summaryrefslogtreecommitdiffstats
path: root/lib/utils.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/utils.c')
-rw-r--r--lib/utils.c1398
1 files changed, 1398 insertions, 0 deletions
diff --git a/lib/utils.c b/lib/utils.c
new file mode 100644
index 0000000..8b7e127
--- /dev/null
+++ b/lib/utils.c
@@ -0,0 +1,1398 @@
+/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
+ * SPDX-License-Identifier: GPL-3.0-or-later
+ */
+
+#include "lib/utils.h"
+
+#include "contrib/cleanup.h"
+#include "contrib/ucw/mempool.h"
+#include "kresconfig.h"
+#include "lib/defines.h"
+#include "lib/generic/array.h"
+#include "lib/module.h"
+#include "lib/resolve.h"
+
+#include <libknot/descriptor.h>
+#include <libknot/dname.h>
+#include <libknot/rrset-dump.h>
+#include <libknot/rrtype/rrsig.h>
+#include <libknot/version.h>
+#include <uv.h>
+
+#include <arpa/inet.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/time.h>
+#include <sys/stat.h>
+#include <sys/statvfs.h>
+#include <sys/un.h>
+
+struct __attribute__((packed)) kr_sockaddr_key {
+ int family;
+};
+
+struct __attribute__((packed)) kr_sockaddr_in_key {
+ int family;
+ char address[sizeof(((struct sockaddr_in *) NULL)->sin_addr)];
+ uint16_t port;
+};
+
+struct __attribute__((packed)) kr_sockaddr_in6_key {
+ int family;
+ char address[sizeof(((struct sockaddr_in6 *) NULL)->sin6_addr)];
+ uint32_t scope;
+ uint16_t port;
+};
+
+struct __attribute((packed)) kr_sockaddr_un_key {
+ int family;
+ char path[sizeof(((struct sockaddr_un *) NULL)->sun_path)];
+};
+
+extern inline uint64_t kr_rand_bytes(unsigned int size);
+
+/* Logging & debugging */
+bool kr_dbg_assertion_abort = DBG_ASSERTION_ABORT;
+int kr_dbg_assertion_fork = DBG_ASSERTION_FORK;
+
+void kr_fail(bool is_fatal, const char *expr, const char *func, const char *file, int line)
+{
+ const int errno_orig = errno;
+ if (is_fatal)
+ kr_log_crit(SYSTEM, "requirement \"%s\" failed in %s@%s:%d\n", expr, func, file, line);
+ else
+ kr_log_error(SYSTEM, "assertion \"%s\" failed in %s@%s:%d\n", expr, func, file, line);
+
+ if (is_fatal || (kr_dbg_assertion_abort && !kr_dbg_assertion_fork))
+ abort();
+ else if (!kr_dbg_assertion_abort || !kr_dbg_assertion_fork)
+ goto recover;
+ // We want to fork and abort the child, unless rate-limited.
+ static uint64_t limited_until = 0;
+ const uint64_t now = kr_now();
+ if (now < limited_until)
+ goto recover;
+ if (kr_dbg_assertion_fork > 0) {
+ // Add jitter +- 25%; in other words: 75% + uniform(0,50%).
+ // Motivation: if a persistent problem starts happening, desynchronize
+ // coredumps from different instances as they're not cheap.
+ limited_until = now + kr_dbg_assertion_fork * 3 / 4
+ + kr_dbg_assertion_fork * kr_rand_bytes(1) / 256 / 2;
+ }
+ if (fork() == 0)
+ abort();
+recover:
+ errno = errno_orig;
+}
+
+/*
+ * Macros.
+ */
+#define strlen_safe(x) ((x) ? strlen(x) : 0)
+
+/**
+ * @internal Convert 16bit unsigned to string, keeps leading spaces.
+ * @note Always fills dst length = 5
+ * Credit: http://computer-programming-forum.com/46-asm/7aa4b50bce8dd985.htm
+ */
+static inline int u16tostr(uint8_t *dst, uint16_t num)
+{
+ uint32_t tmp = num * (((1 << 28) / 10000) + 1) - (num / 4);
+ for(size_t i = 0; i < 5; i++) {
+ dst[i] = '0' + (char) (tmp >> 28);
+ tmp = (tmp & 0x0fffffff) * 10;
+ }
+ return 5;
+}
+
+char* kr_strcatdup(unsigned n, ...)
+{
+ if (n < 1) {
+ return NULL;
+ }
+
+ /* Calculate total length */
+ size_t total_len = 0;
+ va_list vl;
+ va_start(vl, n);
+ for (unsigned i = 0; i < n; ++i) {
+ char *item = va_arg(vl, char *);
+ const size_t new_len = total_len + strlen_safe(item);
+ if (unlikely(new_len < total_len)) {
+ va_end(vl);
+ return NULL;
+ }
+ total_len = new_len;
+ }
+ va_end(vl);
+
+ /* Allocate result and fill */
+ char *result = NULL;
+ if (total_len > 0) {
+ if (unlikely(total_len == SIZE_MAX)) return NULL;
+ result = malloc(total_len + 1);
+ }
+ if (result) {
+ char *stream = result;
+ va_start(vl, n);
+ for (unsigned i = 0; i < n; ++i) {
+ char *item = va_arg(vl, char *);
+ if (item) {
+ size_t len = strlen(item);
+ memcpy(stream, item, len + 1);
+ stream += len;
+ }
+ }
+ va_end(vl);
+ }
+
+ return result;
+}
+
+char * kr_absolutize_path(const char *dirname, const char *fname)
+{
+ if (kr_fails_assert(dirname && fname)) {
+ errno = EINVAL;
+ return NULL;
+ }
+ char *result;
+ int aret;
+ if (dirname[0] == '/') { // absolute path is easier
+ aret = asprintf(&result, "%s/%s", dirname, fname);
+ } else { // relative path, but don't resolve symlinks
+ char buf[PATH_MAX];
+ const char *cwd = getcwd(buf, sizeof(buf));
+ if (!cwd)
+ return NULL; // errno has been set already
+ if (strcmp(dirname, ".") == 0) {
+ // get rid of one common case of extraneous "./"
+ aret = asprintf(&result, "%s/%s", cwd, fname);
+ } else {
+ aret = asprintf(&result, "%s/%s/%s", cwd, dirname, fname);
+ }
+ }
+ if (aret > 0)
+ return result;
+ errno = -aret;
+ return NULL;
+}
+
+int kr_memreserve(void *baton, void **mem, size_t elm_size, size_t want, size_t *have)
+{
+ if (*have >= want) {
+ return 0;
+ } else {
+ knot_mm_t *pool = baton;
+ size_t next_size = array_next_count(elm_size, want, *have);
+ void *mem_new = mm_alloc(pool, next_size * elm_size);
+ if (mem_new != NULL) {
+ if (*mem) { /* 0-length memcpy from NULL isn't technically OK */
+ memcpy(mem_new, *mem, (*have)*(elm_size));
+ mm_free(pool, *mem);
+ }
+ *mem = mem_new;
+ *have = next_size;
+ return 0;
+ }
+ }
+ return -1;
+}
+
+static int pkt_recycle(knot_pkt_t *pkt, bool keep_question)
+{
+ /* The maximum size of a header + query name + (class, type) */
+ uint8_t buf[KNOT_WIRE_HEADER_SIZE + KNOT_DNAME_MAXLEN + 2 * sizeof(uint16_t)];
+
+ /* Save header and the question section */
+ size_t base_size = KNOT_WIRE_HEADER_SIZE;
+ if (keep_question) {
+ base_size += knot_pkt_question_size(pkt);
+ }
+ if (kr_fails_assert(base_size <= sizeof(buf))) return kr_error(EINVAL);
+ memcpy(buf, pkt->wire, base_size);
+
+ /* Clear the packet and its auxiliary structures */
+ knot_pkt_clear(pkt);
+
+ /* Restore header and question section and clear counters */
+ pkt->size = base_size;
+ memcpy(pkt->wire, buf, base_size);
+ knot_wire_set_qdcount(pkt->wire, keep_question);
+ knot_wire_set_ancount(pkt->wire, 0);
+ knot_wire_set_nscount(pkt->wire, 0);
+ knot_wire_set_arcount(pkt->wire, 0);
+
+ /* Reparse question */
+ knot_pkt_begin(pkt, KNOT_ANSWER);
+ return knot_pkt_parse_question(pkt);
+}
+
+int kr_pkt_recycle(knot_pkt_t *pkt)
+{
+ return pkt_recycle(pkt, false);
+}
+
+int kr_pkt_clear_payload(knot_pkt_t *pkt)
+{
+ return pkt_recycle(pkt, knot_wire_get_qdcount(pkt->wire));
+}
+
+int kr_pkt_put(knot_pkt_t *pkt, const knot_dname_t *name, uint32_t ttl,
+ uint16_t rclass, uint16_t rtype, const uint8_t *rdata, uint16_t rdlen)
+{
+ /* LATER(opt.): there's relatively lots of copying, but ATM kr_pkt_put()
+ * isn't considered to be used in any performance-critical parts (just lua). */
+ if (!pkt || !name) {
+ return kr_error(EINVAL);
+ }
+ /* Create empty RR */
+ knot_rrset_t rr;
+ knot_rrset_init(&rr, knot_dname_copy(name, &pkt->mm), rtype, rclass, ttl);
+ /* Create RDATA */
+ knot_rdata_t *rdata_tmp = mm_alloc(&pkt->mm, offsetof(knot_rdata_t, data) + rdlen);
+ knot_rdata_init(rdata_tmp, rdlen, rdata);
+ knot_rdataset_add(&rr.rrs, rdata_tmp, &pkt->mm);
+ mm_free(&pkt->mm, rdata_tmp); /* we're always on mempool for now, but whatever */
+ /* Append RR */
+ return knot_pkt_put(pkt, 0, &rr, KNOT_PF_FREE);
+}
+
+void kr_pkt_make_auth_header(knot_pkt_t *pkt)
+{
+ if (kr_fails_assert(pkt && pkt->wire)) return;
+ knot_wire_clear_ad(pkt->wire);
+ knot_wire_set_aa(pkt->wire);
+}
+
+const char *kr_inaddr(const struct sockaddr *addr)
+{
+ if (!addr) {
+ return NULL;
+ }
+ switch (addr->sa_family) {
+ case AF_INET: return (const char *)&(((const struct sockaddr_in *)addr)->sin_addr);
+ case AF_INET6: return (const char *)&(((const struct sockaddr_in6 *)addr)->sin6_addr);
+ default: return NULL;
+ }
+}
+
+int kr_inaddr_family(const struct sockaddr *addr)
+{
+ if (!addr)
+ return AF_UNSPEC;
+ return addr->sa_family;
+}
+
+int kr_inaddr_len(const struct sockaddr *addr)
+{
+ if (!addr) {
+ return kr_error(EINVAL);
+ }
+ return kr_family_len(addr->sa_family);
+}
+
+int kr_sockaddr_len(const struct sockaddr *addr)
+{
+ if (!addr) {
+ return kr_error(EINVAL);
+ }
+ switch (addr->sa_family) {
+ case AF_INET: return sizeof(struct sockaddr_in);
+ case AF_INET6: return sizeof(struct sockaddr_in6);
+ case AF_UNIX: return sizeof(struct sockaddr_un);
+ default: return kr_error(EINVAL);
+ }
+}
+
+ssize_t kr_sockaddr_key(struct kr_sockaddr_key_storage *dst,
+ const struct sockaddr *addr)
+{
+ kr_require(addr);
+
+ switch (addr->sa_family) {
+ case AF_INET:;
+ const struct sockaddr_in *addr_in = (const struct sockaddr_in *) addr;
+ struct kr_sockaddr_in_key *inkey = (struct kr_sockaddr_in_key *) dst;
+ inkey->family = AF_INET;
+ memcpy(&inkey->address, &addr_in->sin_addr, sizeof(inkey->address));
+ memcpy(&inkey->port, &addr_in->sin_port, sizeof(inkey->port));
+ return sizeof(*inkey);
+
+ case AF_INET6:;
+ const struct sockaddr_in6 *addr_in6 = (const struct sockaddr_in6 *) addr;
+ struct kr_sockaddr_in6_key *in6key = (struct kr_sockaddr_in6_key *) dst;
+ in6key->family = AF_INET6;
+ memcpy(&in6key->address, &addr_in6->sin6_addr, sizeof(in6key->address));
+ memcpy(&in6key->port, &addr_in6->sin6_port, sizeof(in6key->port));
+ if (kr_sockaddr_link_local(addr))
+ memcpy(&in6key->scope, &addr_in6->sin6_scope_id, sizeof(in6key->scope));
+ else
+ in6key->scope = 0;
+ return sizeof(*in6key);
+
+ case AF_UNIX:;
+ const struct sockaddr_un *addr_un = (const struct sockaddr_un *) addr;
+ struct kr_sockaddr_un_key *unkey = (struct kr_sockaddr_un_key *) dst;
+ unkey->family = AF_UNIX;
+ size_t pathlen = strnlen(addr_un->sun_path, sizeof(unkey->path));
+ if (pathlen == 0 || pathlen >= sizeof(unkey->path)) {
+ /* Abstract sockets are not supported - we would need
+ * to also supply a length value for the abstract
+ * pathname.
+ *
+ * UNIX socket path should be null-terminated.
+ *
+ * See unix(7). */
+ return kr_error(EINVAL);
+ }
+
+ pathlen += 1; /* Include null-terminator */
+ strncpy(unkey->path, addr_un->sun_path, pathlen);
+ return offsetof(struct kr_sockaddr_un_key, path) + pathlen;
+
+ default:
+ return kr_error(EAFNOSUPPORT);
+ }
+}
+
+struct sockaddr *kr_sockaddr_from_key(struct sockaddr_storage *dst,
+ const char *key)
+{
+ kr_require(key);
+
+ switch (((struct kr_sockaddr_key *) key)->family) {
+ case AF_INET:;
+ const struct kr_sockaddr_in_key *inkey = (struct kr_sockaddr_in_key *) key;
+ struct sockaddr_in *addr_in = (struct sockaddr_in *) dst;
+ addr_in->sin_family = AF_INET;
+ memcpy(&addr_in->sin_addr, &inkey->address, sizeof(inkey->address));
+ memcpy(&addr_in->sin_port, &inkey->port, sizeof(inkey->port));
+ return (struct sockaddr *) addr_in;
+
+ case AF_INET6:;
+ const struct kr_sockaddr_in6_key *in6key = (struct kr_sockaddr_in6_key *) key;
+ struct sockaddr_in6 *addr_in6 = (struct sockaddr_in6 *) dst;
+ addr_in6->sin6_family = AF_INET6;
+ memcpy(&addr_in6->sin6_addr, &in6key->address, sizeof(in6key->address));
+ memcpy(&addr_in6->sin6_port, &in6key->port, sizeof(in6key->port));
+ memcpy(&addr_in6->sin6_scope_id, &in6key->scope, sizeof(in6key->scope));
+ return (struct sockaddr *) addr_in6;
+
+ case AF_UNIX:;
+ const struct kr_sockaddr_un_key *unkey = (struct kr_sockaddr_un_key *) key;
+ struct sockaddr_un *addr_un = (struct sockaddr_un *) dst;
+ addr_un->sun_family = AF_UNIX;
+ strncpy(addr_un->sun_path, unkey->path, sizeof(unkey->path));
+ return (struct sockaddr *) addr_un;
+
+ default:
+ kr_assert(false);
+ return NULL;
+ }
+}
+
+bool kr_sockaddr_key_same_addr(const char *key_a, const char *key_b)
+{
+ const struct kr_sockaddr_in6_key *kkey_a = (struct kr_sockaddr_in6_key *) key_a;
+ const struct kr_sockaddr_in6_key *kkey_b = (struct kr_sockaddr_in6_key *) key_b;
+
+ if (kkey_a->family != kkey_b->family)
+ return false;
+
+ ptrdiff_t offset;
+ switch (kkey_a->family) {
+ case AF_INET:
+ offset = offsetof(struct kr_sockaddr_in_key, address);
+ break;
+ case AF_INET6:
+ if (unlikely(kkey_a->scope != kkey_b->scope))
+ return false;
+ offset = offsetof(struct kr_sockaddr_in6_key, address);
+ break;
+
+ case AF_UNIX:;
+ const struct kr_sockaddr_un_key *unkey_a =
+ (struct kr_sockaddr_un_key *) key_a;
+ const struct kr_sockaddr_un_key *unkey_b =
+ (struct kr_sockaddr_un_key *) key_b;
+
+ return strncmp(unkey_a->path, unkey_b->path,
+ sizeof(unkey_a->path)) == 0;
+
+ default:
+ kr_assert(false);
+ return false;
+ }
+
+ size_t len = kr_family_len(kkey_a->family);
+ return memcmp(key_a + offset, key_b + offset, len) == 0;
+}
+
+int kr_sockaddr_cmp(const struct sockaddr *left, const struct sockaddr *right)
+{
+ if (!left || !right) {
+ return kr_error(EINVAL);
+ }
+ if (left->sa_family != right->sa_family) {
+ return kr_error(EFAULT);
+ }
+ if (left->sa_family == AF_INET) {
+ struct sockaddr_in *left_in = (struct sockaddr_in *)left;
+ struct sockaddr_in *right_in = (struct sockaddr_in *)right;
+ if (left_in->sin_addr.s_addr != right_in->sin_addr.s_addr) {
+ return kr_error(EFAULT);
+ }
+ if (left_in->sin_port != right_in->sin_port) {
+ return kr_error(EFAULT);
+ }
+ } else if (left->sa_family == AF_INET6) {
+ struct sockaddr_in6 *left_in6 = (struct sockaddr_in6 *)left;
+ struct sockaddr_in6 *right_in6 = (struct sockaddr_in6 *)right;
+ if (memcmp(&left_in6->sin6_addr, &right_in6->sin6_addr,
+ sizeof(struct in6_addr)) != 0) {
+ return kr_error(EFAULT);
+ }
+ if (left_in6->sin6_port != right_in6->sin6_port) {
+ return kr_error(EFAULT);
+ }
+ } else {
+ return kr_error(ENOENT);
+ }
+ return kr_ok();
+}
+
+uint16_t kr_inaddr_port(const struct sockaddr *addr)
+{
+ if (!addr) {
+ return 0;
+ }
+ switch (addr->sa_family) {
+ case AF_INET: return ntohs(((const struct sockaddr_in *)addr)->sin_port);
+ case AF_INET6: return ntohs(((const struct sockaddr_in6 *)addr)->sin6_port);
+ default: return 0;
+ }
+}
+
+void kr_inaddr_set_port(struct sockaddr *addr, uint16_t port)
+{
+ if (!addr) {
+ return;
+ }
+ switch (addr->sa_family) {
+ case AF_INET:
+ ((struct sockaddr_in *)addr)->sin_port = htons(port);
+ break;
+ case AF_INET6:
+ ((struct sockaddr_in6 *)addr)->sin6_port = htons(port);
+ break;
+ default:
+ break;
+ }
+}
+
+int kr_inaddr_str(const struct sockaddr *addr, char *buf, size_t *buflen)
+{
+ if (!addr) {
+ return kr_error(EINVAL);
+ }
+ return kr_ntop_str(addr->sa_family, kr_inaddr(addr), kr_inaddr_port(addr),
+ buf, buflen);
+}
+
+int kr_ntop_str(int family, const void *src, uint16_t port, char *buf, size_t *buflen)
+{
+ if (!src || !buf || !buflen) {
+ return kr_error(EINVAL);
+ }
+
+ if (!inet_ntop(family, src, buf, *buflen)) {
+ return kr_error(errno);
+ }
+ const int len = strlen(buf);
+ const int len_need = len + 1 + 5 + 1;
+ if (len_need > *buflen) {
+ *buflen = len_need;
+ return kr_error(ENOSPC);
+ }
+ *buflen = len_need;
+ buf[len] = '#';
+ u16tostr((uint8_t *)&buf[len + 1], port);
+ buf[len_need - 1] = 0;
+ return kr_ok();
+}
+
+char *kr_straddr(const struct sockaddr *addr)
+{
+ if (kr_fails_assert(addr)) return NULL;
+ static char str[KR_STRADDR_MAXLEN + 1] = {0};
+ if (addr->sa_family == AF_UNIX) {
+ strncpy(str, ((struct sockaddr_un *)addr)->sun_path, sizeof(str) - 1);
+ return str;
+ }
+ size_t len = KR_STRADDR_MAXLEN;
+ int ret = kr_inaddr_str(addr, str, &len);
+ return ret != kr_ok() || len == 0 ? NULL : str;
+}
+
+int kr_straddr_family(const char *addr)
+{
+ if (!addr) {
+ return kr_error(EINVAL);
+ }
+ if (addr[0] == '/') {
+ return AF_UNIX;
+ }
+ if (strchr(addr, ':')) {
+ return AF_INET6;
+ }
+ if (strchr(addr, '.')) {
+ return AF_INET;
+ }
+ return kr_error(EINVAL);
+}
+
+int kr_family_len(int family)
+{
+ switch (family) {
+ case AF_INET: return sizeof(struct in_addr);
+ case AF_INET6: return sizeof(struct in6_addr);
+ default: return kr_error(EINVAL);
+ }
+}
+
+struct sockaddr * kr_straddr_socket(const char *addr, int port, knot_mm_t *pool)
+{
+ switch (kr_straddr_family(addr)) {
+ case AF_INET: {
+ struct sockaddr_in *res = mm_alloc(pool, sizeof(*res));
+ if (uv_ip4_addr(addr, port, res) >= 0) {
+ return (struct sockaddr *)res;
+ } else {
+ mm_free(pool, res);
+ return NULL;
+ }
+ }
+ case AF_INET6: {
+ struct sockaddr_in6 *res = mm_alloc(pool, sizeof(*res));
+ if (uv_ip6_addr(addr, port, res) >= 0) {
+ return (struct sockaddr *)res;
+ } else {
+ mm_free(pool, res);
+ return NULL;
+ }
+ }
+ case AF_UNIX: {
+ struct sockaddr_un *res;
+ const size_t alen = strlen(addr) + 1;
+ if (alen > sizeof(res->sun_path)) {
+ return NULL;
+ }
+ res = mm_alloc(pool, sizeof(*res));
+ res->sun_family = AF_UNIX;
+ memcpy(res->sun_path, addr, alen);
+ return (struct sockaddr *)res;
+ }
+ default:
+ return NULL;
+ }
+}
+
+int kr_straddr_subnet(void *dst, const char *addr)
+{
+ if (!dst || !addr) {
+ return kr_error(EINVAL);
+ }
+ /* Parse subnet */
+ int bit_len = 0;
+ int family = kr_straddr_family(addr);
+ if (family != AF_INET && family != AF_INET6)
+ return kr_error(EINVAL);
+ const int max_len = (family == AF_INET6) ? 128 : 32;
+ auto_free char *addr_str = strdup(addr);
+ char *subnet = strchr(addr_str, '/');
+ if (subnet) {
+ *subnet = '\0';
+ subnet += 1;
+ bit_len = strtol(subnet, NULL, 10);
+ /* Check client subnet length */
+ if (bit_len < 0 || bit_len > max_len) {
+ return kr_error(ERANGE);
+ }
+ } else {
+ /* No subnet, use maximal subnet length. */
+ bit_len = max_len;
+ }
+ /* Parse address */
+ int ret = inet_pton(family, addr_str, dst);
+ if (ret != 1) {
+ return kr_error(EILSEQ);
+ }
+
+ return bit_len;
+}
+
+int kr_straddr_split(const char *instr, char ipaddr[static restrict (INET6_ADDRSTRLEN + 1)],
+ uint16_t *port)
+{
+ if (kr_fails_assert(instr && ipaddr && port)) return kr_error(EINVAL);
+ /* Find where port number starts. */
+ const char *p_start = strchr(instr, '@');
+ if (!p_start)
+ p_start = strchr(instr, '#');
+ if (p_start) { /* Get and check the port number. */
+ if (p_start[1] == '\0') /* Don't accept empty port string. */
+ return kr_error(EILSEQ);
+ char *p_end;
+ long p = strtol(p_start + 1, &p_end, 10);
+ if (*p_end != '\0' || p <= 0 || p > UINT16_MAX)
+ return kr_error(EILSEQ);
+ *port = p;
+ }
+ /* Copy the address. */
+ const size_t addrlen = p_start ? p_start - instr : strlen(instr);
+ if (addrlen > INET6_ADDRSTRLEN)
+ return kr_error(EILSEQ);
+ memcpy(ipaddr, instr, addrlen);
+ ipaddr[addrlen] = '\0';
+ return kr_ok();
+}
+
+int kr_straddr_join(const char *addr, uint16_t port, char *buf, size_t *buflen)
+{
+ if (!addr || !buf || !buflen) {
+ return kr_error(EINVAL);
+ }
+
+ struct sockaddr_storage ss;
+ int family = kr_straddr_family(addr);
+ if (family == kr_error(EINVAL) || inet_pton(family, addr, &ss) != 1) {
+ return kr_error(EINVAL);
+ }
+
+ int len = strlen(addr);
+ if (len + 6 >= *buflen) {
+ return kr_error(ENOSPC);
+ }
+
+ memcpy(buf, addr, len + 1);
+ buf[len] = '#';
+ u16tostr((uint8_t *)&buf[len + 1], port);
+ len += 6;
+ buf[len] = 0;
+ *buflen = len;
+
+ return kr_ok();
+}
+
+int kr_bitcmp(const char *a, const char *b, int bits)
+{
+ /* We're using the function from lua directly, so at least for now
+ * we avoid crashing on bogus inputs. Meaning: NULL is ordered before
+ * anything else, and negative length is the same as zero.
+ * TODO: review the call sites and probably remove the checks. */
+ if (bits <= 0 || (!a && !b)) {
+ return 0;
+ } else if (!a) {
+ return -1;
+ } else if (!b) {
+ return 1;
+ }
+
+ kr_require((a && b && bits >= 0) || bits == 0);
+ /* Compare part byte-divisible part. */
+ const size_t chunk = bits / 8;
+ int ret = memcmp(a, b, chunk);
+ if (ret != 0) {
+ return ret;
+ }
+ a += chunk;
+ b += chunk;
+ bits -= chunk * 8;
+ /* Compare last partial byte address block. */
+ if (bits > 0) {
+ const size_t shift = (8 - bits);
+ ret = ((uint8_t)(*a >> shift) - (uint8_t)(*b >> shift));
+ }
+ return ret;
+}
+
+void kr_bitmask(unsigned char *a, size_t a_len, int bits)
+{
+ if (bits < 0 || !a || !a_len) {
+ return;
+ }
+
+ size_t i = bits / 8;
+ const size_t mid_bits = 8 - (bits % 8);
+ const unsigned char mask = 0xFF << mid_bits;
+ if (i < a_len)
+ a[i] &= mask;
+
+ for (++i; i < a_len; ++i)
+ a[i] = 0;
+}
+
+int kr_rrkey(char *key, uint16_t class, const knot_dname_t *owner,
+ uint16_t type, uint16_t additional)
+{
+ if (!key || !owner) {
+ return kr_error(EINVAL);
+ }
+ uint8_t *key_buf = (uint8_t *)key;
+ int ret = u16tostr(key_buf, class);
+ if (ret <= 0) {
+ return ret;
+ }
+ key_buf += ret;
+ ret = knot_dname_to_wire(key_buf, owner, KNOT_DNAME_MAXLEN);
+ if (ret <= 0) {
+ return ret;
+ }
+ knot_dname_to_lower(key_buf);
+ key_buf += ret - 1;
+ ret = u16tostr(key_buf, type);
+ if (ret <= 0) {
+ return ret;
+ }
+ key_buf += ret;
+ ret = u16tostr(key_buf, additional);
+ if (ret <= 0) {
+ return ret;
+ }
+ key_buf[ret] = '\0';
+ return (char *)&key_buf[ret] - key;
+}
+
+/** Return whether two RRsets match, i.e. would form the same set; see ranked_rr_array_t */
+static inline bool rrsets_match(const knot_rrset_t *rr1, const knot_rrset_t *rr2)
+{
+ bool match = rr1->type == rr2->type && rr1->rclass == rr2->rclass;
+ if (match && rr2->type == KNOT_RRTYPE_RRSIG) {
+ match = match && knot_rrsig_type_covered(rr1->rrs.rdata)
+ == knot_rrsig_type_covered(rr2->rrs.rdata);
+ }
+ match = match && knot_dname_is_equal(rr1->owner, rr2->owner);
+ return match;
+}
+
+/** Ensure that an index in a ranked array won't cause "duplicate" RRsets on wire.
+ *
+ * Other entries that would form the same RRset get to_wire = false.
+ * See also rrsets_match.
+ */
+static int to_wire_ensure_unique(ranked_rr_array_t *array, size_t index)
+{
+ if (kr_fails_assert(array && index < array->len)) return kr_error(EINVAL);
+
+ const struct ranked_rr_array_entry *e0 = array->at[index];
+ if (!e0->to_wire) {
+ return kr_ok();
+ }
+
+ for (ssize_t i = array->len - 1; i >= 0; --i) {
+ /* ^ iterate backwards, as the end is more likely in CPU caches */
+ struct ranked_rr_array_entry *ei = array->at[i];
+ if (ei->qry_uid == e0->qry_uid /* assumption: no duplicates within qry */
+ || !ei->to_wire /* no use for complex comparison if @to_wire */
+ ) {
+ continue;
+ }
+ if (rrsets_match(ei->rr, e0->rr)) {
+ ei->to_wire = false;
+ }
+ }
+ return kr_ok();
+}
+
+/* Implementation overview of _add() and _finalize():
+ * - for rdata we just maintain a list of pointers (in knot_rrset_t::additional)
+ * - we only construct the final rdataset at the end (and thus more efficiently)
+ */
+typedef array_t(knot_rdata_t *) rdata_array_t;
+int kr_ranked_rrarray_add(ranked_rr_array_t *array, const knot_rrset_t *rr,
+ uint8_t rank, bool to_wire, uint32_t qry_uid, knot_mm_t *pool)
+{
+ /* From normal packet parser we always get RRs one by one,
+ * but cache and prefil modules (also) feed us larger RRsets. */
+ kr_assert(rr->rrs.count >= 1);
+ /* Check if another rrset with the same
+ * rclass/type/owner combination exists within current query
+ * and merge if needed */
+ for (ssize_t i = array->len - 1; i >= 0; --i) {
+ ranked_rr_array_entry_t *stashed = array->at[i];
+ if (stashed->yielded) {
+ break;
+ }
+ if (stashed->qry_uid != qry_uid) {
+ break;
+ /* We do not guarantee merging RRs "across" any point that switched
+ * to processing a different upstream packet (i.e. qry_uid).
+ * In particular, iterator never returns KR_STATE_YIELD. */
+ }
+ if (!rrsets_match(stashed->rr, rr)) {
+ continue;
+ }
+ /* Found the entry to merge with. Check consistency and merge. */
+ if (kr_fails_assert(stashed->rank == rank && !stashed->cached && stashed->in_progress))
+ return kr_error(EEXIST);
+
+ /* It may happen that an RRset is first considered useful
+ * (to_wire = false, e.g. due to being part of glue),
+ * and later we may find we also want it in the answer. */
+ stashed->to_wire = stashed->to_wire || to_wire;
+
+ /* We just add the reference into this in_progress RRset. */
+ rdata_array_t *ra = stashed->rr->additional;
+ if (ra == NULL) {
+ /* RRset not in array format yet -> convert it. */
+ ra = stashed->rr->additional = mm_alloc(pool, sizeof(*ra));
+ if (!ra) {
+ return kr_error(ENOMEM);
+ }
+ array_init(*ra);
+ int ret = array_reserve_mm(*ra, stashed->rr->rrs.count + rr->rrs.count,
+ kr_memreserve, pool);
+ if (ret) {
+ return kr_error(ret);
+ }
+ knot_rdata_t *r_it = stashed->rr->rrs.rdata;
+ for (int ri = 0; ri < stashed->rr->rrs.count;
+ ++ri, r_it = knot_rdataset_next(r_it)) {
+ kr_require(array_push(*ra, r_it) >= 0);
+ }
+ } else {
+ int ret = array_reserve_mm(*ra, ra->len + rr->rrs.count,
+ kr_memreserve, pool);
+ if (ret) {
+ return kr_error(ret);
+ }
+ }
+ /* Append to the array. */
+ knot_rdata_t *r_it = rr->rrs.rdata;
+ for (int ri = 0; ri < rr->rrs.count;
+ ++ri, r_it = knot_rdataset_next(r_it)) {
+ kr_require(array_push(*ra, r_it) >= 0);
+ }
+ return i;
+ }
+
+ /* No stashed rrset found, add */
+ int ret = array_reserve_mm(*array, array->len + 1, kr_memreserve, pool);
+ if (ret) {
+ return kr_error(ret);
+ }
+
+ ranked_rr_array_entry_t *entry = mm_calloc(pool, 1, sizeof(*entry));
+ if (!entry) {
+ return kr_error(ENOMEM);
+ }
+
+ knot_rrset_t *rr_new = knot_rrset_new(rr->owner, rr->type, rr->rclass, rr->ttl, pool);
+ if (!rr_new) {
+ mm_free(pool, entry);
+ return kr_error(ENOMEM);
+ }
+ rr_new->rrs = rr->rrs;
+ if (kr_fails_assert(rr_new->additional == NULL)) {
+ mm_free(pool, entry);
+ return kr_error(EINVAL);
+ }
+
+ entry->qry_uid = qry_uid;
+ entry->rr = rr_new;
+ entry->rank = rank;
+ entry->to_wire = to_wire;
+ entry->in_progress = true;
+ if (array_push(*array, entry) < 0) {
+ /* Silence coverity. It shouldn't be possible to happen,
+ * due to the array_reserve_mm call above. */
+ mm_free(pool, entry);
+ return kr_error(ENOMEM);
+ }
+
+ ret = to_wire_ensure_unique(array, array->len - 1);
+ if (ret < 0) return ret;
+ return array->len - 1;
+}
+
+/** Comparator for qsort() on an array of knot_data_t pointers. */
+static int rdata_p_cmp(const void *rp1, const void *rp2)
+{
+ /* Just correct types of the parameters and pass them dereferenced. */
+ const knot_rdata_t
+ *const *r1 = rp1,
+ *const *r2 = rp2;
+ return knot_rdata_cmp(*r1, *r2);
+}
+int kr_ranked_rrarray_finalize(ranked_rr_array_t *array, uint32_t qry_uid, knot_mm_t *pool)
+{
+ for (ssize_t array_i = array->len - 1; array_i >= 0; --array_i) {
+ ranked_rr_array_entry_t *stashed = array->at[array_i];
+ if (stashed->qry_uid != qry_uid) {
+ continue; /* We apparently can't always short-cut the cycle. */
+ }
+ if (!stashed->in_progress) {
+ continue;
+ }
+ rdata_array_t *ra = stashed->rr->additional;
+ if (!ra) {
+ /* No array, so we just need to copy the rdataset. */
+ knot_rdataset_t *rds = &stashed->rr->rrs;
+ knot_rdataset_t tmp = *rds;
+ int ret = knot_rdataset_copy(rds, &tmp, pool);
+ if (ret) {
+ return kr_error(ret);
+ }
+ } else {
+ /* Multiple RRs; first: sort the array. */
+ stashed->rr->additional = NULL;
+ qsort(ra->at, ra->len, sizeof(ra->at[0]), rdata_p_cmp);
+ /* Prune duplicates: NULL all except the last instance. */
+ int dup_count = 0;
+ for (int i = 0; i + 1 < ra->len; ++i) {
+ if (knot_rdata_cmp(ra->at[i], ra->at[i + 1]) == 0) {
+ ra->at[i] = NULL;
+ ++dup_count;
+ kr_log_q(NULL, ITERATOR, "deleted duplicate RR\n");
+ }
+ }
+ /* Prepare rdataset, except rdata contents. */
+ knot_rdataset_t *rds = &stashed->rr->rrs;
+ rds->size = 0;
+ for (int i = 0; i < ra->len; ++i) {
+ if (ra->at[i]) {
+ rds->size += knot_rdata_size(ra->at[i]->len);
+ }
+ }
+ rds->count = ra->len - dup_count;
+ if (rds->size) {
+ rds->rdata = mm_alloc(pool, rds->size);
+ if (!rds->rdata) {
+ return kr_error(ENOMEM);
+ }
+ } else {
+ rds->rdata = NULL;
+ }
+ /* Everything is ready; now just copy all the rdata. */
+ uint8_t *raw_it = (uint8_t *)rds->rdata;
+ for (int i = 0; i < ra->len; ++i) {
+ if (ra->at[i] && rds->size/*linters*/) {
+ const int size = knot_rdata_size(ra->at[i]->len);
+ memcpy(raw_it, ra->at[i], size);
+ raw_it += size;
+ }
+ }
+ if (kr_fails_assert(raw_it == (uint8_t *)rds->rdata + rds->size))
+ return kr_error(EINVAL);
+ }
+ stashed->in_progress = false;
+ }
+ return kr_ok();
+}
+
+
+int kr_ranked_rrarray_set_wire(ranked_rr_array_t *array, bool to_wire,
+ uint32_t qry_uid, bool check_dups,
+ bool (*extraCheck)(const ranked_rr_array_entry_t *))
+{
+ for (size_t i = 0; i < array->len; ++i) {
+ ranked_rr_array_entry_t *entry = array->at[i];
+ if (entry->qry_uid != qry_uid) {
+ continue;
+ }
+ if (extraCheck != NULL && !extraCheck(entry)) {
+ continue;
+ }
+ entry->to_wire = to_wire;
+ if (check_dups) {
+ int ret = to_wire_ensure_unique(array, i);
+ if (ret) return ret;
+ }
+ }
+ return kr_ok();
+}
+
+
+static char *callprop(struct kr_module *module, const char *prop, const char *input, void *env)
+{
+ if (!module || !module->props || !prop) {
+ return NULL;
+ }
+ for (const struct kr_prop *p = module->props; p && p->name; ++p) {
+ if (p->cb != NULL && strcmp(p->name, prop) == 0) {
+ return p->cb(env, module, input);
+ }
+ }
+ return NULL;
+}
+
+char *kr_module_call(struct kr_context *ctx, const char *module, const char *prop, const char *input)
+{
+ if (!ctx || !ctx->modules || !module || !prop) {
+ return NULL;
+ }
+ module_array_t *mod_list = ctx->modules;
+ for (size_t i = 0; i < mod_list->len; ++i) {
+ struct kr_module *mod = mod_list->at[i];
+ if (strcmp(mod->name, module) == 0) {
+ return callprop(mod, prop, input, ctx);
+ }
+ }
+ return NULL;
+}
+
+static void flags_to_str(char *dst, const knot_pkt_t *pkt, size_t maxlen)
+{
+ int offset = 0;
+ int ret = 0;
+ struct {
+ uint8_t (*get) (const uint8_t *packet);
+ char name[3];
+ } flag[7] = {
+ {knot_wire_get_qr, "qr"},
+ {knot_wire_get_aa, "aa"},
+ {knot_wire_get_rd, "rd"},
+ {knot_wire_get_ra, "ra"},
+ {knot_wire_get_tc, "tc"},
+ {knot_wire_get_ad, "ad"},
+ {knot_wire_get_cd, "cd"}
+ };
+ for (int i = 0; i < 7; ++i) {
+ if (!flag[i].get(pkt->wire)) {
+ continue;
+ }
+ ret = snprintf(dst + offset, maxlen, "%s ", flag[i].name);
+ if (ret <= 0 || ret >= maxlen) {
+ dst[0] = 0;
+ return;
+ }
+ offset += ret;
+ maxlen -= ret;
+ }
+ dst[offset] = 0;
+}
+
+static char *print_section_opt(struct mempool *mp, char *endp, const knot_rrset_t *rr, const uint8_t rcode)
+{
+ uint8_t errcode = knot_edns_get_ext_rcode(rr);
+ uint16_t ext_rcode_id = knot_edns_whole_rcode(errcode, rcode);
+ const char *ext_rcode_str = "Unused";
+ const knot_lookup_t *ext_rcode;
+
+ if (errcode > 0) {
+ ext_rcode = knot_lookup_by_id(knot_rcode_names, ext_rcode_id);
+ if (ext_rcode != NULL) {
+ ext_rcode_str = ext_rcode->name;
+ } else {
+ ext_rcode_str = "Unknown";
+ }
+ }
+
+ return mp_printf_append(mp, endp,
+ ";; EDNS PSEUDOSECTION:\n;; "
+ "Version: %u; flags: %s; UDP size: %u B; ext-rcode: %s\n\n",
+ knot_edns_get_version(rr),
+ (knot_edns_do(rr) != 0) ? "do" : "",
+ knot_edns_get_payload(rr),
+ ext_rcode_str);
+
+}
+
+/**
+ * Detect if qname contains an uppercase letter.
+ */
+static bool qname_has_uppercase(const knot_dname_t *qname) {
+ const int len = knot_dname_size(qname) - 1; /* skip root label at the end */
+ for (int i = 1; i < len; ++i) { /* skip first length byte */
+ /* Note: this relies on the fact that correct label lengths
+ * can't pass this test by "luck" and that correctness
+ * is checked earlier by packet parser. */
+ if (qname[i] >= 'A' && qname[i] <= 'Z')
+ return true;
+ }
+ return false;
+}
+
+char *kr_pkt_text(const knot_pkt_t *pkt)
+{
+ if (!pkt) {
+ return NULL;
+ }
+
+ struct mempool *mp = mp_new(512);
+
+ static const char * snames[] = {
+ ";; ANSWER SECTION", ";; AUTHORITY SECTION", ";; ADDITIONAL SECTION"
+ };
+ char flags[32];
+ uint8_t pkt_rcode = knot_wire_get_rcode(pkt->wire);
+ uint8_t pkt_opcode = knot_wire_get_opcode(pkt->wire);
+ const char *rcode_str = "Unknown";
+ const char *opcode_str = "Unknown";
+ const knot_lookup_t *rcode = knot_lookup_by_id(knot_rcode_names, pkt_rcode);
+ const knot_lookup_t *opcode = knot_lookup_by_id(knot_opcode_names, pkt_opcode);
+ uint16_t qry_id = knot_wire_get_id(pkt->wire);
+ uint16_t qdcount = knot_wire_get_qdcount(pkt->wire);
+
+ if (rcode != NULL) {
+ rcode_str = rcode->name;
+ }
+ if (opcode != NULL) {
+ opcode_str = opcode->name;
+ }
+ flags_to_str(flags, pkt, sizeof(flags));
+
+ char *ptr = mp_printf(mp,
+ ";; ->>HEADER<<- opcode: %s; status: %s; id: %hu\n"
+ ";; Flags: %s QUERY: %hu; ANSWER: %hu; "
+ "AUTHORITY: %hu; ADDITIONAL: %hu\n\n",
+ opcode_str, rcode_str, qry_id,
+ flags,
+ qdcount,
+ knot_wire_get_ancount(pkt->wire),
+ knot_wire_get_nscount(pkt->wire),
+ knot_wire_get_arcount(pkt->wire));
+
+ if (knot_pkt_has_edns(pkt)) {
+ ptr = print_section_opt(mp, ptr, pkt->opt_rr, knot_wire_get_rcode(pkt->wire));
+ }
+
+ if (qdcount == 1) {
+ KR_DNAME_GET_STR(qname, knot_pkt_qname(pkt));
+ KR_RRTYPE_GET_STR(rrtype, knot_pkt_qtype(pkt));
+ const char *qnwarn;
+ if (qname_has_uppercase(knot_pkt_qname(pkt)))
+ qnwarn = \
+"; WARNING! Uppercase letters indicate positions with letter case mismatches!\n"
+"; Normally you should see all-lowercase qname here.\n";
+ else
+ qnwarn = "";
+ ptr = mp_printf_append(mp, ptr, ";; QUESTION SECTION\n%s%s\t\t%s\n", qnwarn, qname, rrtype);
+ } else if (qdcount > 1) {
+ ptr = mp_printf_append(mp, ptr, ";; Warning: unsupported QDCOUNT %hu\n", qdcount);
+ }
+
+ for (knot_section_t i = KNOT_ANSWER; i <= KNOT_ADDITIONAL; ++i) {
+ const knot_pktsection_t *sec = knot_pkt_section(pkt, i);
+ if (sec->count == 0) {
+ continue;
+ }
+
+ ptr = mp_printf_append(mp, ptr, "\n%s\n", snames[i - KNOT_ANSWER]);
+ for (unsigned k = 0; k < sec->count; ++k) {
+ const knot_rrset_t *rr = knot_pkt_rr(sec, k);
+ if (rr->type == KNOT_RRTYPE_OPT) {
+ continue;
+ }
+ auto_free char *rr_text = kr_rrset_text(rr);
+ ptr = mp_printf_append(mp, ptr, "%s", rr_text);
+ }
+ }
+
+ /* Close growing buffer and duplicate result before deleting */
+ char *result = strdup(ptr);
+ mp_delete(mp);
+ return result;
+}
+
+const knot_dump_style_t KR_DUMP_STYLE_DEFAULT = { /* almost all = false, */
+ .show_ttl = true,
+#if KNOT_VERSION_HEX >= 0x030200
+ .human_timestamp = true,
+#else
+ .human_tmstamp = true,
+#endif
+};
+
+char *kr_rrset_text(const knot_rrset_t *rr)
+{
+ if (!rr) {
+ return NULL;
+ }
+
+ /* Note: knot_rrset_txt_dump will double the size until the rrset fits */
+ size_t bufsize = 128;
+ char *buf = malloc(bufsize);
+ int ret = knot_rrset_txt_dump(rr, &buf, &bufsize, &KR_DUMP_STYLE_DEFAULT);
+ if (ret < 0) {
+ free(buf);
+ return NULL;
+ }
+
+ return buf;
+}
+
+uint64_t kr_now(void)
+{
+ return uv_now(uv_default_loop());
+}
+
+void kr_uv_free_cb(uv_handle_t* handle)
+{
+ free(handle->data);
+}
+
+const char *kr_strptime_diff(const char *format, const char *time1_str,
+ const char *time0_str, double *diff) {
+ if (kr_fails_assert(format && time1_str && time0_str && diff)) return NULL;
+
+ struct tm time1_tm;
+ time_t time1_u;
+ struct tm time0_tm;
+ time_t time0_u;
+
+ char *err = strptime(time1_str, format, &time1_tm);
+ if (err == NULL || err != time1_str + strlen(time1_str))
+ return "strptime failed for time1";
+ time1_tm.tm_isdst = -1; /* determine if DST is active or not */
+ time1_u = mktime(&time1_tm);
+ if (time1_u == (time_t)-1)
+ return "mktime failed for time1";
+
+ err = strptime(time0_str, format, &time0_tm);
+ if (err == NULL || err != time0_str + strlen(time0_str))
+ return "strptime failed for time0";
+ time0_tm.tm_isdst = -1; /* determine if DST is active or not */
+ time0_u = mktime(&time0_tm);
+ if (time0_u == (time_t)-1)
+ return "mktime failed for time0";
+ *diff = difftime(time1_u, time0_u);
+
+ return NULL;
+}
+
+int knot_dname_lf2wire(knot_dname_t * const dst, uint8_t len, const uint8_t *lf)
+{
+ knot_dname_t *d = dst; /* moving "cursor" as we write it out */
+ if (kr_fails_assert(d && (len == 0 || lf))) return kr_error(EINVAL);
+ /* we allow the final zero byte to be omitted */
+ if (!len) {
+ goto finish;
+ }
+ if (lf[len - 1]) {
+ ++len;
+ }
+ /* convert the name, one label at a time */
+ int label_end = len - 1; /* index of the zero byte after the current label */
+ while (label_end >= 0) {
+ /* find label_start */
+ int i = label_end - 1;
+ while (i >= 0 && lf[i])
+ --i;
+ const int label_start = i + 1; /* index of the first byte of the current label */
+ const int label_len = label_end - label_start;
+ kr_assert(label_len >= 0);
+ if (label_len > 63 || label_len <= 0)
+ return kr_error(EILSEQ);
+ /* write the label */
+ *d = label_len;
+ ++d;
+ memcpy(d, lf + label_start, label_len);
+ d += label_len;
+ /* next label */
+ label_end = label_start - 1;
+ }
+finish:
+ *d = 0; /* the final zero */
+ ++d;
+ return d - dst;
+}
+
+static void rnd_noerror(void *data, uint size)
+{
+ int ret = gnutls_rnd(GNUTLS_RND_NONCE, data, size);
+ if (ret) {
+ kr_log_error(SYSTEM, "gnutls_rnd(): %s\n", gnutls_strerror(ret));
+ abort();
+ }
+}
+void kr_rnd_buffered(void *data, uint size)
+{
+ /* static circular buffer, from index _begin (inclusive) to _end (exclusive) */
+ static uint8_t buf[512/8]; /* gnutls_rnd() works on blocks of 512 bits (chacha) */
+ static uint buf_begin = sizeof(buf);
+
+ if (unlikely(size > sizeof(buf))) {
+ rnd_noerror(data, size);
+ return;
+ }
+ /* Start with contiguous chunk, possibly until the end of buffer. */
+ const uint size1 = MIN(size, sizeof(buf) - buf_begin);
+ uint8_t *d = data;
+ memcpy(d, buf + buf_begin, size1);
+ if (size1 == size) {
+ buf_begin += size1;
+ return;
+ }
+ d += size1;
+ size -= size1;
+ /* Refill the whole buffer, and finish by another contiguous chunk. */
+ rnd_noerror(buf, sizeof(buf));
+ memcpy(d, buf, size);
+ buf_begin = size;
+}
+
+void kr_rrset_init(knot_rrset_t *rrset, knot_dname_t *owner,
+ uint16_t type, uint16_t rclass, uint32_t ttl)
+{
+ if (kr_fails_assert(rrset)) return;
+ knot_rrset_init(rrset, owner, type, rclass, ttl);
+}
+bool kr_pkt_has_wire(const knot_pkt_t *pkt)
+{
+ return pkt->size != KR_PKT_SIZE_NOWIRE;
+}
+bool kr_pkt_has_dnssec(const knot_pkt_t *pkt)
+{
+ return knot_pkt_has_dnssec(pkt);
+}
+uint16_t kr_pkt_qclass(const knot_pkt_t *pkt)
+{
+ return knot_pkt_qclass(pkt);
+}
+uint16_t kr_pkt_qtype(const knot_pkt_t *pkt)
+{
+ return knot_pkt_qtype(pkt);
+}
+uint32_t kr_rrsig_sig_inception(const knot_rdata_t *rdata)
+{
+ return knot_rrsig_sig_inception(rdata);
+}
+uint32_t kr_rrsig_sig_expiration(const knot_rdata_t *rdata)
+{
+ return knot_rrsig_sig_expiration(rdata);
+}
+uint16_t kr_rrsig_type_covered(const knot_rdata_t *rdata)
+{
+ return knot_rrsig_type_covered(rdata);
+}
+
+time_t kr_file_mtime (const char* fname) {
+ struct stat fstat;
+
+ if (stat(fname, &fstat) != 0) {
+ return 0;
+ }
+
+ return fstat.st_mtime;
+}
+
+long long kr_fssize(const char *path)
+{
+ if (!path)
+ return kr_error(EINVAL);
+
+ struct statvfs buf;
+ if (statvfs(path, &buf) != 0)
+ return kr_error(errno);
+
+ return buf.f_frsize * buf.f_blocks;
+}
+
+const char * kr_dirent_name(const struct dirent *de)
+{
+ return de ? de->d_name : NULL;
+}
+