/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * q_taprio.c Time Aware Priority Scheduler * * Authors: Vinicius Costa Gomes * Jesus Sanchez-Palencia */ #include #include #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" #include "list.h" struct sched_entry { struct list_head list; uint32_t index; uint32_t interval; uint32_t gatemask; uint8_t cmd; }; static void explain(void) { fprintf(stderr, "Usage: ... taprio clockid CLOCKID\n" " [num_tc NUMBER] [map P0 P1 ...]\n" " [queues COUNT@OFFSET COUNT@OFFSET COUNT@OFFSET ...]\n" " [ [sched-entry index cmd gate-mask interval] ... ]\n" " [base-time time] [txtime-delay delay]\n" " [fp FP0 FP1 FP2 ...]\n" "\n" "CLOCKID must be a valid SYS-V id (i.e. CLOCK_TAI)\n"); } static void explain_clockid(const char *val) { fprintf(stderr, "taprio: illegal value for \"clockid\": \"%s\".\n", val); fprintf(stderr, "It must be a valid SYS-V id (i.e. CLOCK_TAI)\n"); } static const char *entry_cmd_to_str(__u8 cmd) { switch (cmd) { case TC_TAPRIO_CMD_SET_GATES: return "S"; default: return "Invalid"; } } static int str_to_entry_cmd(const char *str) { if (strcmp(str, "S") == 0) return TC_TAPRIO_CMD_SET_GATES; return -1; } static int add_sched_list(struct list_head *sched_entries, struct nlmsghdr *n) { struct sched_entry *e; list_for_each_entry(e, sched_entries, list) { struct rtattr *a; a = addattr_nest(n, 1024, TCA_TAPRIO_SCHED_ENTRY); addattr_l(n, 1024, TCA_TAPRIO_SCHED_ENTRY_CMD, &e->cmd, sizeof(e->cmd)); addattr_l(n, 1024, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, &e->gatemask, sizeof(e->gatemask)); addattr_l(n, 1024, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, &e->interval, sizeof(e->interval)); addattr_nest_end(n, a); } return 0; } static void explain_sched_entry(void) { fprintf(stderr, "Usage: ... taprio ... sched-entry \n"); } static struct sched_entry *create_entry(uint32_t gatemask, uint32_t interval, uint8_t cmd) { struct sched_entry *e; e = calloc(1, sizeof(*e)); if (!e) return NULL; e->gatemask = gatemask; e->interval = interval; e->cmd = cmd; return e; } static void add_tc_entries(struct nlmsghdr *n, __u32 max_sdu[TC_QOPT_MAX_QUEUE], int num_max_sdu_entries, __u32 fp[TC_QOPT_MAX_QUEUE], int num_fp_entries) { struct rtattr *l; int num_tc; __u32 tc; num_tc = max(num_max_sdu_entries, num_fp_entries); for (tc = 0; tc < num_tc; tc++) { l = addattr_nest(n, 1024, TCA_TAPRIO_ATTR_TC_ENTRY | NLA_F_NESTED); addattr_l(n, 1024, TCA_TAPRIO_TC_ENTRY_INDEX, &tc, sizeof(tc)); if (tc < num_max_sdu_entries) { addattr_l(n, 1024, TCA_TAPRIO_TC_ENTRY_MAX_SDU, &max_sdu[tc], sizeof(max_sdu[tc])); } if (tc < num_fp_entries) { addattr_l(n, 1024, TCA_TAPRIO_TC_ENTRY_FP, &fp[tc], sizeof(fp[tc])); } addattr_nest_end(n, l); } } static int taprio_parse_opt(const struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev) { __u32 max_sdu[TC_QOPT_MAX_QUEUE] = { }; __u32 fp[TC_QOPT_MAX_QUEUE] = { }; __s32 clockid = CLOCKID_INVALID; struct tc_mqprio_qopt opt = { }; __s64 cycle_time_extension = 0; struct list_head sched_entries; bool have_tc_entries = false; int num_max_sdu_entries = 0; struct rtattr *tail, *l; int num_fp_entries = 0; __u32 taprio_flags = 0; __u32 txtime_delay = 0; __s64 cycle_time = 0; __s64 base_time = 0; int err, idx; INIT_LIST_HEAD(&sched_entries); while (argc > 0) { idx = 0; if (strcmp(*argv, "num_tc") == 0) { NEXT_ARG(); if (get_u8(&opt.num_tc, *argv, 10)) { fprintf(stderr, "Illegal \"num_tc\"\n"); return -1; } } else if (strcmp(*argv, "map") == 0) { while (idx < TC_QOPT_MAX_QUEUE && NEXT_ARG_OK()) { NEXT_ARG(); if (get_u8(&opt.prio_tc_map[idx], *argv, 10)) { PREV_ARG(); break; } idx++; } for ( ; idx < TC_QOPT_MAX_QUEUE; idx++) opt.prio_tc_map[idx] = 0; } else if (strcmp(*argv, "queues") == 0) { char *tmp, *tok; while (idx < TC_QOPT_MAX_QUEUE && NEXT_ARG_OK()) { NEXT_ARG(); tmp = strdup(*argv); if (!tmp) break; tok = strtok(tmp, "@"); if (get_u16(&opt.count[idx], tok, 10)) { free(tmp); PREV_ARG(); break; } tok = strtok(NULL, "@"); if (get_u16(&opt.offset[idx], tok, 10)) { free(tmp); PREV_ARG(); break; } free(tmp); idx++; } } else if (strcmp(*argv, "fp") == 0) { while (idx < TC_QOPT_MAX_QUEUE && NEXT_ARG_OK()) { NEXT_ARG(); if (strcmp(*argv, "E") == 0) { fp[idx] = TC_FP_EXPRESS; } else if (strcmp(*argv, "P") == 0) { fp[idx] = TC_FP_PREEMPTIBLE; } else { PREV_ARG(); break; } num_fp_entries++; idx++; } have_tc_entries = true; } else if (strcmp(*argv, "max-sdu") == 0) { while (idx < TC_QOPT_MAX_QUEUE && NEXT_ARG_OK()) { NEXT_ARG(); if (get_u32(&max_sdu[idx], *argv, 10)) { PREV_ARG(); break; } num_max_sdu_entries++; idx++; } have_tc_entries = true; } else if (strcmp(*argv, "sched-entry") == 0) { uint32_t mask, interval; struct sched_entry *e; uint8_t cmd; NEXT_ARG(); err = str_to_entry_cmd(*argv); if (err < 0) { explain_sched_entry(); return -1; } cmd = err; NEXT_ARG(); if (get_u32(&mask, *argv, 16)) { explain_sched_entry(); return -1; } NEXT_ARG(); if (get_u32(&interval, *argv, 0)) { explain_sched_entry(); return -1; } e = create_entry(mask, interval, cmd); if (!e) { fprintf(stderr, "taprio: not enough memory for new schedule entry\n"); return -1; } list_add_tail(&e->list, &sched_entries); } else if (strcmp(*argv, "base-time") == 0) { NEXT_ARG(); if (get_s64(&base_time, *argv, 10)) { PREV_ARG(); break; } } else if (strcmp(*argv, "cycle-time") == 0) { NEXT_ARG(); if (cycle_time) { fprintf(stderr, "taprio: duplicate \"cycle-time\" specification\n"); return -1; } if (get_s64(&cycle_time, *argv, 10)) { PREV_ARG(); break; } } else if (strcmp(*argv, "cycle-time-extension") == 0) { NEXT_ARG(); if (cycle_time_extension) { fprintf(stderr, "taprio: duplicate \"cycle-time-extension\" specification\n"); return -1; } if (get_s64(&cycle_time_extension, *argv, 10)) { PREV_ARG(); break; } } else if (strcmp(*argv, "clockid") == 0) { NEXT_ARG(); if (clockid != CLOCKID_INVALID) { fprintf(stderr, "taprio: duplicate \"clockid\" specification\n"); return -1; } if (get_clockid(&clockid, *argv)) { explain_clockid(*argv); return -1; } } else if (strcmp(*argv, "flags") == 0) { NEXT_ARG(); if (taprio_flags) { fprintf(stderr, "taprio: duplicate \"flags\" specification\n"); return -1; } if (get_u32(&taprio_flags, *argv, 0)) { PREV_ARG(); return -1; } } else if (strcmp(*argv, "txtime-delay") == 0) { NEXT_ARG(); if (txtime_delay != 0) { fprintf(stderr, "taprio: duplicate \"txtime-delay\" specification\n"); return -1; } if (get_u32(&txtime_delay, *argv, 0)) { PREV_ARG(); return -1; } } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "Unknown argument\n"); return -1; } argc--; argv++; } tail = NLMSG_TAIL(n); addattr_l(n, 1024, TCA_OPTIONS, NULL, 0); if (clockid != CLOCKID_INVALID) addattr_l(n, 1024, TCA_TAPRIO_ATTR_SCHED_CLOCKID, &clockid, sizeof(clockid)); if (taprio_flags) addattr_l(n, 1024, TCA_TAPRIO_ATTR_FLAGS, &taprio_flags, sizeof(taprio_flags)); if (opt.num_tc > 0) addattr_l(n, 1024, TCA_TAPRIO_ATTR_PRIOMAP, &opt, sizeof(opt)); if (txtime_delay) addattr_l(n, 1024, TCA_TAPRIO_ATTR_TXTIME_DELAY, &txtime_delay, sizeof(txtime_delay)); if (base_time) addattr_l(n, 1024, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, &base_time, sizeof(base_time)); if (cycle_time) addattr_l(n, 1024, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, &cycle_time, sizeof(cycle_time)); if (cycle_time_extension) addattr_l(n, 1024, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, &cycle_time_extension, sizeof(cycle_time_extension)); if (have_tc_entries) add_tc_entries(n, max_sdu, num_max_sdu_entries, fp, num_fp_entries); l = addattr_nest(n, 1024, TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST | NLA_F_NESTED); err = add_sched_list(&sched_entries, n); if (err < 0) { fprintf(stderr, "Could not add schedule to netlink message\n"); return -1; } addattr_nest_end(n, l); tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail; return 0; } static void print_sched_list(FILE *f, struct rtattr *list) { struct rtattr *item, *nla; int rem; rem = RTA_PAYLOAD(list); open_json_array(PRINT_JSON, "schedule"); print_nl(); for (item = RTA_DATA(list); RTA_OK(item, rem); item = RTA_NEXT(item, rem)) { struct rtattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1]; parse_rtattr_nested(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, item); open_json_object(NULL); nla = tb[TCA_TAPRIO_SCHED_ENTRY_INDEX]; if (nla) { __u32 index = rta_getattr_u32(nla); print_uint(PRINT_ANY, "index", "\tindex %u", index); } nla = tb[TCA_TAPRIO_SCHED_ENTRY_CMD]; if (nla) { __u8 command = rta_getattr_u8(nla); print_string(PRINT_ANY, "cmd", " cmd %s", entry_cmd_to_str(command)); } nla = tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]; if (nla) { __u32 gatemask = rta_getattr_u32(nla); print_0xhex(PRINT_ANY, "gatemask", " gatemask %#llx", gatemask); } nla = tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]; if (nla) { __u32 interval = rta_getattr_u32(nla); print_uint(PRINT_ANY, "interval", " interval %u", interval); } close_json_object(); print_nl(); } close_json_array(PRINT_ANY, ""); } static int print_schedule(FILE *f, struct rtattr **tb) { struct rtattr *nla; nla = tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]; if (nla) { int64_t base_time = rta_getattr_s64(nla); print_lluint(PRINT_ANY, "base_time", "\tbase-time %lld", base_time); } nla = tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]; if (nla) { int64_t cycle_time = rta_getattr_s64(nla); print_lluint(PRINT_ANY, "cycle_time", " cycle-time %lld", cycle_time); } nla = tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]; if (nla) { int64_t cycle_time_extension = rta_getattr_s64(nla); print_lluint(PRINT_ANY, "cycle_time_extension", " cycle-time-extension %lld", cycle_time_extension); } nla = tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]; if (nla) print_sched_list(f, nla); return 0; } static void dump_tc_entry(struct rtattr *item, __u32 max_sdu[TC_QOPT_MAX_QUEUE], __u32 fp[TC_QOPT_MAX_QUEUE], int *max_tc_max_sdu, int *max_tc_fp) { struct rtattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1]; __u32 tc, val = 0; parse_rtattr_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, item); if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { fprintf(stderr, "Missing tc entry index\n"); return; } tc = rta_getattr_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); /* Prevent array out of bounds access */ if (tc >= TC_QOPT_MAX_QUEUE) { fprintf(stderr, "Unexpected tc entry index %d\n", tc); return; } if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { val = rta_getattr_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); max_sdu[tc] = val; if (*max_tc_max_sdu < (int)tc) *max_tc_max_sdu = tc; } if (tb[TCA_TAPRIO_TC_ENTRY_FP]) { val = rta_getattr_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); fp[tc] = val; if (*max_tc_fp < (int)tc) *max_tc_fp = tc; } } static void dump_tc_entries(FILE *f, struct rtattr *opt) { __u32 max_sdu[TC_QOPT_MAX_QUEUE] = {}; __u32 fp[TC_QOPT_MAX_QUEUE] = {}; int max_tc_max_sdu = -1; int max_tc_fp = -1; struct rtattr *i; int tc, rem; rem = RTA_PAYLOAD(opt); for (i = RTA_DATA(opt); RTA_OK(i, rem); i = RTA_NEXT(i, rem)) { if (i->rta_type != (TCA_TAPRIO_ATTR_TC_ENTRY | NLA_F_NESTED)) continue; dump_tc_entry(i, max_sdu, fp, &max_tc_max_sdu, &max_tc_fp); } if (max_tc_max_sdu >= 0) { open_json_array(PRINT_ANY, "max-sdu"); for (tc = 0; tc <= max_tc_max_sdu; tc++) print_uint(PRINT_ANY, NULL, " %u", max_sdu[tc]); close_json_array(PRINT_ANY, ""); print_nl(); } if (max_tc_fp >= 0) { open_json_array(PRINT_ANY, "fp"); for (tc = 0; tc <= max_tc_fp; tc++) { print_string(PRINT_ANY, NULL, " %s", fp[tc] == TC_FP_PREEMPTIBLE ? "P" : fp[tc] == TC_FP_EXPRESS ? "E" : "?"); } close_json_array(PRINT_ANY, ""); print_nl(); } } static int taprio_print_opt(const struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_TAPRIO_ATTR_MAX + 1]; struct tc_mqprio_qopt *qopt = 0; int i; if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_TAPRIO_ATTR_MAX, opt); if (tb[TCA_TAPRIO_ATTR_PRIOMAP] == NULL) return -1; qopt = RTA_DATA(tb[TCA_TAPRIO_ATTR_PRIOMAP]); print_uint(PRINT_ANY, "tc", "tc %u ", qopt->num_tc); open_json_array(PRINT_ANY, "map"); for (i = 0; i <= TC_PRIO_MAX; i++) print_uint(PRINT_ANY, NULL, " %u", qopt->prio_tc_map[i]); close_json_array(PRINT_ANY, ""); print_nl(); open_json_array(PRINT_ANY, "queues"); for (i = 0; i < qopt->num_tc; i++) { open_json_object(NULL); print_uint(PRINT_ANY, "offset", " offset %u", qopt->offset[i]); print_uint(PRINT_ANY, "count", " count %u", qopt->count[i]); close_json_object(); } close_json_array(PRINT_ANY, ""); print_nl(); if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { __s32 clockid; clockid = rta_getattr_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); print_string(PRINT_ANY, "clockid", "clockid %s", get_clock_name(clockid)); } if (tb[TCA_TAPRIO_ATTR_FLAGS]) { __u32 flags; flags = rta_getattr_u32(tb[TCA_TAPRIO_ATTR_FLAGS]); print_0xhex(PRINT_ANY, "flags", " flags %#x", flags); } if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { __u32 txtime_delay; txtime_delay = rta_getattr_s32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); print_uint(PRINT_ANY, "txtime_delay", " txtime delay %d", txtime_delay); } print_schedule(f, tb); if (tb[TCA_TAPRIO_ATTR_ADMIN_SCHED]) { struct rtattr *t[TCA_TAPRIO_ATTR_MAX + 1]; parse_rtattr_nested(t, TCA_TAPRIO_ATTR_MAX, tb[TCA_TAPRIO_ATTR_ADMIN_SCHED]); open_json_object("admin"); print_schedule(f, t); close_json_object(); } dump_tc_entries(f, opt); return 0; } static int taprio_print_xstats(const struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { struct rtattr *tb[TCA_TAPRIO_OFFLOAD_STATS_MAX + 1], *nla; if (!xstats) return 0; parse_rtattr_nested(tb, TCA_TAPRIO_OFFLOAD_STATS_MAX, xstats); nla = tb[TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS]; if (nla) print_lluint(PRINT_ANY, "window_drops", " window_drops %llu", rta_getattr_u64(nla)); nla = tb[TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS]; if (nla) print_lluint(PRINT_ANY, "tx_overruns", " tx_overruns %llu", rta_getattr_u64(nla)); return 0; } struct qdisc_util taprio_qdisc_util = { .id = "taprio", .parse_qopt = taprio_parse_opt, .print_qopt = taprio_print_opt, .print_xstats = taprio_print_xstats, };