// Copyright (C) 2010-2015 Internet Systems Consortium, Inc. ("ISC") // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include #include #include #include #include #include #include using namespace std; using namespace isc; using namespace isc::dns; using namespace isc::util; using boost::scoped_ptr; using isc::util::unittests::matchWireData; namespace { class RRTTLTest : public ::testing::Test { protected: RRTTLTest() : obuffer(0) {} OutputBuffer obuffer; MessageRenderer renderer; static RRTTL rrttlFactoryFromWire(const char* datafile); static const RRTTL ttl_0, ttl_1h, ttl_1d, ttl_32bit, ttl_max; static const RRTTL ttl_small, ttl_large; static const uint8_t wiredata[20]; }; const RRTTL RRTTLTest::ttl_0(0); const RRTTL RRTTLTest::ttl_1h(3600); const RRTTL RRTTLTest::ttl_1d(86400); const RRTTL RRTTLTest::ttl_32bit(0x12345678); const RRTTL RRTTLTest::ttl_max(0xffffffff); const RRTTL RRTTLTest::ttl_small(1); const RRTTL RRTTLTest::ttl_large(0x80000001); // This is wire-format data for the above sample RRTTLs rendered in the // appearing order. const uint8_t RRTTLTest::wiredata[20] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x10, 0x00, 0x01, 0x51, 0x80, 0x12, 0x34, 0x56, 0x78, 0xff, 0xff, 0xff, 0xff }; RRTTL RRTTLTest::rrttlFactoryFromWire(const char* datafile) { std::vector data; UnitTestUtil::readWireData(datafile, data); InputBuffer buffer(&data[0], data.size()); return (RRTTL(buffer)); } TEST_F(RRTTLTest, getValue) { EXPECT_EQ(0, ttl_0.getValue()); EXPECT_EQ(3600, ttl_1h.getValue()); EXPECT_EQ(86400, ttl_1d.getValue()); EXPECT_EQ(0x12345678, ttl_32bit.getValue()); EXPECT_EQ(0xffffffff, ttl_max.getValue()); } TEST_F(RRTTLTest, copyConstruct) { const RRTTL ttl1(3600); const RRTTL ttl2(ttl1); EXPECT_EQ(ttl1.getValue(), ttl2.getValue()); } TEST_F(RRTTLTest, fromText) { // Border cases EXPECT_EQ(0, RRTTL("0").getValue()); EXPECT_EQ(4294967295U, RRTTL("4294967295").getValue()); // Invalid cases EXPECT_THROW(RRTTL("0xdeadbeef"), InvalidRRTTL); // must be decimal EXPECT_THROW(RRTTL("-1"), InvalidRRTTL); // must be positive EXPECT_THROW(RRTTL("1.1"), InvalidRRTTL); // must be integer EXPECT_THROW(RRTTL("4294967296"), InvalidRRTTL); // must be 32-bit } TEST_F(RRTTLTest, createFromText) { // It returns an actual RRTTL iff the given text is recognized as a // valid RR TTL. scoped_ptr good_ttl(RRTTL::createFromText("3600")); EXPECT_TRUE(good_ttl); EXPECT_EQ(RRTTL(3600), *good_ttl); scoped_ptr bad_ttl(RRTTL::createFromText("bad")); EXPECT_FALSE(bad_ttl); } void checkUnit(unsigned multiply, char suffix) { SCOPED_TRACE(string("Unit check with suffix ") + suffix); const uint32_t value = 10 * multiply; const string num = "10"; // Check both lower and upper version of the suffix EXPECT_EQ(value, RRTTL(num + static_cast(tolower(suffix))).getValue()); EXPECT_EQ(value, RRTTL(num + static_cast(toupper(suffix))).getValue()); } // Check parsing the unit form (1D, etc) TEST_F(RRTTLTest, fromTextUnit) { // Check each of the units separately checkUnit(1, 'S'); checkUnit(60, 'M'); checkUnit(60 * 60, 'H'); checkUnit(24 * 60 * 60, 'D'); checkUnit(7 * 24 * 60 * 60, 'W'); // Some border cases (with units) EXPECT_EQ(4294967295U, RRTTL("4294967295S").getValue()); EXPECT_EQ(0, RRTTL("0W0D0H0M0S").getValue()); EXPECT_EQ(4294967295U, RRTTL("1193046H1695S").getValue()); // Leading zeroes are accepted EXPECT_EQ(4294967295U, RRTTL("0000000000000004294967295S").getValue()); // Now some compound ones. We allow any order (it would be much work to // check the order anyway). EXPECT_EQ(60 * 60 + 3, RRTTL("1H3S").getValue()); // Awkward, but allowed case - the same unit used twice. EXPECT_EQ(20 * 3600, RRTTL("12H8H").getValue()); // Negative number in part of the expression, but the total is positive. // Rejected. EXPECT_THROW(RRTTL("-1S1H"), InvalidRRTTL); // Some things out of range in the ttl, but it wraps to number in range // in int64_t. Should still not get fooled and reject it. // First part out of range EXPECT_THROW(RRTTL("9223372036854775807S9223372036854775807S2S"), InvalidRRTTL); // Second part out of range, but it immediately wraps (2S+2^64-2S) EXPECT_THROW(RRTTL("2S18446744073709551614S"), InvalidRRTTL); // The whole thing wraps right away (2^64S) EXPECT_THROW(RRTTL("18446744073709551616S"), InvalidRRTTL); // Second part out of range, and will become negative with the unit, EXPECT_THROW(RRTTL("256S307445734561825856M"), InvalidRRTTL); // Missing before unit. EXPECT_THROW(RRTTL("W5H"), InvalidRRTTL); EXPECT_THROW(RRTTL("5hW"), InvalidRRTTL); // Empty string is not allowed EXPECT_THROW(RRTTL(""), InvalidRRTTL); // Missing the last unit is not allowed EXPECT_THROW(RRTTL("3D5"), InvalidRRTTL); // There are some wrong units EXPECT_THROW(RRTTL("13X"), InvalidRRTTL); EXPECT_THROW(RRTTL("3D5F"), InvalidRRTTL); } TEST_F(RRTTLTest, fromWire) { EXPECT_EQ(0x12345678, rrttlFactoryFromWire("rrcode32_fromWire1").getValue()); EXPECT_THROW(rrttlFactoryFromWire("rrcode32_fromWire2"), IncompleteRRTTL); } TEST_F(RRTTLTest, toText) { EXPECT_EQ("0", ttl_0.toText()); EXPECT_EQ("3600", ttl_1h.toText()); EXPECT_EQ("86400", ttl_1d.toText()); EXPECT_EQ("305419896", ttl_32bit.toText()); EXPECT_EQ("4294967295", ttl_max.toText()); } TEST_F(RRTTLTest, toWireBuffer) { ttl_0.toWire(obuffer); ttl_1h.toWire(obuffer); ttl_1d.toWire(obuffer); ttl_32bit.toWire(obuffer); ttl_max.toWire(obuffer); matchWireData(wiredata, sizeof(wiredata), obuffer.getData(), obuffer.getLength()); } TEST_F(RRTTLTest, toWireRenderer) { ttl_0.toWire(renderer); ttl_1h.toWire(renderer); ttl_1d.toWire(renderer); ttl_32bit.toWire(renderer); ttl_max.toWire(renderer); matchWireData(wiredata, sizeof(wiredata), renderer.getData(), renderer.getLength()); } TEST_F(RRTTLTest, equal) { EXPECT_TRUE(RRTTL("3600") == ttl_1h); EXPECT_TRUE(RRTTL("86400").equals(ttl_1d)); EXPECT_TRUE(ttl_1d != ttl_1h); EXPECT_TRUE(ttl_1d.nequals(ttl_max)); } // // The following set of tests confirm the result of <=, <, >=, > // The test logic is simple, and all tests are just straightforward variations // of the first one. // TEST_F(RRTTLTest, leq) { // small <= large is true EXPECT_TRUE(ttl_small.leq(ttl_large)); EXPECT_TRUE(ttl_small <= ttl_large); // small <= small is true EXPECT_TRUE(ttl_small.leq(ttl_small)); EXPECT_LE(ttl_small, ttl_small); // large <= small is false EXPECT_FALSE(ttl_large.leq(ttl_small)); EXPECT_FALSE(ttl_large <= ttl_small); } TEST_F(RRTTLTest, geq) { EXPECT_TRUE(ttl_large.geq(ttl_small)); EXPECT_TRUE(ttl_large >= ttl_small); EXPECT_TRUE(ttl_large.geq(ttl_large)); EXPECT_GE(ttl_large, ttl_large); EXPECT_FALSE(ttl_small.geq(ttl_large)); EXPECT_FALSE(ttl_small >= ttl_large); } TEST_F(RRTTLTest, lthan) { EXPECT_TRUE(ttl_small.lthan(ttl_large)); EXPECT_TRUE(ttl_small < ttl_large); EXPECT_FALSE(ttl_small.lthan(ttl_small)); // cppcheck-suppress duplicateExpression EXPECT_FALSE(ttl_small < ttl_small); EXPECT_FALSE(ttl_large.lthan(ttl_small)); EXPECT_FALSE(ttl_large < ttl_small); } TEST_F(RRTTLTest, gthan) { EXPECT_TRUE(ttl_large.gthan(ttl_small)); EXPECT_TRUE(ttl_large > ttl_small); EXPECT_FALSE(ttl_large.gthan(ttl_large)); // cppcheck-suppress duplicateExpression EXPECT_FALSE(ttl_large > ttl_large); EXPECT_FALSE(ttl_small.gthan(ttl_large)); EXPECT_FALSE(ttl_small > ttl_large); } TEST_F(RRTTLTest, maxTTL) { EXPECT_EQ((1u << 31) - 1, RRTTL::MAX_TTL().getValue()); } // test operator<<. We simply confirm it appends the result of toText(). TEST_F(RRTTLTest, LeftShiftOperator) { ostringstream oss; oss << ttl_1h; EXPECT_EQ(ttl_1h.toText(), oss.str()); } }