack", NULL, timer_slack); print_string(PRINT_FP, NULL, "timer_slack %s ", sprint_time64(timer_slack, b1)); } if (tb[TCA_FQ_HORIZON] && RTA_PAYLOAD(tb[TCA_FQ_HORIZON]) >= sizeof(__u32)) { horizon = rta_getattr_u32(tb[TCA_FQ_HORIZON]); print_uint(PRINT_JSON, "horizon", NULL, horizon); print_string(PRINT_FP, NULL, "horizon %s ", sprint_time(horizon, b1)); } if (tb[TCA_FQ_HORIZON_DROP] && RTA_PAYLOAD(tb[TCA_FQ_HORIZON_DROP]) >= sizeof(__u8)) { horizon_drop = rta_getattr_u8(tb[TCA_FQ_HORIZON_DROP]); if (!horizon_drop) print_null(PRINT_ANY, "horizon_cap", "horizon_cap ", NULL); else print_null(PRINT_ANY, "horizon_drop", "horizon_drop ", NULL); } return 0; } static int fq_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { struct tc_fq_qd_stats *st, _st; SPRINT_BUF(b1); if (xstats == NULL) return 0; memset(&_st, 0, sizeof(_st)); memcpy(&_st, RTA_DATA(xstats), min(RTA_PAYLOAD(xstats), sizeof(*st))); st = &_st; print_uint(PRINT_ANY, "flows", " flows %u", st->flows); print_uint(PRINT_ANY, "inactive", " (inactive %u", st->inactive_flows); print_uint(PRINT_ANY, "throttled", " throttled %u)", st->throttled_flows); print_uint(PRINT_ANY, "band0_pkts", " band0_pkts %u", st->band_pkt_count[0]); print_uint(PRINT_ANY, "band1_pkts", " band1_pkts %u", st->band_pkt_count[1]); print_uint(PRINT_ANY, "band2_pkts", " band2_pkts %u", st->band_pkt_count[2]); if (st->time_next_delayed_flow > 0) { print_lluint(PRINT_JSON, "next_packet_delay", NULL, st->time_next_delayed_flow); print_string(PRINT_FP, NULL, " next_packet_delay %s", sprint_time64(st->time_next_delayed_flow, b1)); } print_nl(); print_lluint(PRINT_ANY, "gc", " gc %llu", st->gc_flows); print_lluint(PRINT_ANY, "highprio", " highprio %llu", st->highprio_packets); if (st->fastpath_packets) print_lluint(PRINT_ANY, "fastpath", " fastpath %llu", st->fastpath_packets); if (st->tcp_retrans) print_lluint(PRINT_ANY, "retrans", " retrans %llu", st->tcp_retrans); print_lluint(PRINT_ANY, "throttled", " throttled %llu", st->throttled); if (st->unthrottle_latency_ns) { print_uint(PRINT_JSON, "latency", NULL, st->unthrottle_latency_ns); print_string(PRINT_FP, NULL, " latency %s", sprint_time64(st->unthrottle_latency_ns, b1)); } if (st->ce_mark) print_lluint(PRINT_ANY, "ce_mark", " ce_mark %llu", st->ce_mark); if (st->flows_plimit) print_lluint(PRINT_ANY, "flows_plimit", " flows_plimit %llu", st->flows_plimit); if (st->pkts_too_long || st->allocation_errors || st->horizon_drops || st->horizon_caps || st->band_drops[0] || st->band_drops[1] || st->band_drops[2]) { print_nl(); if (st->pkts_too_long) print_lluint(PRINT_ANY, "pkts_too_long", " pkts_too_long %llu", st->pkts_too_long); if (st->allocation_errors) print_lluint(PRINT_ANY, "alloc_errors", " alloc_errors %llu", st->allocation_errors); if (st->horizon_drops) print_lluint(PRINT_ANY, "horizon_drops", " horizon_drops %llu", st->horizon_drops); if (st->horizon_caps) print_lluint(PRINT_ANY, "horizon_caps", " horizon_caps %llu", st->horizon_caps); if (st->band_drops[0]) print_lluint(PRINT_ANY, "band0_drops", " band0_drops %llu", st->band_drops[0]); if (st->band_drops[1]) print_lluint(PRINT_ANY, "band1_drops", " band1_drops %llu", st->band_drops[1]); if (st->band_drops[2]) print_lluint(PRINT_ANY, "band2_drops", " band2_drops %llu", st->band_drops[2]); } return 0; } struct qdisc_util fq_qdisc_util = { .id = "fq", .parse_qopt = fq_parse_opt, .print_qopt = fq_print_opt, .print_xstats = fq_print_xstats, };