/* Miscellaneous generic support functions for GNU Make. Copyright (C) 1988-2016 Free Software Foundation, Inc. This file is part of GNU Make. GNU Make is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. GNU Make is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "makeint.h" #include "filedef.h" #include "dep.h" #include "debug.h" /* GNU make no longer supports pre-ANSI89 environments. */ #include #ifdef HAVE_FCNTL_H # include #else # include #endif #if defined (CONFIG_WITH_VALUE_LENGTH) || defined (CONFIG_WITH_ALLOC_CACHES) # include #endif #ifdef CONFIG_WITH_PRINT_STATS_SWITCH # ifdef __APPLE__ # include # endif # if defined(__GLIBC__) || defined(HAVE_MALLINFO) # include # endif #endif #if defined (CONFIG_WITH_NANOTS) || defined (CONFIG_WITH_PRINT_TIME_SWITCH) # ifdef WINDOWS32 # include # endif #endif /* All bcopy calls in this file can be replaced by memcpy and save a tick or two. */ #ifdef CONFIG_WITH_OPTIMIZATION_HACKS # undef bcopy # if defined(__GNUC__) && defined(CONFIG_WITH_OPTIMIZATION_HACKS) # define bcopy(src, dst, size) __builtin_memcpy ((dst), (src), (size)) # else # define bcopy(src, dst, size) memcpy ((dst), (src), (size)) # endif #endif /* Compare strings *S1 and *S2. Return negative if the first is less, positive if it is greater, zero if they are equal. */ int alpha_compare (const void *v1, const void *v2) { const char *s1 = *((char **)v1); const char *s2 = *((char **)v2); if (*s1 != *s2) return *s1 - *s2; return strcmp (s1, s2); } /* Discard each backslash-newline combination from LINE. Backslash-backslash-newline combinations become backslash-newlines. This is done by copying the text at LINE into itself. */ #ifndef CONFIG_WITH_VALUE_LENGTH void collapse_continuations (char *line) #else char * collapse_continuations (char *line, unsigned int linelen) #endif { char *in, *out, *p; #ifndef CONFIG_WITH_VALUE_LENGTH in = strchr (line, '\n'); if (in == 0) return; #else assert (strlen (line) == linelen); in = memchr (line, '\n', linelen); if (in == 0) return line + linelen; if (in == line || in[-1] != '\\') { do { unsigned int off_in = in - line; if (off_in == linelen) return in; in = memchr (in + 1, '\n', linelen - off_in - 1); if (in == 0) return line + linelen; } while (in[-1] != '\\'); } #endif out = in; while (out > line && out[-1] == '\\') --out; while (*in != '\0') { /* BS_WRITE gets the number of quoted backslashes at the end just before IN, and BACKSLASH gets nonzero if the next character is quoted. */ unsigned int backslash = 0; unsigned int bs_write = 0; for (p = in - 1; p >= line && *p == '\\'; --p) { if (backslash) ++bs_write; backslash = !backslash; /* It should be impossible to go back this far without exiting, but if we do, we can't get the right answer. */ if (in == out - 1) abort (); } /* Output the appropriate number of backslashes. */ while (bs_write-- > 0) *out++ = '\\'; /* Skip the newline. */ ++in; if (backslash) { /* Backslash/newline handling: In traditional GNU make all trailing whitespace, consecutive backslash/newlines, and any leading non-newline whitespace on the next line is reduced to a single space. In POSIX, each backslash/newline and is replaced by a space. */ while (ISBLANK (*in)) ++in; if (! posix_pedantic) while (out > line && ISBLANK (out[-1])) --out; *out++ = ' '; } else /* If the newline isn't quoted, put it in the output. */ *out++ = '\n'; /* Now copy the following line to the output. Stop when we find backslashes followed by a newline. */ while (*in != '\0') if (*in == '\\') { p = in + 1; while (*p == '\\') ++p; if (*p == '\n') { in = p; break; } while (in < p) *out++ = *in++; } else *out++ = *in++; } *out = '\0'; #ifdef CONFIG_WITH_VALUE_LENGTH assert (strchr (line, '\0') == out); return out; #endif } /* Print N spaces (used in debug for target-depth). */ void print_spaces (unsigned int n) { while (n-- > 0) putchar (' '); } /* Return a string whose contents concatenate the NUM strings provided This string lives in static, re-used memory. */ const char * concat (unsigned int num, ...) { static unsigned int rlen = 0; static char *result = NULL; unsigned int ri = 0; va_list args; va_start (args, num); while (num-- > 0) { const char *s = va_arg (args, const char *); unsigned int l = xstrlen (s); if (l == 0) continue; if (ri + l > rlen) { rlen = ((rlen ? rlen : 60) + l) * 2; result = xrealloc (result, rlen); } memcpy (result + ri, s, l); ri += l; } va_end (args); /* Get some more memory if we don't have enough space for the terminating '\0'. */ if (ri == rlen) { rlen = (rlen ? rlen : 60) * 2; result = xrealloc (result, rlen); } result[ri] = '\0'; return result; } #ifndef HAVE_STRERROR #undef strerror char * strerror (int errnum) { extern int errno, sys_nerr; #ifndef __DECC extern char *sys_errlist[]; #endif static char buf[] = "Unknown error 12345678901234567890"; if (errno < sys_nerr) return sys_errlist[errnum]; sprintf (buf, _("Unknown error %d"), errnum); return buf; } #endif /* Like malloc but get fatal error if memory is exhausted. */ /* Don't bother if we're using dmalloc; it provides these for us. */ #if !defined(HAVE_DMALLOC_H) && !defined(ELECTRIC_HEAP) /* bird */ #undef xmalloc #undef xcalloc #undef xrealloc #undef xstrdup void * xmalloc (unsigned int size) { /* Make sure we don't allocate 0, for pre-ISO implementations. */ void *result = malloc (size ? size : 1); if (result == 0) OUT_OF_MEM(); #ifdef CONFIG_WITH_MAKE_STATS make_stats_allocations++; if (make_expensive_statistics) make_stats_allocated += SIZE_OF_HEAP_BLOCK (result); else make_stats_allocated += size; #endif return result; } void * xcalloc (unsigned int size) { /* Make sure we don't allocate 0, for pre-ISO implementations. */ void *result = calloc (size ? size : 1, 1); if (result == 0) OUT_OF_MEM(); #ifdef CONFIG_WITH_MAKE_STATS make_stats_allocations++; if (make_expensive_statistics) make_stats_allocated += SIZE_OF_HEAP_BLOCK (result); else make_stats_allocated += size; #endif return result; } void * xrealloc (void *ptr, unsigned int size) { void *result; #ifdef CONFIG_WITH_MAKE_STATS if (make_expensive_statistics && ptr != NULL) make_stats_allocated -= SIZE_OF_HEAP_BLOCK (ptr); if (ptr) make_stats_reallocations++; else make_stats_allocations++; #endif /* Some older implementations of realloc() don't conform to ISO. */ if (! size) size = 1; result = ptr ? realloc (ptr, size) : malloc (size); if (result == 0) OUT_OF_MEM(); #ifdef CONFIG_WITH_MAKE_STATS if (make_expensive_statistics) make_stats_allocated += SIZE_OF_HEAP_BLOCK (result); else make_stats_allocated += size; #endif return result; } char * xstrdup (const char *ptr) { char *result; #ifdef HAVE_STRDUP result = strdup (ptr); #else result = malloc (strlen (ptr) + 1); #endif if (result == 0) OUT_OF_MEM(); #ifdef CONFIG_WITH_MAKE_STATS make_stats_allocations++; if (make_expensive_statistics) make_stats_allocated += SIZE_OF_HEAP_BLOCK (result); else make_stats_allocated += strlen (ptr) + 1; #endif #ifdef HAVE_STRDUP return result; #else return strcpy (result, ptr); #endif } #endif /* HAVE_DMALLOC_H */ char * xstrndup (const char *str, unsigned int length) { char *result; #if defined(HAVE_STRNDUP) && !defined(KMK) result = strndup (str, length); if (result == 0) OUT_OF_MEM(); #else result = xmalloc (length + 1); if (length > 0) strncpy (result, str, length); result[length] = '\0'; #endif return result; } #ifndef CONFIG_WITH_OPTIMIZATION_HACKS /* This is really a reimplemntation of memchr, only slower. It's been replaced by a macro in the header file. */ /* Limited INDEX: Search through the string STRING, which ends at LIMIT, for the character C. Returns a pointer to the first occurrence, or nil if none is found. Like INDEX except that the string searched ends where specified instead of at the first null. */ char * lindex (const char *s, const char *limit, int c) { while (s < limit) if (*s++ == c) return (char *)(s - 1); return 0; } #endif /* CONFIG_WITH_OPTIMIZATION_HACKS */ /* Return the address of the first whitespace or null in the string S. */ char * end_of_token (const char *s) { #if 0 /* @todo def KMK */ for (;;) { unsigned char ch0, ch1, ch2, ch3; ch0 = *s; if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch0))) return (char *)s; ch1 = s[1]; if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch1))) return (char *)s + 1; ch2 = s[2]; if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch2))) return (char *)s + 2; ch3 = s[3]; if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch3))) return (char *)s + 3; s += 4; } #else END_OF_TOKEN (s); return (char *)s; #endif } /* Return the address of the first nonwhitespace or null in the string S. */ char * next_token (const char *s) { #if 0 /* @todo def KMK */ for (;;) { unsigned char ch0, ch1, ch2, ch3; ch0 = *s; if (MY_PREDICT_FALSE(!MY_IS_BLANK(ch0))) return (char *)s; ch1 = s[1]; if (MY_PREDICT_TRUE(!MY_IS_BLANK(ch1))) return (char *)s + 1; ch2 = s[2]; if (MY_PREDICT_FALSE(!MY_IS_BLANK(ch2))) return (char *)s + 2; ch3 = s[3]; if (MY_PREDICT_TRUE(!MY_IS_BLANK(ch3))) return (char *)s + 3; s += 4; } #else /* !KMK */ NEXT_TOKEN (s); return (char *)s; #endif /* !KMK */ } /* Find the next token in PTR; return the address of it, and store the length of the token into *LENGTHPTR if LENGTHPTR is not nil. Set *PTR to the end of the token, so this function can be called repeatedly in a loop. */ char * find_next_token (const char **ptr, unsigned int *lengthptr) { #ifdef KMK const char *p = *ptr; const char *e; /* skip blanks */ # if 0 /* a moderate version */ for (;; p++) { unsigned char ch = *p; if (!MY_IS_BLANK(ch)) { if (!ch) return NULL; break; } } # else /* (too) big unroll */ for (;; p += 4) { unsigned char ch0, ch1, ch2, ch3; ch0 = *p; if (MY_PREDICT_FALSE(!MY_IS_BLANK(ch0))) { if (!ch0) return NULL; break; } ch1 = p[1]; if (MY_PREDICT_TRUE(!MY_IS_BLANK(ch1))) { if (!ch1) return NULL; p += 1; break; } ch2 = p[2]; if (MY_PREDICT_FALSE(!MY_IS_BLANK(ch2))) { if (!ch2) return NULL; p += 2; break; } ch3 = p[3]; if (MY_PREDICT_TRUE(!MY_IS_BLANK(ch3))) { if (!ch3) return NULL; p += 3; break; } } # endif /* skip ahead until EOS or blanks. */ # if 0 /* a moderate version */ for (e = p + 1; ; e++) { unsigned char ch = *e; if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch))) break; } # else /* (too) big unroll */ for (e = p + 1; ; e += 4) { unsigned char ch0, ch1, ch2, ch3; ch0 = *e; if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch0))) break; ch1 = e[1]; if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch1))) { e += 1; break; } ch2 = e[2]; if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch2))) { e += 2; break; } ch3 = e[3]; if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch3))) { e += 3; break; } } # endif *ptr = e; if (lengthptr != 0) *lengthptr = e - p; return (char *)p; #else const char *p = next_token (*ptr); if (*p == '\0') return 0; *ptr = end_of_token (p); if (lengthptr != 0) *lengthptr = *ptr - p; return (char *)p; #endif } #ifdef KMK /* Finds the ends of the variable expansion starting at S, stopping at EOS if not found before. */ static char *find_end_of_variable_expansion (const char *s, char const *eos) { char const openparen = s[1]; char const closeparen = openparen == '(' ? ')' : '}'; int levels = 0; assert (s[0] == '$'); assert (s[1] == '(' || s[1] == '{'); s += 2; while (s != eos) { unsigned char ch = *s; if (ch != '\0') { if (ch != closeparen) { if (ch != openparen) { /* likely */ } else levels++; } else if (levels <= 1) break; else levels--; } else break; s++; } return (char *)s; } /* Same as find_next_token with two exception: - The string ends at EOS or '\0'. - We keep track of $() and ${}, allowing functions to be used. */ char * find_next_token_eos (const char **ptr, const char *eos, unsigned int *lengthptr) { const char *p = *ptr; const char *e; /* skip blanks */ while (p != eos) { unsigned char const ch = *p; unsigned int const map = stopchar_map[ch] & (MAP_NUL | MAP_BLANK); if (map & MAP_BLANK) p++; else if (!(map & MAP_NUL)) break; else return NULL; } if (p == eos) return NULL; /* skip ahead until EOS or blanks. */ e = p; while (e != eos) { unsigned char const ch = *e; unsigned int const map = stopchar_map[ch] & (MAP_NUL | MAP_BLANK | MAP_VARIABLE); if (!map) e++; /* likely */ /* Dollar can be escaped by duplication ($$) and when not, they need to be skipped over. */ else if (map & MAP_VARIABLE) { e++; if (&e[1] != eos) { unsigned ch2 = *e; if (ch2 == ch) e++; /* escaped */ else if (ch == '(' || ch == '}') e = find_end_of_variable_expansion (e - 1, eos); } else break; } else break; /* MAP_NUL or MAP_BLANK */ } *ptr = e; if (lengthptr != 0) *lengthptr = e - p; return (char *)p; } /* Same as find_next_token_eos but takes GNU make quoting into account, but without doing any unquoting like find_char_unquote & parse_file_seq. */ char * find_next_file_token (const char **ptr, const char *eos, unsigned int *lengthptr) { const char *p = *ptr; const char *e; /* skip blanks */ while (p != eos) { unsigned char const ch = *p; unsigned int const map = stopchar_map[ch] & (MAP_NUL | MAP_BLANK); if (map & MAP_BLANK) p++; else if (!(map & MAP_NUL)) break; else return NULL; } if (p == eos) return NULL; /* skip ahead until EOS or blanks. */ e = p; while (e != eos) { unsigned char const ch = *e; unsigned int const map = stopchar_map[ch] & (MAP_NUL | MAP_BLANK | MAP_VARIABLE); if (!map) e++; /* likely */ /* Dollar can be escaped by duplication ($$) and when not, they need to be skipped over. */ else if (map & MAP_VARIABLE) { e++; if (&e[1] != eos) { unsigned ch2 = *e; if (ch2 == ch) e++; /* escaped */ else if (ch == '(' || ch == '}') e = find_end_of_variable_expansion (e - 1, eos); } else break; } else if (map & MAP_NUL) break; /* A blank can be escaped using a backslash. */ else if (e[-1] != '\\') break; else { int slashes = 1; while (&e[-slashes] != p && e[-slashes - 1] == '\\') slashes++; if (slashes & 1) e++; else break; } } *ptr = e; if (lengthptr != 0) *lengthptr = e - p; return (char *)p; } #endif /* KMK */ /* Copy a chain of 'struct dep'. For 2nd expansion deps, dup the name. */ struct dep * copy_dep_chain (const struct dep *d) { struct dep *firstnew = 0; struct dep *lastnew = 0; while (d != 0) { #ifndef CONFIG_WITH_ALLOC_CACHES struct dep *c = xmalloc (sizeof (struct dep)); #else struct dep *c = alloccache_alloc(&dep_cache); #endif memcpy (c, d, sizeof (struct dep)); /** @todo KMK: Check if we need this duplication! */ if (c->need_2nd_expansion) c->name = xstrdup (c->name); c->next = 0; if (firstnew == 0) firstnew = lastnew = c; else lastnew = lastnew->next = c; d = d->next; } return firstnew; } /* Free a chain of struct nameseq. For struct dep chains use free_dep_chain. */ void free_ns_chain (struct nameseq *ns) { while (ns != 0) { struct nameseq *t = ns; ns = ns->next; #ifndef CONFIG_WITH_ALLOC_CACHES free_ns (t); #else alloccache_free (&nameseq_cache, t); #endif } } #ifdef CONFIG_WITH_ALLOC_CACHES void free_dep_chain (struct dep *d) { while (d != 0) { struct dep *tofree = d; d = d->next; alloccache_free (&dep_cache, tofree); } } void free_goal_chain (struct goaldep *g) { while (g != 0) { struct goaldep *tofree = g; g = g->next; alloccache_free (&dep_cache, tofree); } } #endif /* CONFIG_WITH_ALLOC_CACHES */ #if !HAVE_STRCASECMP && !HAVE_STRICMP && !HAVE_STRCMPI /* If we don't have strcasecmp() (from POSIX), or anything that can substitute for it, define our own version. */ int strcasecmp (const char *s1, const char *s2) { while (1) { int c1 = (int) *(s1++); int c2 = (int) *(s2++); if (isalpha (c1)) c1 = tolower (c1); if (isalpha (c2)) c2 = tolower (c2); if (c1 != '\0' && c1 == c2) continue; return (c1 - c2); } } #endif #if !HAVE_STRNCASECMP && !HAVE_STRNICMP && !HAVE_STRNCMPI /* If we don't have strncasecmp() (from POSIX), or anything that can substitute for it, define our own version. */ int strncasecmp (const char *s1, const char *s2, int n) { while (n-- > 0) { int c1 = (int) *(s1++); int c2 = (int) *(s2++); if (isalpha (c1)) c1 = tolower (c1); if (isalpha (c2)) c2 = tolower (c2); if (c1 != '\0' && c1 == c2) continue; return (c1 - c2); } return 0; } #endif #ifdef GETLOADAVG_PRIVILEGED #ifdef POSIX /* Hopefully if a system says it's POSIX.1 and has the setuid and setgid functions, they work as POSIX.1 says. Some systems (Alpha OSF/1 1.2, for example) which claim to be POSIX.1 also have the BSD setreuid and setregid functions, but they don't work as in BSD and only the POSIX.1 way works. */ #undef HAVE_SETREUID #undef HAVE_SETREGID #else /* Not POSIX. */ /* Some POSIX.1 systems have the seteuid and setegid functions. In a POSIX-like system, they are the best thing to use. However, some non-POSIX systems have them too but they do not work in the POSIX style and we must use setreuid and setregid instead. */ #undef HAVE_SETEUID #undef HAVE_SETEGID #endif /* POSIX. */ #ifndef HAVE_UNISTD_H extern int getuid (), getgid (), geteuid (), getegid (); extern int setuid (), setgid (); #ifdef HAVE_SETEUID extern int seteuid (); #else #ifdef HAVE_SETREUID extern int setreuid (); #endif /* Have setreuid. */ #endif /* Have seteuid. */ #ifdef HAVE_SETEGID extern int setegid (); #else #ifdef HAVE_SETREGID extern int setregid (); #endif /* Have setregid. */ #endif /* Have setegid. */ #endif /* No . */ /* Keep track of the user and group IDs for user- and make- access. */ static int user_uid = -1, user_gid = -1, make_uid = -1, make_gid = -1; #define access_inited (user_uid != -1) static enum { make, user } current_access; /* Under -d, write a message describing the current IDs. */ static void log_access (const char *flavor) { if (! ISDB (DB_JOBS)) return; /* All the other debugging messages go to stdout, but we write this one to stderr because it might be run in a child fork whose stdout is piped. */ fprintf (stderr, _("%s: user %lu (real %lu), group %lu (real %lu)\n"), flavor, (unsigned long) geteuid (), (unsigned long) getuid (), (unsigned long) getegid (), (unsigned long) getgid ()); fflush (stderr); } static void init_access (void) { #ifndef VMS user_uid = getuid (); user_gid = getgid (); make_uid = geteuid (); make_gid = getegid (); /* Do these ever fail? */ if (user_uid == -1 || user_gid == -1 || make_uid == -1 || make_gid == -1) pfatal_with_name ("get{e}[gu]id"); log_access (_("Initialized access")); current_access = make; #endif } #endif /* GETLOADAVG_PRIVILEGED */ /* Give the process appropriate permissions for access to user data (i.e., to stat files, or to spawn a child process). */ void user_access (void) { #ifdef GETLOADAVG_PRIVILEGED if (!access_inited) init_access (); if (current_access == user) return; /* We are in "make access" mode. This means that the effective user and group IDs are those of make (if it was installed setuid or setgid). We now want to set the effective user and group IDs to the real IDs, which are the IDs of the process that exec'd make. */ #ifdef HAVE_SETEUID /* Modern systems have the seteuid/setegid calls which set only the effective IDs, which is ideal. */ if (seteuid (user_uid) < 0) pfatal_with_name ("user_access: seteuid"); #else /* Not HAVE_SETEUID. */ #ifndef HAVE_SETREUID /* System V has only the setuid/setgid calls to set user/group IDs. There is an effective ID, which can be set by setuid/setgid. It can be set (unless you are root) only to either what it already is (returned by geteuid/getegid, now in make_uid/make_gid), the real ID (return by getuid/getgid, now in user_uid/user_gid), or the saved set ID (what the effective ID was before this set-ID executable (make) was exec'd). */ if (setuid (user_uid) < 0) pfatal_with_name ("user_access: setuid"); #else /* HAVE_SETREUID. */ /* In 4BSD, the setreuid/setregid calls set both the real and effective IDs. They may be set to themselves or each other. So you have two alternatives at any one time. If you use setuid/setgid, the effective will be set to the real, leaving only one alternative. Using setreuid/setregid, however, you can toggle between your two alternatives by swapping the values in a single setreuid or setregid call. */ if (setreuid (make_uid, user_uid) < 0) pfatal_with_name ("user_access: setreuid"); #endif /* Not HAVE_SETREUID. */ #endif /* HAVE_SETEUID. */ #ifdef HAVE_SETEGID if (setegid (user_gid) < 0) pfatal_with_name ("user_access: setegid"); #else #ifndef HAVE_SETREGID if (setgid (user_gid) < 0) pfatal_with_name ("user_access: setgid"); #else if (setregid (make_gid, user_gid) < 0) pfatal_with_name ("user_access: setregid"); #endif #endif current_access = user; log_access (_("User access")); #endif /* GETLOADAVG_PRIVILEGED */ } /* Give the process appropriate permissions for access to make data (i.e., the load average). */ void make_access (void) { #ifdef GETLOADAVG_PRIVILEGED if (!access_inited) init_access (); if (current_access == make) return; /* See comments in user_access, above. */ #ifdef HAVE_SETEUID if (seteuid (make_uid) < 0) pfatal_with_name ("make_access: seteuid"); #else #ifndef HAVE_SETREUID if (setuid (make_uid) < 0) pfatal_with_name ("make_access: setuid"); #else if (setreuid (user_uid, make_uid) < 0) pfatal_with_name ("make_access: setreuid"); #endif #endif #ifdef HAVE_SETEGID if (setegid (make_gid) < 0) pfatal_with_name ("make_access: setegid"); #else #ifndef HAVE_SETREGID if (setgid (make_gid) < 0) pfatal_with_name ("make_access: setgid"); #else if (setregid (user_gid, make_gid) < 0) pfatal_with_name ("make_access: setregid"); #endif #endif current_access = make; log_access (_("Make access")); #endif /* GETLOADAVG_PRIVILEGED */ } /* Give the process appropriate permissions for a child process. This is like user_access, but you can't get back to make_access. */ void child_access (void) { #ifdef GETLOADAVG_PRIVILEGED if (!access_inited) abort (); /* Set both the real and effective UID and GID to the user's. They cannot be changed back to make's. */ #ifndef HAVE_SETREUID if (setuid (user_uid) < 0) pfatal_with_name ("child_access: setuid"); #else if (setreuid (user_uid, user_uid) < 0) pfatal_with_name ("child_access: setreuid"); #endif #ifndef HAVE_SETREGID if (setgid (user_gid) < 0) pfatal_with_name ("child_access: setgid"); #else if (setregid (user_gid, user_gid) < 0) pfatal_with_name ("child_access: setregid"); #endif log_access (_("Child access")); #endif /* GETLOADAVG_PRIVILEGED */ } #ifdef NEED_GET_PATH_MAX unsigned int get_path_max (void) { static unsigned int value; if (value == 0) { long int x = pathconf ("/", _PC_PATH_MAX); if (x > 0) value = x; else return MAXPATHLEN; } return value; } #endif #ifdef CONFIG_WITH_PRINT_STATS_SWITCH /* Print heap statistics if supported by the platform. */ void print_heap_stats (void) { /* Darwin / Mac OS X */ # ifdef __APPLE__ malloc_statistics_t s; malloc_zone_statistics (NULL, &s); printf (_("\n# CRT Heap: %u bytes in use, in %u blocks, avg %u bytes/block\n"), (unsigned)s.size_in_use, (unsigned)s.blocks_in_use, s.blocks_in_use ? (unsigned)(s.size_in_use / s.blocks_in_use) : 0); printf (_("# %u bytes max in use (high water mark)\n"), (unsigned)s.max_size_in_use); printf (_("# %u bytes reserved, %u bytes free (estimate)\n"), (unsigned)s.size_allocated, (unsigned)(s.size_allocated - s.size_in_use)); # endif /* __APPLE__ */ /* MSC / Windows */ # ifdef _MSC_VER unsigned int blocks_used = 0; unsigned int bytes_used = 0; unsigned int blocks_avail = 0; unsigned int bytes_avail = 0; _HEAPINFO hinfo; memset (&hinfo, '\0', sizeof (hinfo)); while (_heapwalk(&hinfo) == _HEAPOK) { if (hinfo._useflag == _USEDENTRY) { blocks_used++; bytes_used += hinfo._size; } else { blocks_avail++; bytes_avail += hinfo._size; } } printf (_("\n# CRT Heap: %u bytes in use, in %u blocks, avg %u bytes/block\n"), bytes_used, blocks_used, blocks_used ? bytes_used / blocks_used : 0); printf (_("# %u bytes avail, in %u blocks, avg %u bytes/block\n"), bytes_avail, blocks_avail, blocks_avail ? bytes_avail / blocks_avail : 0); # endif /* _MSC_VER */ /* Darwin Libc sources indicates that something like this may be found in GLIBC, however, it's not in any current one... */ # if 0 /* ??? */ struct mstats m; m = mstats(); printf (_("\n# CRT Heap: %zu blocks / %zu bytes in use, %zu blocks / %zu bytes free\n"), m.chunks_used, m.bytes_used, m.chunks_free, m.bytes_free); printf (_("# %zu bytes reserved\n"), m.bytes_total); # endif /* ??? */ /* XVID2/XPG mallinfo (displayed per GLIBC documentation). */ # if defined(__GLIBC__) || defined(HAVE_MALLINFO) struct mallinfo m; m = mallinfo(); printf (_("\n# CRT Heap: %d bytes in use, %d bytes free\n"), m.uordblks, m.fordblks); printf (_("# # free chunks=%d, # fastbin blocks=%d\n"), m.ordblks, m.smblks); printf (_("# # mapped regions=%d, space in mapped regions=%d\n"), m.hblks, m.hblkhd); printf (_("# non-mapped space allocated from system=%d\n"), m.arena); printf (_("# maximum total allocated space=%d\n"), m.usmblks); printf (_("# top-most releasable space=%d\n"), m.keepcost); # endif /* __GLIBC__ || HAVE_MALLINFO */ # ifdef CONFIG_WITH_MAKE_STATS printf(_("# %lu malloc calls, %lu realloc calls\n"), make_stats_allocations, make_stats_reallocations); printf(_("# %lu MBs alloc sum, not counting freed, add pinch of salt\n"), /* XXX: better wording */ make_stats_allocated / (1024*1024)); # endif /* XXX: windows */ } #endif /* CONFIG_WITH_PRINT_STATS_SWITCH */ #if defined(CONFIG_WITH_PRINT_TIME_SWITCH) || defined(CONFIG_WITH_KMK_BUILTIN_STATS) /* Get a nanosecond timestamp, from a monotonic time source if possible. Returns -1 after calling error() on failure. */ big_int nano_timestamp (void) { big_int ts; #if defined (WINDOWS32) static int s_state = -1; static LARGE_INTEGER s_freq; if (s_state == -1) s_state = QueryPerformanceFrequency (&s_freq); if (s_state) { LARGE_INTEGER pc; if (!QueryPerformanceCounter (&pc)) { s_state = 0; return nano_timestamp (); } ts = (big_int)((long double)pc.QuadPart / (long double)s_freq.QuadPart * 1000000000); } else { /* fall back to low resolution system time. */ LARGE_INTEGER bigint; FILETIME ft = {0,0}; GetSystemTimeAsFileTime (&ft); bigint.u.LowPart = ft.dwLowDateTime; bigint.u.HighPart = ft.dwLowDateTime; ts = bigint.QuadPart * 100; } #elif HAVE_GETTIMEOFDAY /* FIXME: Linux and others have the realtime clock_* api, detect and use it. */ struct timeval tv; if (!gettimeofday (&tv, NULL)) ts = (big_int)tv.tv_sec * 1000000000 + tv.tv_usec * 1000; else { O (error, NILF, _("gettimeofday failed")); ts = -1; } #else # error "PORTME" #endif return ts; } /* Formats the elapsed time (nano seconds) in the manner easiest to read, with millisecond percision for larger numbers. */ int format_elapsed_nano (char *buf, size_t size, big_int ts) { unsigned sz; if (ts < 1000) sz = sprintf (buf, "%uns", (unsigned)ts); else if (ts < 100000) sz = sprintf (buf, "%u.%03uus", (unsigned)(ts / 1000), (unsigned)(ts % 1000)); else { ts /= 1000; if (ts < 1000) sz = sprintf (buf, "%uus", (unsigned)ts); else if (ts < 100000) sz = sprintf (buf, "%u.%03ums", (unsigned)(ts / 1000), (unsigned)(ts % 1000)); else { ts /= 1000; if (ts < BIG_INT_C(60000)) sz = sprintf (buf, "%u.%03us", (unsigned)(ts / 1000), (unsigned)(ts % 1000)); else sz = sprintf (buf, "%um%u.%03us", (unsigned)( ts / BIG_INT_C(60000)), (unsigned)((ts % BIG_INT_C(60000)) / 1000), (unsigned)((ts % BIG_INT_C(60000)) % 1000)); } } if (sz >= size) ONN (fatal, NILF, _("format_elapsed_nano buffer overflow: %u written, %lu buffer"), sz, (unsigned long)size); return sz; } #endif /* CONFIG_WITH_PRINT_TIME_SWITCH || defined(CONFIG_WITH_KMK_BUILTIN_STATS) */