// Copyright (C) 2009-2019 Internet Systems Consortium, Inc. ("ISC") // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace isc::util; using isc::dns::NameComparisonResult; using namespace isc::dns::name::internal; namespace isc { namespace dns { namespace { /// /// These are shortcut arrays for efficient character conversion. /// digitvalue converts a digit character to the corresponding integer. /// maptolower convert uppercase alphabets to their lowercase counterparts. /// We once used a helper non-local static object to avoid hardcoding the /// array members, but we then realized it's susceptible to static /// initialization order fiasco: Since these constants are used in a Name /// constructor, a non-local static Name object defined in another translation /// unit than this file may not be initialized correctly. /// There are several ways to address this issue, but in this specific case /// we chose the naive but simple hardcoding approach. /// /// These definitions are derived from BIND 9's libdns module. /// Note: we could use the standard tolower() function instead of the /// maptolower array, but a benchmark indicated that the private array could /// improve the performance of message rendering (which internally uses the /// array heavily) about 27%. Since we want to achieve very good performance /// for message rendering in some cases, we'll keep using it. const signed char digitvalue[256] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 16 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 32 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 48 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, // 64 -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 80 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 96 -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 112 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 128 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 256 }; } namespace name { namespace internal { const uint8_t maptolower[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, // ..., 'A' - 'G' 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, // 'H' - 'O' 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, // 'P' - 'W' 0x78, 0x79, 0x7a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, // 'X' - 'Z', ... 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; } // end of internal } // end of name namespace { /// /// Textual name parser states. /// typedef enum { ft_init = 0, // begin of the name ft_start, // begin of a label ft_ordinary, // parsing an ordinary label ft_initialescape, // just found '\' ft_escape, // begin of handling a '\'-escaped sequence ft_escdecimal // parsing a '\DDD' octet. } ft_state; // The parser of name from a string. It is a template, because // some parameters are used with two different types, while others // are private type aliases. template void stringParse(Iterator s, Iterator send, bool downcase, Offsets& offsets, Data& ndata) { const Iterator orig_s(s); // // Initialize things to make the compiler happy; they're not required. // unsigned int digits = 0; unsigned int value = 0; unsigned int count = 0; // // Set up the state machine. // bool done = false; bool is_root = false; const bool empty = s == send; ft_state state = ft_init; // Prepare the output buffers. offsets.reserve(Name::MAX_LABELS); offsets.push_back(0); ndata.reserve(Name::MAX_WIRE); // should we refactor this code using, e.g, the state pattern? Probably // not at this point, as this is based on proved code (derived from BIND9) // and it's less likely that we'll have more variations in the domain name // syntax. If this ever happens next time, we should consider refactor // the code, rather than adding more states and cases below. while (ndata.size() < Name::MAX_WIRE && s != send && !done) { unsigned char c = *s++; switch (state) { case ft_init: // // Is this the root name? // if (c == '.') { if (s != send) { isc_throw(EmptyLabel, "non terminating empty label in " << string(orig_s, send)); } is_root = true; } else if (c == '@' && s == send) { // handle a single '@' as the root name. is_root = true; } if (is_root) { ndata.push_back(0); done = true; break; } // FALLTHROUGH case ft_start: ndata.push_back(0); // placeholder for the label length field count = 0; if (c == '\\') { state = ft_initialescape; break; } state = ft_ordinary; isc_throw_assert(ndata.size() < Name::MAX_WIRE); // FALLTHROUGH case ft_ordinary: if (c == '.') { if (count == 0) { isc_throw(EmptyLabel, "duplicate period in " << string(orig_s, send)); } ndata.at(offsets.back()) = count; offsets.push_back(ndata.size()); if (s == send) { ndata.push_back(0); done = true; } state = ft_start; } else if (c == '\\') { state = ft_escape; } else { if (++count > Name::MAX_LABELLEN) { isc_throw(TooLongLabel, "label is too long in " << string(orig_s, send)); } ndata.push_back(downcase ? maptolower[c] : c); } break; case ft_initialescape: if (c == '[') { // This looks like a bitstring label, which was deprecated. // Intentionally drop it. isc_throw(BadLabelType, "invalid label type in " << string(orig_s, send)); } // FALLTHROUGH case ft_escape: if (!isdigit(c & 0xff)) { if (++count > Name::MAX_LABELLEN) { isc_throw(TooLongLabel, "label is too long in " << string(orig_s, send)); } ndata.push_back(downcase ? maptolower[c] : c); state = ft_ordinary; break; } digits = 0; value = 0; state = ft_escdecimal; // FALLTHROUGH case ft_escdecimal: if (!isdigit(c & 0xff)) { isc_throw(BadEscape, "mixture of escaped digit and non-digit in " << string(orig_s, send)); } value *= 10; value += digitvalue[c]; digits++; if (digits == 3) { if (value > 255) { isc_throw(BadEscape, "escaped decimal is too large in " << string(orig_s, send)); } if (++count > Name::MAX_LABELLEN) { isc_throw(TooLongLabel, "label is too long in " << string(orig_s, send)); } ndata.push_back(downcase ? maptolower[value] : value); state = ft_ordinary; } break; default: // impossible case isc_throw_assert(false); } } if (!done) { // no trailing '.' was found. if (ndata.size() == Name::MAX_WIRE) { isc_throw(TooLongName, "name is too long for termination in " << string(orig_s, send)); } isc_throw_assert(s == send); if (state != ft_ordinary) { isc_throw(IncompleteName, "incomplete textual name in " << (empty ? "" : string(orig_s, send))); } if (state == ft_ordinary) { isc_throw_assert(count != 0); ndata.at(offsets.back()) = count; offsets.push_back(ndata.size()); // add a trailing \0 ndata.push_back('\0'); } } } } Name::Name(const std::string &namestring, bool downcase) { // Prepare inputs for the parser const std::string::const_iterator s = namestring.begin(); const std::string::const_iterator send = namestring.end(); // Prepare outputs NameOffsets offsets; NameString ndata; // To the parsing stringParse(s, send, downcase, offsets, ndata); // And get the output labelcount_ = offsets.size(); isc_throw_assert(labelcount_ > 0 && labelcount_ <= Name::MAX_LABELS); ndata_.assign(ndata.data(), ndata.size()); length_ = ndata_.size(); offsets_.assign(offsets.begin(), offsets.end()); } Name::Name(const char* namedata, size_t data_len, const Name* origin, bool downcase) { // Check validity of data if (namedata == NULL || data_len == 0) { isc_throw(isc::InvalidParameter, "No data provided to Name constructor"); } // If the last character is not a dot, it is a relative to origin. // It is safe to check now, we know there's at least one character. const bool absolute = (namedata[data_len - 1] == '.'); // If we are not absolute, we need the origin to complete the name. if (!absolute && origin == NULL) { isc_throw(MissingNameOrigin, "No origin available and name is relative"); } // Prepare inputs for the parser const char* end = namedata + data_len; // Prepare outputs NameOffsets offsets; NameString ndata; // Do the actual parsing stringParse(namedata, end, downcase, offsets, ndata); // Get the output labelcount_ = offsets.size(); isc_throw_assert(labelcount_ > 0 && labelcount_ <= Name::MAX_LABELS); ndata_.assign(ndata.data(), ndata.size()); length_ = ndata_.size(); offsets_.assign(offsets.begin(), offsets.end()); if (!absolute) { // Now, extend the data with the ones from origin. But eat the // last label (the empty one). // Drop the last character of the data (the \0) and append a copy of // the origin's data ndata_.erase(ndata_.end() - 1); ndata_.append(origin->ndata_); // Do a similar thing with offsets. However, we need to move them // so they point after the prefix we parsed before. size_t offset = offsets_.back(); offsets_.pop_back(); size_t offset_count = offsets_.size(); offsets_.insert(offsets_.end(), origin->offsets_.begin(), origin->offsets_.end()); for (NameOffsets::iterator it(offsets_.begin() + offset_count); it != offsets_.end(); ++it) { *it += offset; } // Adjust sizes. length_ = ndata_.size(); labelcount_ = offsets_.size(); // And check the sizes are OK. if (labelcount_ > Name::MAX_LABELS || length_ > Name::MAX_WIRE) { isc_throw(TooLongName, "Combined name is too long"); } } } namespace { /// /// Wire-format name parser states. /// typedef enum { fw_start = 0, // beginning of a label fw_ordinary, // inside an ordinary (non compressed) label fw_newcurrent // beginning of a compression pointer } fw_state; } Name::Name(InputBuffer& buffer, bool downcase) { NameOffsets offsets; offsets.reserve(Name::MAX_LABELS); /* * Initialize things to make the compiler happy; they're not required. */ unsigned int n = 0; // // Set up. // bool done = false; unsigned int nused = 0; bool seen_pointer = false; fw_state state = fw_start; unsigned int cused = 0; // Bytes of compressed name data used unsigned int current = buffer.getPosition(); unsigned int pos_begin = current; unsigned int biggest_pointer = current; // Make the compiler happy; this is not required. // XXX: bad style in that we initialize it with a dummy value and define // it far from where it's used. But alternatives seemed even worse. unsigned int new_current = 0; // // Note: The following code is not optimized for speed, but // rather for correctness. Speed will be addressed in the future. // while (current < buffer.getLength() && !done) { unsigned int c = buffer.readUint8(); current++; if (!seen_pointer) { cused++; } switch (state) { case fw_start: if (c <= MAX_LABELLEN) { offsets.push_back(nused); if (nused + c + 1 > Name::MAX_WIRE) { isc_throw(DNSMessageFORMERR, "wire name is too long: " << nused + c + 1 << " bytes"); } nused += c + 1; ndata_.push_back(c); if (c == 0) { done = true; } n = c; state = fw_ordinary; } else if ((c & COMPRESS_POINTER_MARK8) == COMPRESS_POINTER_MARK8) { // // Ordinary 14-bit pointer. // new_current = c & ~COMPRESS_POINTER_MARK8; n = 1; state = fw_newcurrent; } else { // this case includes local compression pointer, which hasn't // been standardized. isc_throw(DNSMessageFORMERR, "unknown label character: " << c); } break; case fw_ordinary: if (downcase) { c = maptolower[c]; } ndata_.push_back(c); if (--n == 0) { state = fw_start; } break; case fw_newcurrent: new_current *= 256; new_current += c; if (--n != 0) { break; } if (new_current >= biggest_pointer) { isc_throw(DNSMessageFORMERR, "bad compression pointer (out of range): " << new_current); } biggest_pointer = new_current; current = new_current; buffer.setPosition(current); seen_pointer = true; state = fw_start; break; default: isc_throw_assert(false); } } if (!done) { isc_throw(DNSMessageFORMERR, "incomplete wire-format name"); } labelcount_ = offsets.size(); length_ = nused; offsets_.assign(offsets.begin(), offsets.end()); buffer.setPosition(pos_begin + cused); } void Name::toWire(OutputBuffer& buffer) const { buffer.writeData(ndata_.data(), ndata_.size()); } void Name::toWire(AbstractMessageRenderer& renderer) const { renderer.writeName(*this); } std::string Name::toText(bool omit_final_dot) const { LabelSequence ls(*this); return (ls.toText(omit_final_dot)); } std::string Name::toRawText(bool omit_final_dot) const { LabelSequence ls(*this); return (ls.toRawText(omit_final_dot)); } NameComparisonResult Name::compare(const Name& other) const { const LabelSequence ls1(*this); const LabelSequence ls2(other); return (ls1.compare(ls2)); } bool Name::equals(const Name& other) const { if (length_ != other.length_ || labelcount_ != other.labelcount_) { return (false); } for (unsigned int l = labelcount_, pos = 0; l > 0; --l) { uint8_t count = ndata_[pos]; if (count != other.ndata_[pos]) { return (false); } ++pos; while (count-- > 0) { uint8_t label1 = ndata_[pos]; uint8_t label2 = other.ndata_[pos]; if (maptolower[label1] != maptolower[label2]) { return (false); } ++pos; } } return (true); } bool Name::leq(const Name& other) const { return (compare(other).getOrder() <= 0); } bool Name::geq(const Name& other) const { return (compare(other).getOrder() >= 0); } bool Name::lthan(const Name& other) const { return (compare(other).getOrder() < 0); } bool Name::gthan(const Name& other) const { return (compare(other).getOrder() > 0); } bool Name::isWildcard() const { return (length_ >= 2 && ndata_[0] == 1 && ndata_[1] == '*'); } Name Name::concatenate(const Name& suffix) const { isc_throw_assert(length_ > 0 && suffix.length_ > 0); isc_throw_assert(labelcount_ > 0 && suffix.labelcount_ > 0); unsigned int length = length_ + suffix.length_ - 1; if (length > Name::MAX_WIRE) { isc_throw(TooLongName, "names are too long to concatenate"); } Name retname; retname.ndata_.reserve(length); retname.ndata_.assign(ndata_, 0, length_ - 1); retname.ndata_.insert(retname.ndata_.end(), suffix.ndata_.begin(), suffix.ndata_.end()); isc_throw_assert(retname.ndata_.size() == length); retname.length_ = length; // // Setup the offsets vector. Copy the offsets of this (prefix) name, // excluding that for the trailing dot, and append the offsets of the // suffix name with the additional offset of the length of the prefix. // unsigned int labels = labelcount_ + suffix.labelcount_ - 1; isc_throw_assert(labels <= Name::MAX_LABELS); retname.offsets_.reserve(labels); retname.offsets_.assign(&offsets_[0], &offsets_[0] + labelcount_ - 1); transform(suffix.offsets_.begin(), suffix.offsets_.end(), back_inserter(retname.offsets_), [this] (char x) { return (x + length_ - 1); }); isc_throw_assert(retname.offsets_.size() == labels); retname.labelcount_ = labels; return (retname); } Name Name::reverse() const { Name retname; // // Set up offsets: The size of the string and number of labels will // be the same in as in the original. // retname.offsets_.reserve(labelcount_); retname.ndata_.reserve(length_); // Copy the original name, label by label, from tail to head. NameOffsets::const_reverse_iterator rit0 = offsets_.rbegin(); NameOffsets::const_reverse_iterator rit1 = rit0 + 1; NameString::const_iterator n0 = ndata_.begin(); retname.offsets_.push_back(0); while (rit1 != offsets_.rend()) { retname.ndata_.append(n0 + *rit1, n0 + *rit0); retname.offsets_.push_back(retname.ndata_.size()); ++rit0; ++rit1; } retname.ndata_.push_back(0); retname.labelcount_ = labelcount_; retname.length_ = length_; return (retname); } Name Name::split(const unsigned int first, const unsigned int n) const { if (n == 0 || n > labelcount_ || first > labelcount_ - n) { isc_throw(OutOfRange, "Name::split: invalid split range"); } Name retname; // If the specified range doesn't include the trailing dot, we need one // more label for that. unsigned int newlabels = (first + n == labelcount_) ? n : n + 1; // // Set up offsets: copy the corresponding range of the original offsets // with subtracting an offset of the prefix length. // retname.offsets_.reserve(newlabels); transform(offsets_.begin() + first, offsets_.begin() + first + newlabels, back_inserter(retname.offsets_), [&](char x) { return (x - offsets_[first]); }); // // Set up the new name. At this point the tail of the new offsets specifies // the position of the trailing dot, which should be equal to the length of // the extracted portion excluding the dot. First copy that part from the // original name, and append the trailing dot explicitly. // retname.ndata_.reserve(retname.offsets_.back() + 1); retname.ndata_.assign(ndata_, offsets_[first], retname.offsets_.back()); retname.ndata_.push_back(0); retname.length_ = retname.ndata_.size(); retname.labelcount_ = retname.offsets_.size(); isc_throw_assert(retname.labelcount_ == newlabels); return (retname); } Name Name::split(const unsigned int level) const { if (level >= getLabelCount()) { isc_throw(OutOfRange, "invalid level for name split (" << level << ") for name " << *this); } return (split(level, getLabelCount() - level)); } Name& Name::downcase() { unsigned int nlen = length_; unsigned int labels = labelcount_; unsigned int pos = 0; while (labels > 0 && nlen > 0) { --labels; --nlen; // we assume a valid name, and do abort() if the assumption fails // rather than throwing an exception. unsigned int count = ndata_.at(pos++); isc_throw_assert(count <= MAX_LABELLEN); isc_throw_assert(nlen >= count); while (count > 0) { ndata_.at(pos) = maptolower[ndata_.at(pos)]; ++pos; --nlen; --count; } } return (*this); } std::ostream& operator<<(std::ostream& os, const Name& name) { os << name.toText(); return (os); } } }