// Copyright (C) 2010-2015 Internet Systems Consortium, Inc. ("ISC") // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include #include #include #include using namespace std; using namespace isc::util; // See time_utilities.cc namespace isc { namespace util { namespace detail { extern int64_t (*gettimeFunction)(); } } } namespace { class DNSSECTimeTest : public ::testing::Test { protected: ~DNSSECTimeTest() { detail::gettimeFunction = NULL; } }; TEST_F(DNSSECTimeTest, fromText) { // In most cases (in practice) the 32-bit and 64-bit versions should // behave identically, so we'll mainly test the 32-bit version, which // will be more commonly used in actual code (because many of the wire // format time field are 32-bit). The subtle cases where these two // return different values will be tested at the end of this test case. // These are bogus and should be rejected EXPECT_THROW(timeFromText32("2011 101120000"), InvalidTime); EXPECT_THROW(timeFromText32("201101011200-0"), InvalidTime); // Short length (or "decimal integer" version of representation; // it's valid per RFC4034, but is not supported in this implementation) EXPECT_THROW(timeFromText32("20100223"), InvalidTime); // Leap year checks EXPECT_THROW(timeFromText32("20110229120000"), InvalidTime); EXPECT_THROW(timeFromText32("21000229120000"), InvalidTime); EXPECT_NO_THROW(timeFromText32("20000229120000")); EXPECT_NO_THROW(timeFromText32("20120229120000")); // unusual case: this implementation allows SS=60 for "leap seconds" EXPECT_NO_THROW(timeFromText32("20110101120060")); // Out of range parameters EXPECT_THROW(timeFromText32("19100223214617"), InvalidTime); // YY<1970 EXPECT_THROW(timeFromText32("20110001120000"), InvalidTime); // MM=00 EXPECT_THROW(timeFromText32("20111301120000"), InvalidTime); // MM=13 EXPECT_THROW(timeFromText32("20110100120000"), InvalidTime); // DD=00 EXPECT_THROW(timeFromText32("20110132120000"), InvalidTime); // DD=32 EXPECT_THROW(timeFromText32("20110431120000"), InvalidTime); // 'Apr31' EXPECT_THROW(timeFromText32("20110101250000"), InvalidTime); // HH=25 EXPECT_THROW(timeFromText32("20110101126000"), InvalidTime); // mm=60 EXPECT_THROW(timeFromText32("20110101120061"), InvalidTime); // SS=61 // Feb 7, 06:28:15 UTC 2106 is the possible maximum time that can be // represented as an unsigned 32bit integer without overflow. EXPECT_EQ(4294967295LU, timeFromText32("21060207062815")); // After that, timeFromText32() should start returning the second count // modulo 2^32. EXPECT_EQ(0, timeFromText32("21060207062816")); EXPECT_EQ(10, timeFromText32("21060207062826")); // On the other hand, the 64-bit version should return monotonically // increasing counters. EXPECT_EQ(4294967296LL, timeFromText64("21060207062816")); EXPECT_EQ(4294967306LL, timeFromText64("21060207062826")); } // This helper templated function tells timeToText32 a faked current time. // The template parameter is that faked time in the form of int64_t seconds // since epoch. template int64_t testGetTime() { return (NOW); } // Seconds since epoch for the year 10K eve. Commonly used in some tests // below. const uint64_t YEAR10K_EVE = 253402300799LL; TEST_F(DNSSECTimeTest, toText) { // Check a basic case with the default (normal) gettimeFunction // based on the "real current time". // Note: this will fail after year 2078, but at that point we won't use // this program anyway:-) EXPECT_EQ("20100311233000", timeToText32(1268350200)); // Set the current time to: Feb 18 09:04:14 UTC 2012 (an arbitrary choice // in the range of the first half of uint32 since epoch). detail::gettimeFunction = testGetTime<1329555854LL>; // Test the "year 2038" problem. // Check the result of toText() for "INT_MIN" in int32_t. It's in the // 68-year range from the faked current time, so the result should be // in year 2038, instead of 1901. EXPECT_EQ("20380119031408", timeToText64(0x80000000L)); EXPECT_EQ("20380119031408", timeToText32(0x80000000L)); // A controversial case: what should we do with "-1"? It's out of range // in future, but according to RFC time before epoch doesn't seem to be // considered "in-range" either. Our toText() implementation handles // this range as a special case and always treats them as future time // until year 2038. This won't be a real issue in practice, though, // since such too large values won't be used in actual deployment by then. EXPECT_EQ("21060207062815", timeToText32(0xffffffffL)); // After the singular point of year 2038, the first half of uint32 can // point to a future time. // Set the current time to: Apr 1 00:00:00 UTC 2038: detail::gettimeFunction = testGetTime<2153692800LL>; // then time "10" is Feb 7 06:28:26 UTC 2106 EXPECT_EQ("21060207062826", timeToText32(10)); // in 64-bit, it's 2^32 + 10 EXPECT_EQ("21060207062826", timeToText64(0x10000000aLL)); // After year 2106, the upper half of uint32 can point to past time // (as it should). detail::gettimeFunction = testGetTime<0x10000000aLL>; EXPECT_EQ("21060207062815", timeToText32(0xffffffffL)); // Try very large time value. Actually it's the possible farthest time // that can be represented in the form of YYYYMMDDHHmmSS. EXPECT_EQ("99991231235959", timeToText64(YEAR10K_EVE)); detail::gettimeFunction = testGetTime; EXPECT_EQ("99991231235959", timeToText32(4294197631LU)); } TEST_F(DNSSECTimeTest, overflow) { // Jan 1, Year 10,000. EXPECT_THROW(timeToText64(253402300800LL), InvalidTime); detail::gettimeFunction = testGetTime; EXPECT_THROW(timeToText32(4294197632LU), InvalidTime); } }