1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
# A kind of clone of dc geared towards binary operations.
# by Paolo Bonzini
#
# commands available:
# conversion commands
# b convert decimal to binary
# d convert binary to decimal
#
# arithmetic commands
# < shift left binary by decimal number of bits (11 3< gives 11000)
# > shift right binary by decimal number of bits (1011 2> gives 10)
# & binary AND (between two binary operands)
# | binary OR (between two binary operands)
# ^ binary XOR (between two binary operands)
# ~ binary NOT (between one binary operand)
#
# stack manipulation commands
# c clear stack
# P pop stack top
# D duplicate stack top
# x exchange top two elements
# r rotate stack counter-clockwise (second element becomes first)
# R rotate stack clockwise (last element becomes first)
#
# other commands
# l print stack (stack top is first)
# p print stack top
# q quit, print stack top if any (cq is quiet quit)
#
# The only shortcoming is that you'd better not attempt conversions of
# values above 1000 or so.
#
# This version keeps the stack and the current command in hold space and
# the commands in pattern space; it is just a bit slower than binary2.sed
# but more size optimized for broken seds which have a 199-command limit
# (though binary2.sed does not have this much).
#
# --------------------------------------------------------------------------
# This was actually used in a one-disk distribution of Linux to compute
# netmasks as follows (1 parameter => compute netmask e.g. 24 becomes
# 255.255.255.0; 2 parameters => given host address and netmask compute
# network and broadcast addresses):
#
# if [ $# = 1 ]; then
# OUTPUT='$1.$2.$3.$4'
# set 255.255.255.255 $1
# else
# OUTPUT='$1.$2.$3.$4 $5.$6.$7.$8'
# fi
#
# if [ `expr $2 : ".*\\."` -gt 0 ]; then
# MASK="$2 br b8<r b16<r b24< R|R|R|"
# else
# MASK="$2b 31b ^d D
# 11111111111111111111111111111111 x>1> x<1<"
# fi
#
# set `echo "$1 br b8<r b16<r b24< R|R|R| D # Load address
# $MASK D ~r # Load mask
#
# & DDD 24>dpP 16>11111111& dpP 8>11111111& dpP 11111111& dpP
# | DDD 24>dpP 16>11111111& dpP 8>11111111& dpP 11111111& dpP
# " | sed -f binary.sed`
#
# eval echo $OUTPUT
# --------------------------------------------------------------------------
:cmd
s/^[\n\t ]*//
s/^#.*//
/^$/ {
$b quit
N
t cmd
}
/^[0-9][0-9]*/ {
G
h
s/^[0-9][0-9]* *\([^\n]*\).*/\1/
x
s/^\([0-9][0-9]*\)[^\n]*/\1/
x
t cmd
}
/^[^DPxrRcplqbd&|^~<>]/bbad
H
x
s/\(\n[^\n]\)[^\n]*$/\1/
/D$/ s/^[^\n]*\n/&&/
/P$/ s/^[^\n]*\n//
/x$/ s/^\([^\n]*\n\)\([^\n]*\n\)/\2\1/
/r$/ s/^\([^\n]*\n\)\(.*\)\(..\)/\2\1\3/
/R$/ s/^\(.*\n\)\([^\n]*\n\)\(..\)/\2\1\3/
/c$/ s/.*//
/p$/ P
/l$/ {
s/...$//
p
t cmd
}
/q$/ {
:quit
/.../P
d
}
/b$/ {
# Decimal to binary via analog form
s/^\([^\n]*\)/-&;9876543210aaaaaaaaa/
:d2bloop1
s/\(a*\)-\(.\)\([^;]*;[0-9]*\2.\{9\}\(a*\)\)/\1\1\1\1\1\1\1\1\1\1\4-\3/
t d2bloop1
s/-;9876543210aaaaaaaaa/;a01!/
:d2bloop2
s/\(a*\)\1\(a\{0,1\}\)\(;\2.\(.\)[^!]*!\)/\1\3\4/
/^a/b d2bloop2
s/[^!]*!//
}
/d$/ {
# Binary to decimal via analog form
s/^\([^\n]*\)/-&;10a/
:b2dloop1
s/\(a*\)-\(.\)\([^;]*;[0-9]*\2.\(a*\)\)/\1\1\4-\3/
t b2dloop1
s/-;10a/;aaaaaaaaa0123456789!/
:b2dloop2
s/\(a*\)\1\1\1\1\1\1\1\1\1\(a\{0,9\}\)\(;\2.\{9\}\(.\)[^!]*!\)/\1\3\4/
/^a/b b2dloop2
s/[^!]*!//
}
/&$/ {
# Binary AND
s/\([^\n]*\)\n\([^\n]*\)/-\1-\2-111 01000/
:andloop
s/\([^-]*\)-\([^-]*\)\([^-]\)-\([^-]*\)\([^-]\)-\([01 ]*\3\5\([01]\)\)/\7\1-\2-\4-\6/
t andloop
s/^0*\([^-]*\)-[^\n]*/\1/
s/^\n/0&/
}
/\^$/ {
# Binary XOR
s/\([^\n]*\)\n\([^\n]*\)/-\1-\2-000 01101/
b orloop
}
/|$/ {
# Binary OR
s/\([^\n]*\)\n\([^\n]*\)/-\1-\2-000 10111/
:orloop
s/\([^-]*\)-\([^-]*\)\([^-]\)-\([^-]*\)\([^-]\)-\([01 ]*\3\5\([01]\)\)/\7\1-\2-\4-\6/
t orloop
s/\([^-]*\)-\([^-]*\)-\([^-]*\)-[^\n]*/\2\3\1/
}
/~$/ {
# Binary NOT
s/^\(.\)\([^\n]*\n\)/\1-010-\2/
:notloop
s/\(.\)-0\{0,1\}\1\(.\)0\{0,1\}-\([01\n]\)/\2\3-010-/
t notloop
# If result is 00001..., \3 does not match (it looks for -10) and we just
# remove the table and leading zeros. If result is 0000...0, \3 matches
# (it looks for -0), \4 is a zero and we leave a lone zero as top of the
# stack.
s/0*\(1\{0,1\}\)\([^-]*\)-\(\1\(0\)\)\{0,1\}[^-]*-/\4\1\2/
}
/<$/ {
# Left shift, convert to analog and add a binary digit for each analog digit
s/^\([^\n]*\)/-&;9876543210aaaaaaaaa/
:lshloop1
s/\(a*\)-\(.\)\([^;]*;[0-9]*\2.\{9\}\(a*\)\)/\1\1\1\1\1\1\1\1\1\1\4-\3/
t lshloop1
s/^\(a*\)-;9876543210aaaaaaaaa\n\([^\n]*\)/\2\1/
s/a/0/g
}
/>$/ {
# Right shift, convert to analog and remove a binary digit for each analog digit
s/^\([^\n]*\)/-&;9876543210aaaaaaaaa/
:rshloop1
s/\(a*\)-\(.\)\([^;]*;[0-9]*\2.\{9\}\(a*\)\)/\1\1\1\1\1\1\1\1\1\1\4-\3/
t rshloop1
s/^\(a*\)-;9876543210aaaaaaaaa\n\([^\n]*\)/\2\1/
:rshloop2
s/.a//
s/^aa*/0/
/a\n/b rshloop2
}
s/..$//
x
:bad
s/^.//
tcmd
|