/******************************************************************************* * Header Files * *******************************************************************************/ #include #include #include "shinstance.h" #include /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /** The stack size. This is also defined in shforkA-win.asm. */ #define SHFORK_STACK_SIZE (1*1024*1024) /******************************************************************************* * Global Variables * *******************************************************************************/ static void *g_stack_base = 0; static void *g_stack_limit = 0; /******************************************************************************* * Internal Functions * *******************************************************************************/ static void *shfork_string_to_ptr(const char *str, const char *argv0, const char *what); /* in shforkA-win.asm: */ extern pid_t shfork_do_it(shinstance *psh); extern void shfork_resume(void *cur, void *base, void *limit); /* called by shforkA-win.asm: */ void *shfork_maybe_forked(int argc, char **argv, char **envp); extern int shfork_body(shinstance *psh, void *stack_ptr); extern void init_syntax(void); /** * Called by shforkA-win.asm to check whether we're a forked child * process or not. * * In the former case we will resume execution at the fork resume * point. In the latter we'll allocate a new stack of the forkable * heap and return it to the caller so real_main() in main.c can be * invoked on it. * * @returns Stack or not at all. * @param argc Argument count. * @param argv Argument vector. * @param envp Environment vector. */ void *shfork_maybe_forked(int argc, char **argv, char **envp) { void *stack_ptr; /* * Are we actually forking? */ if ( argc != 8 || strcmp(argv[1], "--!forked!--") || strcmp(argv[2], "--stack-address") || strcmp(argv[4], "--stack-base") || strcmp(argv[6], "--stack-limit")) { char *stack; shheap_init(NULL); g_stack_limit = stack = (char *)sh_malloc(NULL, SHFORK_STACK_SIZE); g_stack_base = stack += SHFORK_STACK_SIZE; return stack; } /* * Do any init that needs to be done before resuming the * fork() call. */ setlocale(LC_ALL, ""); /* * Convert the stack addresses. */ stack_ptr = shfork_string_to_ptr(argv[3], argv[0], "--stack-address"); g_stack_base = shfork_string_to_ptr(argv[5], argv[0], "--stack-base"); g_stack_limit = shfork_string_to_ptr(argv[7], argv[0], "--stack-limit"); kHlpAssert((uintptr_t)stack_ptr < (uintptr_t)g_stack_base); kHlpAssert((uintptr_t)stack_ptr > (uintptr_t)g_stack_limit); /* * Switch stack and jump to the fork resume point. */ shfork_resume(stack_ptr, g_stack_base, g_stack_limit); /* (won't get here) */ return NULL; } /*** * Converts a string into a pointer. * * @returns Pointer. * @param argv0 The program name in case of error. * @param str The string to convert. */ static void *shfork_string_to_ptr(const char *str, const char *argv0, const char *what) { const char *start = str; intptr_t ptr = 0; if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) str += 2; while (*str) { unsigned digit; switch (*str) { case '0': digit = 0; break; case '1': digit = 1; break; case '2': digit = 2; break; case '3': digit = 3; break; case '4': digit = 4; break; case '5': digit = 5; break; case '6': digit = 6; break; case '7': digit = 7; break; case '8': digit = 8; break; case '9': digit = 9; break; case 'a': case 'A': digit = 0xa; break; case 'b': case 'B': digit = 0xb; break; case 'c': case 'C': digit = 0xc; break; case 'd': case 'D': digit = 0xd; break; case 'e': case 'E': digit = 0xe; break; case 'f': case 'F': digit = 0xf; break; default: fprintf(stderr, "%s: fatal error: Invalid %s '%s'\n", argv0, what, start); exit(2); } ptr <<= 4; ptr |= digit; str++; } return (void *)ptr; } /** * Do the fork. * @returns same as fork(). * @param psh The shell that's forking. */ int shfork_do(shinstance *psh) { /* save globals */ void *pheap_head = shheap_get_head(); pid_t pid = shfork_do_it(psh); if (pid == 0) { /* reinit stuff, only the heap is copied! */ shthread_set_shell(psh); shheap_init(pheap_head); setlocale(LC_ALL, ""); init_syntax(); sh_init_globals(); } return pid; } /** * Create the child process making sure it inherits all our handles, * copy of the forkable heap and kick it off. * * Called by shfork_do_it() in shforkA-win.asm. * * @returns child pid on success, -1 and errno on failure. * @param psh The shell that's forking. * @param stack_ptr The stack address at which the guest is suppost to resume. */ int shfork_body(shinstance *psh, void *stack_ptr) { PROCESS_INFORMATION ProcInfo; STARTUPINFO StrtInfo; intptr_t hndls[3]; char szExeName[1024]; char szCmdLine[1024+256]; DWORD cch; int rc = 0; kHlpAssert((uintptr_t)stack_ptr < (uintptr_t)g_stack_base); kHlpAssert((uintptr_t)stack_ptr > (uintptr_t)g_stack_limit); /* * Mark all handles inheritable and get the three standard handles. */ shfile_fork_win(&psh->fdtab, 1 /* set */, &hndls[0]); /* * Create the process. */ cch = GetModuleFileName(GetModuleHandle(NULL), szExeName, sizeof(szExeName)); if (cch > 0) { #if 0 /* quoting the program name doesn't seems to be working :/ */ szCmdLine[0] = '"'; memcpy(&szCmdLine[1], szExeName, cch); szCmdLine[++cch] = '"'; #else memcpy(&szCmdLine[0], szExeName, cch); #endif cch += sprintf(&szCmdLine[cch], " --!forked!-- --stack-address %p --stack-base %p --stack-limit %p", stack_ptr, g_stack_base, g_stack_limit); szCmdLine[cch+1] = '\0'; TRACE2((NULL, "shfork_body: szCmdLine=%s\n", szCmdLine)); memset(&StrtInfo, '\0', sizeof(StrtInfo)); /* just in case. */ StrtInfo.cb = sizeof(StrtInfo); StrtInfo.lpReserved = NULL; StrtInfo.lpDesktop = NULL; StrtInfo.lpTitle = NULL; StrtInfo.dwX = 0; StrtInfo.dwY = 0; StrtInfo.dwXSize = 0; StrtInfo.dwYSize = 0; StrtInfo.dwXCountChars = 0; StrtInfo.dwYCountChars = 0; StrtInfo.dwFillAttribute = 0; StrtInfo.dwFlags = STARTF_USESTDHANDLES;; StrtInfo.wShowWindow = 0; StrtInfo.cbReserved2 = 0; StrtInfo.lpReserved2 = NULL; StrtInfo.hStdInput = (HANDLE)hndls[0]; StrtInfo.hStdOutput = (HANDLE)hndls[1]; StrtInfo.hStdError = (HANDLE)hndls[2]; if (CreateProcess(szExeName, szCmdLine, NULL, /* pProcessAttributes */ NULL, /* pThreadAttributes */ TRUE, /* bInheritHandles */ CREATE_SUSPENDED, NULL, /* pEnvironment */ NULL, /* pCurrentDirectory */ &StrtInfo, &ProcInfo)) { /* * Copy the memory to the child. */ rc = shheap_fork_copy_to_child(ProcInfo.hProcess); if (!rc) { if (ResumeThread(ProcInfo.hThread) != (DWORD)-1) { rc = sh_add_child(psh, ProcInfo.dwProcessId, ProcInfo.hProcess, NULL); if (!rc) rc = (int)ProcInfo.dwProcessId; } else { DWORD dwErr = GetLastError(); fprintf(stderr, "shfork: ResumeThread() -> %d\n", dwErr); errno = EINVAL; rc = -1; } } if (rc == -1) { TerminateProcess(ProcInfo.hProcess, 127); /* needed?: ResumeThread(ProcInfo.hThread); */ CloseHandle(ProcInfo.hProcess); } CloseHandle(ProcInfo.hThread); } else { DWORD dwErr = GetLastError(); fprintf(stderr, "shfork: CreateProcess(%s) -> %d\n", szExeName, dwErr); errno = EINVAL; rc = -1; } } else { DWORD dwErr = GetLastError(); fprintf(stderr, "shfork: GetModuleFileName() -> %d\n", dwErr); errno = EINVAL; rc = -1; } /* * Restore the handle inherit property. */ shfile_fork_win(&psh->fdtab, 0 /* restore */, NULL); return rc; }