/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * q_tbf.c TBF. * * Authors: Alexey Kuznetsov, */ #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" static void explain(void) { fprintf(stderr, "Usage: ... tbf limit BYTES burst BYTES[/BYTES] rate KBPS [ mtu BYTES[/BYTES] ]\n" " [ peakrate KBPS ] [ latency TIME ] " "[ overhead BYTES ] [ linklayer TYPE ]\n"); } static void explain1(const char *arg, const char *val) { fprintf(stderr, "tbf: illegal value for \"%s\": \"%s\"\n", arg, val); } static int tbf_parse_opt(const struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev) { struct tc_tbf_qopt opt = {}; __u32 rtab[256]; __u32 ptab[256]; unsigned buffer = 0, mtu = 0, mpu = 0, latency = 0; int Rcell_log = -1, Pcell_log = -1; unsigned short overhead = 0; unsigned int linklayer = LINKLAYER_ETHERNET; /* Assume ethernet */ struct rtattr *tail; __u64 rate64 = 0, prate64 = 0; while (argc > 0) { if (matches(*argv, "limit") == 0) { NEXT_ARG(); if (opt.limit) { fprintf(stderr, "tbf: duplicate \"limit\" specification\n"); return -1; } if (latency) { fprintf(stderr, "tbf: specifying both \"latency\" and \"limit\" is not allowed\n"); return -1; } if (get_size(&opt.limit, *argv)) { explain1("limit", *argv); return -1; } } else if (matches(*argv, "latency") == 0) { NEXT_ARG(); if (latency) { fprintf(stderr, "tbf: duplicate \"latency\" specification\n"); return -1; } if (opt.limit) { fprintf(stderr, "tbf: specifying both \"limit\" and \"/latency\" is not allowed\n"); return -1; } if (get_time(&latency, *argv)) { explain1("latency", *argv); return -1; } } else if (matches(*argv, "burst") == 0 || strcmp(*argv, "buffer") == 0 || strcmp(*argv, "maxburst") == 0) { const char *parm_name = *argv; NEXT_ARG(); if (buffer) { fprintf(stderr, "tbf: duplicate \"buffer/burst/maxburst\" specification\n"); return -1; } if (get_size_and_cell(&buffer, &Rcell_log, *argv) < 0) { explain1(parm_name, *argv); return -1; } } else if (strcmp(*argv, "mtu") == 0 || strcmp(*argv, "minburst") == 0) { const char *parm_name = *argv; NEXT_ARG(); if (mtu) { fprintf(stderr, "tbf: duplicate \"mtu/minburst\" specification\n"); return -1; } if (get_size_and_cell(&mtu, &Pcell_log, *argv) < 0) { explain1(parm_name, *argv); return -1; } } else if (strcmp(*argv, "mpu") == 0) { NEXT_ARG(); if (mpu) { fprintf(stderr, "tbf: duplicate \"mpu\" specification\n"); return -1; } if (get_size(&mpu, *argv)) { explain1("mpu", *argv); return -1; } } else if (strcmp(*argv, "rate") == 0) { NEXT_ARG(); if (rate64) { fprintf(stderr, "tbf: duplicate \"rate\" specification\n"); return -1; } if (strchr(*argv, '%')) { if (get_percent_rate64(&rate64, *argv, dev)) { explain1("rate", *argv); return -1; } } else if (get_rate64(&rate64, *argv)) { explain1("rate", *argv); return -1; } } else if (matches(*argv, "peakrate") == 0) { NEXT_ARG(); if (prate64) { fprintf(stderr, "tbf: duplicate \"peakrate\" specification\n"); return -1; } if (strchr(*argv, '%')) { if (get_percent_rate64(&prate64, *argv, dev)) { explain1("peakrate", *argv); return -1; } } else if (get_rate64(&prate64, *argv)) { explain1("peakrate", *argv); return -1; } } else if (matches(*argv, "overhead") == 0) { NEXT_ARG(); if (overhead) { fprintf(stderr, "tbf: duplicate \"overhead\" specification\n"); return -1; } if (get_u16(&overhead, *argv, 10)) { explain1("overhead", *argv); return -1; } } else if (matches(*argv, "linklayer") == 0) { NEXT_ARG(); if (get_linklayer(&linklayer, *argv)) { explain1("linklayer", *argv); return -1; } } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "tbf: unknown parameter \"%s\"\n", *argv); explain(); return -1; } argc--; argv++; } int verdict = 0; /* Be nice to the user: try to emit all error messages in * one go rather than reveal one more problem when a * previous one has been fixed. */ if (rate64 == 0) { fprintf(stderr, "tbf: the \"rate\" parameter is mandatory.\n"); verdict = -1; } if (!buffer) { fprintf(stderr, "tbf: the \"burst\" parameter is mandatory.\n"); verdict = -1; } if (prate64) { if (!mtu) { fprintf(stderr, "tbf: when \"peakrate\" is specified, \"mtu\" must also be specified.\n"); verdict = -1; } } if (opt.limit == 0 && latency == 0) { fprintf(stderr, "tbf: either \"limit\" or \"latency\" is required.\n"); verdict = -1; } if (verdict != 0) { explain(); return verdict; } opt.rate.rate = (rate64 >= (1ULL << 32)) ? ~0U : rate64; opt.peakrate.rate = (prate64 >= (1ULL << 32)) ? ~0U : prate64; if (opt.limit == 0) { double lim = rate64*(double)latency/TIME_UNITS_PER_SEC + buffer; if (prate64) { double lim2 = prate64*(double)latency/TIME_UNITS_PER_SEC + mtu; if (lim2 < lim) lim = lim2; } opt.limit = lim; } opt.rate.mpu = mpu; opt.rate.overhead = overhead; if (tc_calc_rtable(&opt.rate, rtab, Rcell_log, mtu, linklayer) < 0) { fprintf(stderr, "tbf: failed to calculate rate table.\n"); return -1; } opt.buffer = tc_calc_xmittime(opt.rate.rate, buffer); if (opt.peakrate.rate) { opt.peakrate.mpu = mpu; opt.peakrate.overhead = overhead; if (tc_calc_rtable(&opt.peakrate, ptab, Pcell_log, mtu, linklayer) < 0) { fprintf(stderr, "tbf: failed to calculate peak rate table.\n"); return -1; } opt.mtu = tc_calc_xmittime(opt.peakrate.rate, mtu); } tail = addattr_nest(n, 1024, TCA_OPTIONS); addattr_l(n, 2024, TCA_TBF_PARMS, &opt, sizeof(opt)); addattr_l(n, 2124, TCA_TBF_BURST, &buffer, sizeof(buffer)); if (rate64 >= (1ULL << 32)) addattr_l(n, 2124, TCA_TBF_RATE64, &rate64, sizeof(rate64)); addattr_l(n, 3024, TCA_TBF_RTAB, rtab, 1024); if (opt.peakrate.rate) { if (prate64 >= (1ULL << 32)) addattr_l(n, 3124, TCA_TBF_PRATE64, &prate64, sizeof(prate64)); addattr_l(n, 3224, TCA_TBF_PBURST, &mtu, sizeof(mtu)); addattr_l(n, 4096, TCA_TBF_PTAB, ptab, 1024); } addattr_nest_end(n, tail); return 0; } static int tbf_print_opt(const struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_TBF_MAX+1]; struct tc_tbf_qopt *qopt; unsigned int linklayer; double buffer, mtu; double latency, lat2; __u64 rate64 = 0, prate64 = 0; SPRINT_BUF(b1); SPRINT_BUF(b2); SPRINT_BUF(b3); if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_TBF_MAX, opt); if (tb[TCA_TBF_PARMS] == NULL) return -1; qopt = RTA_DATA(tb[TCA_TBF_PARMS]); if (RTA_PAYLOAD(tb[TCA_TBF_PARMS]) < sizeof(*qopt)) return -1; rate64 = qopt->rate.rate; if (tb[TCA_TBF_RATE64] && RTA_PAYLOAD(tb[TCA_TBF_RATE64]) >= sizeof(rate64)) rate64 = rta_getattr_u64(tb[TCA_TBF_RATE64]); tc_print_rate(PRINT_ANY, "rate", "rate %s ", rate64); buffer = tc_calc_xmitsize(rate64, qopt->buffer); if (show_details) { sprintf(b1, "%s/%u", sprint_size(buffer, b2), 1 << qopt->rate.cell_log); print_string(PRINT_ANY, "burst", "burst %s ", b1); print_size(PRINT_ANY, "mpu", "mpu %s ", qopt->rate.mpu); } else { print_size(PRINT_ANY, "burst", "burst %s ", buffer); } if (show_raw) print_hex(PRINT_ANY, "burst_raw", "[%08x] ", qopt->buffer); prate64 = qopt->peakrate.rate; if (tb[TCA_TBF_PRATE64] && RTA_PAYLOAD(tb[TCA_TBF_PRATE64]) >= sizeof(prate64)) prate64 = rta_getattr_u64(tb[TCA_TBF_PRATE64]); if (prate64) { tc_print_rate(PRINT_FP, "peakrate", "peakrate %s ", prate64); if (qopt->mtu || qopt->peakrate.mpu) { mtu = tc_calc_xmitsize(prate64, qopt->mtu); if (show_details) { sprintf(b1, "%s/%u", sprint_size(mtu, b2), 1 << qopt->peakrate.cell_log); print_string(PRINT_ANY, "mtu", "mtu %s ", b1); print_size(PRINT_ANY, "mpu", "mpu %s ", qopt->peakrate.mpu); } else { print_size(PRINT_ANY, "minburst", "minburst %s ", mtu); } if (show_raw) print_hex(PRINT_ANY, "mtu_raw", "[%08x] ", qopt->mtu); } } latency = TIME_UNITS_PER_SEC * (qopt->limit / (double)rate64) - tc_core_tick2time(qopt->buffer); if (prate64) { lat2 = TIME_UNITS_PER_SEC * (qopt->limit / (double)prate64) - tc_core_tick2time(qopt->mtu); if (lat2 > latency) latency = lat2; } if (latency >= 0.0) { print_u64(PRINT_JSON, "lat", NULL, latency); print_string(PRINT_FP, NULL, "lat %s ", sprint_time(latency, b1)); } if (show_raw || latency < 0.0) print_size(PRINT_ANY, "limit", "limit %s ", qopt->limit); if (qopt->rate.overhead) print_int(PRINT_ANY, "overhead", "overhead %d ", qopt->rate.overhead); linklayer = (qopt->rate.linklayer & TC_LINKLAYER_MASK); if (linklayer > TC_LINKLAYER_ETHERNET || show_details) print_string(PRINT_ANY, "linklayer", "linklayer %s ", sprint_linklayer(linklayer, b3)); return 0; } struct qdisc_util tbf_qdisc_util = { .id = "tbf", .parse_qopt = tbf_parse_opt, .print_qopt = tbf_print_opt, };