1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include <errno.h>
#include <limits.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#include <libknot/descriptor.h>
#include <libknot/dname.h>
#include <libknot/errcode.h>
#include <libknot/rrtype/rrsig.h>
#include <uv.h>
#include "contrib/base32hex.h"
#include "contrib/cleanup.h"
#include "contrib/ucw/lib.h"
#include "lib/cache/api.h"
#include "lib/cache/cdb_lmdb.h"
#include "lib/defines.h"
#include "lib/dnssec/nsec3.h"
#include "lib/generic/trie.h"
#include "lib/resolve.h"
#include "lib/rplan.h"
#include "lib/utils.h"
#include "lib/cache/impl.h"
/* TODO:
* - Reconsider when RRSIGs are put in and retrieved from the cache.
* Currently it's always done, which _might_ be spurious, depending
* on how kresd will use the returned result.
* There's also the "problem" that kresd ATM does _not_ ask upstream
* with DO bit in some cases.
*/
/** Cache version */
static const uint16_t CACHE_VERSION = 7;
/** Key size */
#define KEY_HSIZE (sizeof(uint8_t) + sizeof(uint16_t))
#define KEY_SIZE (KEY_HSIZE + KNOT_DNAME_MAXLEN)
/** @internal Forward declarations of the implementation details
* \param needs_pkt[out] optionally set *needs_pkt = true;
* We do that when some RRset wasn't stashed to aggressive cache,
* even though it might have taken part in a successful DNSSEC proof:
* 1. any opt-out NSEC3, as they typically aren't much use aggressively anyway
* 2. some kinds of minimal NSEC* ranges, as they'd seem more trouble than worth:
* - extremely short range of covered names limits the benefits severely
* - the type-set is often a lie, either a working lie, e.g. CloudFlare's
* black lies, or even a non-working lie, e.g. DVE-2018-0003
* 3. some kinds of "weird" RRsets, to get at least some caching on them
*/
static ssize_t stash_rrset(struct kr_cache *cache, const struct kr_query *qry,
const knot_rrset_t *rr, const knot_rrset_t *rr_sigs, uint32_t timestamp,
uint8_t rank, trie_t *nsec_pmap, knot_mm_t *pool, bool *needs_pkt);
/** Preliminary checks before stash_rrset(). Don't call if returns <= 0. */
static int stash_rrset_precond(const knot_rrset_t *rr, const struct kr_query *qry/*logs*/);
/** @internal Ensure the cache version is right, possibly by clearing it. */
static int assert_right_version(struct kr_cache *cache)
{
/* Check cache ABI version. */
/* CACHE_KEY_DEF: to avoid collisions with kr_cache_match(). */
uint8_t key_str[4] = "VERS";
knot_db_val_t key = { .data = key_str, .len = sizeof(key_str) };
knot_db_val_t val = { NULL, 0 };
int ret = cache_op(cache, read, &key, &val, 1);
if (ret == 0 && val.len == sizeof(CACHE_VERSION)
&& memcmp(val.data, &CACHE_VERSION, sizeof(CACHE_VERSION)) == 0) {
ret = kr_ok();
} else {
int oldret = ret;
/* Version doesn't match or we were unable to read it, possibly because DB is empty.
* Recreate cache and write version key. */
ret = cache_op(cache, count);
if (ret != 0) { /* Log for non-empty cache to limit noise on fresh start. */
kr_log_info(CACHE, "incompatible cache database detected, purging\n");
if (oldret) {
kr_log_debug(CACHE, "reading version returned: %d\n", oldret);
} else if (val.len != sizeof(CACHE_VERSION)) {
kr_log_debug(CACHE, "version has bad length: %d\n", (int)val.len);
} else {
uint16_t ver;
memcpy(&ver, val.data, sizeof(ver));
kr_log_debug(CACHE, "version has bad value: %d instead of %d\n",
(int)ver, (int)CACHE_VERSION);
}
}
ret = cache_op(cache, clear);
}
/* Rewrite the entry even if it isn't needed. Because of cache-size-changing
* possibility it's good to always perform some write during opening of cache. */
if (ret == 0) {
/* Key/Val is invalidated by cache purge, recreate it */
val.data = /*const-cast*/(void *)&CACHE_VERSION;
val.len = sizeof(CACHE_VERSION);
ret = cache_op(cache, write, &key, &val, 1);
}
kr_cache_commit(cache);
return ret;
}
int kr_cache_open(struct kr_cache *cache, const struct kr_cdb_api *api, struct kr_cdb_opts *opts, knot_mm_t *mm)
{
if (kr_fails_assert(cache))
return kr_error(EINVAL);
memset(cache, 0, sizeof(*cache));
/* Open cache */
if (!api)
api = kr_cdb_lmdb();
cache->api = api;
int ret = cache->api->open(&cache->db, &cache->stats, opts, mm);
if (ret == 0) {
ret = assert_right_version(cache);
// The included write also committed maxsize increase to the file.
}
if (ret == 0 && opts->maxsize) {
/* If some maxsize is requested and it's smaller than in-file maxsize,
* LMDB only restricts our env without changing the in-file maxsize.
* That is worked around by reopening (found no other reliable way). */
cache->api->close(cache->db, &cache->stats);
struct kr_cdb_opts opts2;
memcpy(&opts2, opts, sizeof(opts2));
opts2.maxsize = 0;
ret = cache->api->open(&cache->db, &cache->stats, &opts2, mm);
}
char *fpath = kr_absolutize_path(opts->path, "data.mdb");
if (kr_fails_assert(fpath)) {
/* non-critical, but still */
fpath = "<ENOMEM>";
} else {
kr_cache_emergency_file_to_remove = fpath;
}
if (ret == 0 && opts->maxsize) {
size_t maxsize = cache->api->get_maxsize(cache->db);
if (maxsize > opts->maxsize) kr_log_warning(CACHE,
"Warning: real cache size is %zu instead of the requested %zu bytes."
" To reduce the size you need to remove the file '%s' by hand.\n",
maxsize, opts->maxsize, fpath);
}
if (ret != 0)
return ret;
cache->ttl_min = KR_CACHE_DEFAULT_TTL_MIN;
cache->ttl_max = KR_CACHE_DEFAULT_TTL_MAX;
kr_cache_make_checkpoint(cache);
return 0;
}
const char *kr_cache_emergency_file_to_remove = NULL;
#define cache_isvalid(cache) ((cache) && (cache)->api && (cache)->db)
void kr_cache_close(struct kr_cache *cache)
{
kr_cache_check_health(cache, -1);
if (cache_isvalid(cache)) {
cache_op(cache, close);
cache->db = NULL;
}
free(/*const-cast*/(char*)kr_cache_emergency_file_to_remove);
kr_cache_emergency_file_to_remove = NULL;
}
int kr_cache_commit(struct kr_cache *cache)
{
if (!cache_isvalid(cache)) {
return kr_error(EINVAL);
}
if (cache->api->commit) {
return cache_op(cache, commit);
}
return kr_ok();
}
int kr_cache_clear(struct kr_cache *cache)
{
if (!cache_isvalid(cache)) {
return kr_error(EINVAL);
}
int ret = cache_op(cache, clear);
if (ret == 0) {
kr_cache_make_checkpoint(cache);
ret = assert_right_version(cache);
}
return ret;
}
/* When going stricter, BEWARE of breaking entry_h_consistent_NSEC() */
struct entry_h * entry_h_consistent_E(knot_db_val_t data, uint16_t type)
{
(void) type; /* unused, for now */
if (!data.data) return NULL;
/* Length checks. */
if (data.len < offsetof(struct entry_h, data))
return NULL;
const struct entry_h *eh = data.data;
if (eh->is_packet) {
uint16_t pkt_len;
if (data.len < offsetof(struct entry_h, data) + sizeof(pkt_len)) {
return NULL;
}
memcpy(&pkt_len, eh->data, sizeof(pkt_len));
if (data.len < offsetof(struct entry_h, data) + sizeof(pkt_len)
+ pkt_len) {
return NULL;
}
}
bool ok = true;
ok = ok && kr_rank_check(eh->rank);
ok = ok && (!kr_rank_test(eh->rank, KR_RANK_BOGUS)
|| eh->is_packet);
ok = ok && (eh->is_packet || !eh->has_optout);
return ok ? /*const-cast*/(struct entry_h *)eh : NULL;
}
int32_t get_new_ttl(const struct entry_h *entry, const struct kr_query *qry,
const knot_dname_t *owner, uint16_t type, uint32_t now)
{
int32_t diff = now - entry->time;
if (diff < 0) {
/* We may have obtained the record *after* the request started. */
diff = 0;
}
int32_t res = entry->ttl - diff;
if (res < 0 && owner && qry && qry->stale_cb) {
/* Stale-serving decision, delegated to a callback. */
int res_stale = qry->stale_cb(res, owner, type, qry);
if (res_stale >= 0) {
VERBOSE_MSG(qry, "responding with stale answer\n");
/* LATER: Perhaps we could use a more specific Stale
* NXDOMAIN Answer code for applicable responses. */
kr_request_set_extended_error(qry->request, KNOT_EDNS_EDE_STALE, "6Q6X");
return res_stale;
}
}
return res;
}
int32_t kr_cache_ttl(const struct kr_cache_p *peek, const struct kr_query *qry,
const knot_dname_t *name, uint16_t type)
{
const struct entry_h *eh = peek->raw_data;
return get_new_ttl(eh, qry, name, type, qry->timestamp.tv_sec);
}
/** Check that no label contains a zero character, incl. a log trace.
*
* We refuse to work with those, as LF and our cache keys might become ambiguous.
* Assuming uncompressed name, as usual.
* CACHE_KEY_DEF
*/
static bool check_dname_for_lf(const knot_dname_t *n, const struct kr_query *qry/*logging*/)
{
const bool ret = knot_dname_size(n) == strlen((const char *)n) + 1;
if (!ret && kr_log_is_debug_qry(CACHE, qry)) {
auto_free char *n_str = kr_dname_text(n);
VERBOSE_MSG(qry, "=> skipping zero-containing name %s\n", n_str);
}
return ret;
}
/** Return false on types to be ignored. Meant both for sname and direct cache requests. */
static bool check_rrtype(uint16_t type, const struct kr_query *qry/*logging*/)
{
const bool ret = !knot_rrtype_is_metatype(type)
&& type != KNOT_RRTYPE_RRSIG;
if (!ret && kr_log_is_debug_qry(CACHE, qry)) {
auto_free char *type_str = kr_rrtype_text(type);
VERBOSE_MSG(qry, "=> skipping RR type %s\n", type_str);
}
return ret;
}
/** Like key_exact_type() but omits a couple checks not holding for pkt cache. */
knot_db_val_t key_exact_type_maypkt(struct key *k, uint16_t type)
{
if (kr_fails_assert(check_rrtype(type, NULL)))
return (knot_db_val_t){ NULL, 0 };
switch (type) {
case KNOT_RRTYPE_RRSIG: /* no RRSIG query caching, at least for now */
kr_assert(false);
return (knot_db_val_t){ NULL, 0 };
/* xNAME lumped into NS. */
case KNOT_RRTYPE_CNAME:
case KNOT_RRTYPE_DNAME:
type = KNOT_RRTYPE_NS;
default:
break;
}
int name_len = k->buf[0];
k->buf[name_len + 1] = 0; /* make sure different names can never match */
k->buf[name_len + 2] = 'E'; /* tag for exact name+type matches */
memcpy(k->buf + name_len + 3, &type, 2);
k->type = type;
/* CACHE_KEY_DEF: key == dname_lf + '\0' + 'E' + RRTYPE */
return (knot_db_val_t){ k->buf + 1, name_len + 4 };
}
/** The inside for cache_peek(); implementation separated to ./peek.c */
int peek_nosync(kr_layer_t *ctx, knot_pkt_t *pkt);
/** function for .produce phase */
int cache_peek(kr_layer_t *ctx, knot_pkt_t *pkt)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
/* We first check various exit-conditions and then call the _real function. */
if (!kr_cache_is_open(&req->ctx->cache)
|| ctx->state & (KR_STATE_FAIL|KR_STATE_DONE) || qry->flags.NO_CACHE
|| (qry->flags.CACHE_TRIED && !qry->stale_cb)
|| !check_rrtype(qry->stype, qry) /* LATER: some other behavior for some of these? */
|| qry->sclass != KNOT_CLASS_IN) {
return ctx->state; /* Already resolved/failed or already tried, etc. */
}
/* ATM cache only peeks for qry->sname and that would be useless
* to repeat on every iteration, so disable it from now on.
* LATER(optim.): assist with more precise QNAME minimization. */
qry->flags.CACHE_TRIED = true;
if (qry->stype == KNOT_RRTYPE_NSEC) {
VERBOSE_MSG(qry, "=> skipping stype NSEC\n");
return ctx->state;
}
if (!check_dname_for_lf(qry->sname, qry)) {
return ctx->state;
}
int ret = peek_nosync(ctx, pkt);
kr_cache_commit(&req->ctx->cache);
return ret;
}
/** It's simply inside of cycle taken out to decrease indentation. \return error code. */
static int stash_rrarray_entry(ranked_rr_array_t *arr, int arr_i,
const struct kr_query *qry, struct kr_cache *cache,
int *unauth_cnt, trie_t *nsec_pmap, bool *needs_pkt);
/** Stash a single nsec_p. \return 0 (errors are ignored). */
static int stash_nsec_p(const knot_dname_t *dname, const char *nsec_p_v,
struct kr_cache *cache, uint32_t timestamp, knot_mm_t *pool,
const struct kr_query *qry/*logging*/);
/** The whole .consume phase for the cache module. */
int cache_stash(kr_layer_t *ctx, knot_pkt_t *pkt)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
struct kr_cache *cache = &req->ctx->cache;
/* Note: we cache even in KR_STATE_FAIL. For example,
* BOGUS answer can go to +cd cache even without +cd request. */
if (!kr_cache_is_open(cache) || !qry
|| qry->flags.CACHED || !check_rrtype(knot_pkt_qtype(pkt), qry)
|| qry->sclass != KNOT_CLASS_IN) {
return ctx->state;
}
/* Do not cache truncated answers, at least for now. LATER */
if (knot_wire_get_tc(pkt->wire)) {
return ctx->state;
}
int unauth_cnt = 0;
bool needs_pkt = false;
if (qry->flags.STUB) {
needs_pkt = true;
goto stash_packet;
}
/* Stash individual records. */
ranked_rr_array_t *selected[] = kr_request_selected(req);
trie_t *nsec_pmap = trie_create(&req->pool);
if (kr_fails_assert(nsec_pmap))
goto finally;
for (int psec = KNOT_ANSWER; psec <= KNOT_ADDITIONAL; ++psec) {
ranked_rr_array_t *arr = selected[psec];
/* uncached entries are located at the end */
for (ssize_t i = arr->len - 1; i >= 0; --i) {
ranked_rr_array_entry_t *entry = arr->at[i];
if (entry->qry_uid != qry->uid || entry->dont_cache) {
continue;
/* TODO: probably safe to break on uid mismatch but maybe not worth it */
}
int ret = stash_rrarray_entry(
arr, i, qry, cache, &unauth_cnt, nsec_pmap,
/* ADDITIONAL RRs are considered non-essential
* in our (resolver) answers */
(psec == KNOT_ADDITIONAL ? NULL : &needs_pkt));
if (ret) {
VERBOSE_MSG(qry, "=> stashing RRs errored out\n");
goto finally;
}
/* LATER(optim.): maybe filter out some type-rank combinations
* that won't be useful as separate RRsets. */
}
}
trie_it_t *it;
for (it = trie_it_begin(nsec_pmap); !trie_it_finished(it); trie_it_next(it)) {
stash_nsec_p((const knot_dname_t *)trie_it_key(it, NULL),
(const char *)*trie_it_val(it),
cache, qry->timestamp.tv_sec, &req->pool, req->current_query);
}
trie_it_free(it);
/* LATER(optim.): typically we also have corresponding NS record in the list,
* so we might save a cache operation. */
stash_packet:
if (qry->flags.PKT_IS_SANE && check_dname_for_lf(knot_pkt_qname(pkt), qry)) {
stash_pkt(pkt, qry, req, needs_pkt);
}
finally:
if (unauth_cnt) {
VERBOSE_MSG(qry, "=> stashed also %d nonauth RRsets\n", unauth_cnt);
};
kr_cache_commit(cache);
return ctx->state; /* we ignore cache-stashing errors */
}
/** Preliminary checks before stash_rrset(). Don't call if returns <= 0. */
static int stash_rrset_precond(const knot_rrset_t *rr, const struct kr_query *qry/*logs*/)
{
if (kr_fails_assert(rr && rr->rclass == KNOT_CLASS_IN))
return kr_error(EINVAL);
if (!check_rrtype(rr->type, qry))
return kr_ok();
if (!check_dname_for_lf(rr->owner, qry))
return kr_ok();
return 1/*proceed*/;
}
/** Return true on some cases of NSEC* RRsets covering minimal ranges.
* Also include some abnormal RR cases; qry is just for logging. */
static bool rrset_has_min_range_or_weird(const knot_rrset_t *rr, const struct kr_query *qry)
{
if (rr->rrs.count != 1) {
kr_assert(rr->rrs.count > 0);
if (rr->type == KNOT_RRTYPE_NSEC || rr->type == KNOT_RRTYPE_NSEC3
|| rr->rrs.count == 0) {
return true; /*< weird */
}
}
bool ret; /**< NOT used for the weird cases */
if (rr->type == KNOT_RRTYPE_NSEC) {
if (!check_dname_for_lf(rr->owner, qry))
return true; /*< weird, probably filtered even before this point */
ret = !check_dname_for_lf(knot_nsec_next(rr->rrs.rdata), qry);
/* ^^ Zero inside the next-name label means it's probably a minimal range,
* and anyway it's problematic for our aggressive cache (comparisons).
* Real-life examples covered:
* NSEC: name -> \000.name (e.g. typical foobar.CloudFlare.net)
* NSEC: name -> name\000 (CloudFlare on delegations)
*/
} else if (rr->type == KNOT_RRTYPE_NSEC3) {
if (knot_nsec3_next_len(rr->rrs.rdata) != NSEC3_HASH_LEN
|| *rr->owner != NSEC3_HASH_TXT_LEN) {
return true; /*< weird */
}
/* Let's work on the binary hashes. Find if they "differ by one",
* by constructing the owner hash incremented by one and comparing. */
uint8_t owner_hash[NSEC3_HASH_LEN];
if (base32hex_decode(rr->owner + 1, NSEC3_HASH_TXT_LEN,
owner_hash, NSEC3_HASH_LEN) != NSEC3_HASH_LEN) {
return true; /*< weird */
}
for (int i = NSEC3_HASH_LEN - 1; i >= 0; --i) {
if (++owner_hash[i] != 0) break;
}
const uint8_t *next_hash = knot_nsec3_next(rr->rrs.rdata);
ret = memcmp(owner_hash, next_hash, NSEC3_HASH_LEN) == 0;
} else {
return false;
}
if (ret) VERBOSE_MSG(qry, "=> minimized NSEC* range detected\n");
return ret;
}
static ssize_t stash_rrset(struct kr_cache *cache, const struct kr_query *qry,
const knot_rrset_t *rr, const knot_rrset_t *rr_sigs, uint32_t timestamp,
uint8_t rank, trie_t *nsec_pmap, knot_mm_t *pool, bool *needs_pkt)
{
if (kr_rank_test(rank, KR_RANK_BOGUS)) {
WITH_VERBOSE(qry) {
auto_free char *type_str = kr_rrtype_text(rr->type);
VERBOSE_MSG(qry, "=> skipping bogus RR set %s\n", type_str);
}
return kr_ok();
}
if (rr->type == KNOT_RRTYPE_NSEC3 && rr->rrs.count
&& kr_nsec3_limited_rdata(rr->rrs.rdata)) {
/* This shouldn't happen often, thanks to downgrades during validation. */
VERBOSE_MSG(qry, "=> skipping NSEC3 with too many iterations\n");
return kr_ok();
}
if (kr_fails_assert(cache && stash_rrset_precond(rr, qry) > 0))
return kr_error(EINVAL);
int ret = kr_ok();
if (rrset_has_min_range_or_weird(rr, qry))
goto return_needs_pkt;
const int wild_labels = rr_sigs == NULL ? 0 :
knot_dname_labels(rr->owner, NULL) - knot_rrsig_labels(rr_sigs->rrs.rdata);
if (wild_labels < 0)
goto return_needs_pkt;
const knot_dname_t *encloser = rr->owner; /**< the closest encloser name */
for (int i = 0; i < wild_labels; ++i) {
encloser = knot_wire_next_label(encloser, NULL);
}
/* Construct the key under which RRs will be stored,
* and add corresponding nsec_pmap item (if necessary). */
struct key k_storage, *k = &k_storage;
knot_db_val_t key;
switch (rr->type) {
case KNOT_RRTYPE_NSEC3:
/* Skip opt-out NSEC3 sets. */
if (KNOT_NSEC3_FLAG_OPT_OUT & knot_nsec3_flags(rr->rrs.rdata))
goto return_needs_pkt;
/* fall through */
case KNOT_RRTYPE_NSEC:
/* Skip any NSEC*s that aren't validated or are suspicious. */
if (!kr_rank_test(rank, KR_RANK_SECURE) || rr->rrs.count != 1)
goto return_needs_pkt;
if (kr_fails_assert(rr_sigs && rr_sigs->rrs.count && rr_sigs->rrs.rdata)) {
ret = kr_error(EINVAL);
goto return_needs_pkt;
}
const knot_dname_t *signer = knot_rrsig_signer_name(rr_sigs->rrs.rdata);
const int signer_size = knot_dname_size(signer);
k->zlf_len = signer_size - 1;
void **npp = NULL;
if (nsec_pmap) {
npp = trie_get_ins(nsec_pmap, (const char *)signer, signer_size);
if (kr_fails_assert(npp))
return kr_error(ENOMEM);
}
if (rr->type == KNOT_RRTYPE_NSEC) {
key = key_NSEC1(k, encloser, wild_labels);
break;
}
kr_require(rr->type == KNOT_RRTYPE_NSEC3);
const knot_rdata_t * const rdata = rr->rrs.rdata;
if (rdata->len <= 4) {
ret = kr_error(EILSEQ); /*< data from outside; less trust */
goto return_needs_pkt;
}
const int np_dlen = nsec_p_rdlen(rdata->data);
if (np_dlen > rdata->len) {
ret = kr_error(EILSEQ);
goto return_needs_pkt;
}
key = key_NSEC3(k, encloser, nsec_p_mkHash(rdata->data));
if (npp && !*npp) {
*npp = mm_alloc(pool, np_dlen);
if (kr_fails_assert(*npp))
break;
memcpy(*npp, rdata->data, np_dlen);
}
break;
default:
ret = kr_dname_lf(k->buf, encloser, wild_labels);
if (kr_fails_assert(ret == 0))
goto return_needs_pkt;
key = key_exact_type(k, rr->type);
}
/* Compute in-cache size for the new data. */
const knot_rdataset_t *rds_sigs = rr_sigs ? &rr_sigs->rrs : NULL;
const int rr_ssize = rdataset_dematerialize_size(&rr->rrs);
if (kr_fails_assert(rr_ssize == to_even(rr_ssize)))
return kr_error(EINVAL);
knot_db_val_t val_new_entry = {
.data = NULL,
.len = offsetof(struct entry_h, data) + rr_ssize
+ rdataset_dematerialize_size(rds_sigs),
};
/* Prepare raw memory for the new entry. */
ret = entry_h_splice(&val_new_entry, rank, key, k->type, rr->type,
rr->owner, qry, cache, timestamp);
if (ret) return kr_ok(); /* some aren't really errors */
if (kr_fails_assert(val_new_entry.data))
return kr_error(EFAULT);
/* Write the entry itself. */
struct entry_h *eh = val_new_entry.data;
memset(eh, 0, offsetof(struct entry_h, data));
eh->time = timestamp;
eh->ttl = rr->ttl;
eh->rank = rank;
rdataset_dematerialize(&rr->rrs, eh->data);
rdataset_dematerialize(rds_sigs, eh->data + rr_ssize);
if (kr_fails_assert(entry_h_consistent_E(val_new_entry, rr->type)))
return kr_error(EINVAL);
#if 0 /* Occasionally useful when debugging some kinds of changes. */
{
kr_cache_commit(cache);
knot_db_val_t val = { NULL, 0 };
ret = cache_op(cache, read, &key, &val, 1);
if (ret != kr_error(ENOENT)) { // ENOENT might happen in some edge case, I guess
kr_assert(!ret);
entry_list_t el;
entry_list_parse(val, el);
}
}
#endif
/* Verbose-log some not-too-common cases. */
WITH_VERBOSE(qry) { if (kr_rank_test(rank, KR_RANK_AUTH)
|| rr->type == KNOT_RRTYPE_NS) {
auto_free char *type_str = kr_rrtype_text(rr->type),
*encl_str = kr_dname_text(encloser);
VERBOSE_MSG(qry, "=> stashed %s%s %s, rank 0%.2o, "
"%d B total, incl. %d RRSIGs\n",
(wild_labels ? "*." : ""), encl_str, type_str, rank,
(int)val_new_entry.len, (rr_sigs ? rr_sigs->rrs.count : 0)
);
} }
return (ssize_t) val_new_entry.len;
return_needs_pkt:
if (needs_pkt) *needs_pkt = true;
return ret;
}
static int stash_rrarray_entry(ranked_rr_array_t *arr, int arr_i,
const struct kr_query *qry, struct kr_cache *cache,
int *unauth_cnt, trie_t *nsec_pmap, bool *needs_pkt)
{
ranked_rr_array_entry_t *entry = arr->at[arr_i];
if (entry->cached) {
return kr_ok();
}
const knot_rrset_t *rr = entry->rr;
if (rr->type == KNOT_RRTYPE_RRSIG) {
return kr_ok(); /* reduce verbose logging from the following call */
}
int ret = stash_rrset_precond(rr, qry);
if (ret <= 0) {
return ret;
}
/* Try to find corresponding signatures, always. LATER(optim.): speed. */
ranked_rr_array_entry_t *entry_rrsigs = NULL;
const knot_rrset_t *rr_sigs = NULL;
for (ssize_t j = arr->len - 1; j >= 0; --j) {
/* TODO: ATM we assume that some properties are the same
* for all RRSIGs in the set (esp. label count). */
ranked_rr_array_entry_t *e = arr->at[j];
if (kr_fails_assert(!e->in_progress))
return kr_error(EINVAL);
bool ok = e->qry_uid == qry->uid && !e->cached
&& e->rr->type == KNOT_RRTYPE_RRSIG
&& knot_rrsig_type_covered(e->rr->rrs.rdata) == rr->type
&& knot_dname_is_equal(rr->owner, e->rr->owner);
if (!ok) continue;
entry_rrsigs = e;
rr_sigs = e->rr;
break;
}
ssize_t written = stash_rrset(cache, qry, rr, rr_sigs, qry->timestamp.tv_sec,
entry->rank, nsec_pmap, &qry->request->pool, needs_pkt);
if (written < 0) {
kr_log_error(CACHE, "[%05u.%02u] stash failed, ret = %d\n", qry->request->uid,
qry->uid, ret);
return (int) written;
}
if (written > 0) {
/* Mark entry as cached for the rest of the query processing */
entry->cached = true;
if (entry_rrsigs) {
entry_rrsigs->cached = true;
}
if (!kr_rank_test(entry->rank, KR_RANK_AUTH) && rr->type != KNOT_RRTYPE_NS) {
*unauth_cnt += 1;
}
}
return kr_ok();
}
static int stash_nsec_p(const knot_dname_t *dname, const char *nsec_p_v,
struct kr_cache *cache, uint32_t timestamp, knot_mm_t *pool,
const struct kr_query *qry/*logging*/)
{
uint32_t valid_until = timestamp + cache->ttl_max;
/* LATER(optim.): be more precise here ^^ and reduce calls. */
static const int32_t ttl_margin = 3600;
const uint8_t *nsec_p = (const uint8_t *)nsec_p_v;
int data_stride = sizeof(valid_until) + nsec_p_rdlen(nsec_p);
unsigned int log_hash = 0xFeeeFeee; /* this type is simpler for printf args */
auto_free char *log_dname = NULL;
WITH_VERBOSE(qry) {
log_hash = nsec_p_v ? nsec_p_mkHash((const uint8_t *)nsec_p_v) : 0;
log_dname = kr_dname_text(dname);
}
/* Find what's in the cache. */
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, dname, false);
if (ret) return kr_error(ret);
knot_db_val_t key = key_exact_type(k, KNOT_RRTYPE_NS);
knot_db_val_t val_orig = { NULL, 0 };
ret = cache_op(cache, read, &key, &val_orig, 1);
if (ret && ret != -ABS(ENOENT)) {
VERBOSE_MSG(qry, "=> EL read failed (ret: %d)\n", ret);
return kr_ok();
}
/* Prepare new entry_list_t so we can just write at el[0]. */
entry_list_t el;
int log_refresh_by = 0;
if (ret == -ABS(ENOENT)) {
memset(el, 0, sizeof(el));
} else {
ret = entry_list_parse(val_orig, el);
if (ret) {
VERBOSE_MSG(qry, "=> EL parse failed (ret: %d)\n", ret);
return kr_error(0);
}
/* Find the index to replace. */
int i_replace = ENTRY_APEX_NSECS_CNT - 1;
for (int i = 0; i < ENTRY_APEX_NSECS_CNT; ++i) {
if (el[i].len != data_stride) continue;
if (nsec_p && memcmp(nsec_p, (uint8_t *)el[i].data + sizeof(uint32_t),
data_stride - sizeof(uint32_t)) != 0) {
continue;
}
/* Save a cache operation if TTL extended only a little. */
uint32_t valid_orig;
memcpy(&valid_orig, el[i].data, sizeof(valid_orig));
const int32_t ttl_extended_by = valid_until - valid_orig;
if (ttl_extended_by < ttl_margin) {
VERBOSE_MSG(qry,
"=> nsec_p stash for %s skipped (extra TTL: %d, hash: %x)\n",
log_dname, ttl_extended_by, log_hash);
return kr_ok();
}
i_replace = i;
log_refresh_by = ttl_extended_by;
break;
}
/* Shift the other indices: move the first `i_replace` blocks
* by one position. */
if (i_replace) {
memmove(&el[1], &el[0], sizeof(el[0]) * i_replace);
}
}
/* Prepare old data into a buffer. See entry_h_splice() for why. LATER(optim.) */
el[0].len = data_stride;
el[0].data = NULL;
knot_db_val_t val;
val.len = entry_list_serial_size(el),
val.data = mm_alloc(pool, val.len),
entry_list_memcpy(val.data, el);
/* Prepare the new data chunk */
memcpy(el[0].data, &valid_until, sizeof(valid_until));
if (nsec_p) {
memcpy((uint8_t *)el[0].data + sizeof(valid_until), nsec_p,
data_stride - sizeof(valid_until));
}
/* Write it all to the cache */
ret = cache_op(cache, write, &key, &val, 1);
mm_free(pool, val.data);
if (ret || !val.data) {
VERBOSE_MSG(qry, "=> EL write failed (ret: %d)\n", ret);
return kr_ok();
}
if (log_refresh_by) {
VERBOSE_MSG(qry, "=> nsec_p stashed for %s (refresh by %d, hash: %x)\n",
log_dname, log_refresh_by, log_hash);
} else {
VERBOSE_MSG(qry, "=> nsec_p stashed for %s (new, hash: %x)\n",
log_dname, log_hash);
}
return kr_ok();
}
int kr_cache_insert_rr(struct kr_cache *cache,
const knot_rrset_t *rr, const knot_rrset_t *rrsig,
uint8_t rank, uint32_t timestamp, bool ins_nsec_p)
{
int err = stash_rrset_precond(rr, NULL);
if (err <= 0) {
return kr_ok();
}
trie_t *nsec_pmap = NULL;
knot_mm_t *pool = NULL;
if (ins_nsec_p && (rr->type == KNOT_RRTYPE_NSEC || rr->type == KNOT_RRTYPE_NSEC3)) {
pool = mm_ctx_mempool2(4096);
nsec_pmap = trie_create(pool);
kr_assert(pool && nsec_pmap);
}
ssize_t written = stash_rrset(cache, NULL, rr, rrsig, timestamp, rank,
nsec_pmap, pool, NULL);
if (nsec_pmap) {
trie_it_t *it;
for (it = trie_it_begin(nsec_pmap); !trie_it_finished(it); trie_it_next(it)) {
stash_nsec_p((const knot_dname_t *)trie_it_key(it, NULL),
(const char *)*trie_it_val(it),
cache, timestamp, pool, NULL);
}
trie_it_free(it);
mm_ctx_delete(pool);
}
if (written >= 0) {
return kr_ok();
}
return (int) written;
}
static int peek_exact_real(struct kr_cache *cache, const knot_dname_t *name, uint16_t type,
struct kr_cache_p *peek)
{
if (!check_rrtype(type, NULL) || !check_dname_for_lf(name, NULL)) {
return kr_error(ENOTSUP);
}
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, name, false);
if (ret) return kr_error(ret);
knot_db_val_t key = key_exact_type(k, type);
knot_db_val_t val = { NULL, 0 };
ret = cache_op(cache, read, &key, &val, 1);
if (!ret) ret = entry_h_seek(&val, type);
if (ret) return kr_error(ret);
const struct entry_h *eh = entry_h_consistent_E(val, type);
if (!eh || eh->is_packet) {
// TODO: no packets, but better get rid of whole kr_cache_peek_exact().
return kr_error(ENOENT);
}
*peek = (struct kr_cache_p){
.time = eh->time,
.ttl = eh->ttl,
.rank = eh->rank,
.raw_data = val.data,
.raw_bound = knot_db_val_bound(val),
};
return kr_ok();
}
int kr_cache_peek_exact(struct kr_cache *cache, const knot_dname_t *name, uint16_t type,
struct kr_cache_p *peek)
{ /* Just wrap with extra verbose logging. */
const int ret = peek_exact_real(cache, name, type, peek);
if (false && kr_log_is_debug(CACHE, NULL)) { /* too noisy for usual --verbose */
auto_free char *type_str = kr_rrtype_text(type),
*name_str = kr_dname_text(name);
const char *result_str = (ret == kr_ok() ? "hit" :
(ret == kr_error(ENOENT) ? "miss" : "error"));
VERBOSE_MSG(NULL, "_peek_exact: %s %s %s (ret: %d)",
type_str, name_str, result_str, ret);
}
return ret;
}
int kr_cache_remove(struct kr_cache *cache, const knot_dname_t *name, uint16_t type)
{
if (!cache_isvalid(cache)) {
return kr_error(EINVAL);
}
if (!cache->api->remove) {
return kr_error(ENOSYS);
}
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, name, false);
if (ret) return kr_error(ret);
knot_db_val_t key = key_exact_type(k, type);
return cache_op(cache, remove, &key, 1);
}
int kr_cache_match(struct kr_cache *cache, const knot_dname_t *name,
bool exact_name, knot_db_val_t keyval[][2], int maxcount)
{
if (!cache_isvalid(cache)) {
return kr_error(EINVAL);
}
if (!cache->api->match) {
return kr_error(ENOSYS);
}
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, name, false);
if (ret) return kr_error(ret);
// use a mock type
knot_db_val_t key = key_exact_type(k, KNOT_RRTYPE_A);
/* CACHE_KEY_DEF */
key.len -= sizeof(uint16_t); /* the type */
if (!exact_name) {
key.len -= 2; /* '\0' 'E' */
if (name[0] == '\0') ++key.len; /* the root name is special ATM */
}
return cache_op(cache, match, &key, keyval, maxcount);
}
int kr_unpack_cache_key(knot_db_val_t key, knot_dname_t *buf, uint16_t *type)
{
if (key.data == NULL || buf == NULL || type == NULL) {
return kr_error(EINVAL);
}
int len = -1;
const char *tag, *key_data = key.data;
for (tag = key_data + 1; tag < key_data + key.len; ++tag) {
/* CACHE_KEY_DEF */
if (tag[-1] == '\0' && (tag == key_data + 1 || tag[-2] == '\0')) {
if (tag[0] != 'E') return kr_error(EINVAL);
len = tag - 1 - key_data;
break;
}
}
if (len == -1 || len > KNOT_DNAME_MAXLEN) {
return kr_error(EINVAL);
}
int ret = knot_dname_lf2wire(buf, len, key.data);
if (ret < 0) {
return kr_error(ret);
}
/* CACHE_KEY_DEF: jump over "\0 E/1" */
memcpy(type, tag + 1, sizeof(uint16_t));
return kr_ok();
}
int kr_cache_remove_subtree(struct kr_cache *cache, const knot_dname_t *name,
bool exact_name, int maxcount)
{
if (!cache_isvalid(cache)) {
return kr_error(EINVAL);
}
knot_db_val_t keyval[maxcount][2], keys[maxcount];
int ret = kr_cache_match(cache, name, exact_name, keyval, maxcount);
if (ret <= 0) { /* ENOENT -> nothing to remove */
return (ret == KNOT_ENOENT) ? 0 : ret;
}
const int count = ret;
/* Duplicate the key strings, as deletion may invalidate the pointers. */
int i;
for (i = 0; i < count; ++i) {
keys[i].len = keyval[i][0].len;
keys[i].data = malloc(keys[i].len);
if (!keys[i].data) {
ret = kr_error(ENOMEM);
goto cleanup;
}
memcpy(keys[i].data, keyval[i][0].data, keys[i].len);
}
ret = cache_op(cache, remove, keys, count);
cleanup:
kr_cache_commit(cache); /* Sync even after just kr_cache_match(). */
/* Free keys */
while (--i >= 0) {
free(keys[i].data);
}
return ret;
}
static void health_timer_cb(uv_timer_t *health_timer)
{
struct kr_cache *cache = health_timer->data;
if (cache)
cache_op(cache, check_health);
/* We don't do anything with the return code. For example, in some situations
* the file may not exist (temporarily), and we just expect to be more lucky
* when the timer fires again. */
}
int kr_cache_check_health(struct kr_cache *cache, int interval)
{
if (interval == 0)
return cache_op(cache, check_health);
if (interval < 0) {
if (!cache->health_timer)
return kr_ok(); // tolerate stopping a "stopped" timer
uv_close((uv_handle_t *)cache->health_timer, (uv_close_cb)free);
cache->health_timer->data = NULL;
cache->health_timer = NULL;
return kr_ok();
}
if (!cache->health_timer) {
/* We avoid depending on daemon's symbols by using uv_default_loop. */
cache->health_timer = malloc(sizeof(*cache->health_timer));
if (!cache->health_timer) return kr_error(ENOMEM);
uv_loop_t *loop = uv_default_loop();
kr_require(loop);
int ret = uv_timer_init(loop, cache->health_timer);
if (ret) {
free(cache->health_timer);
cache->health_timer = NULL;
return kr_error(ret);
}
cache->health_timer->data = cache;
}
kr_assert(cache->health_timer->data);
return kr_error(uv_timer_start(cache->health_timer, health_timer_cb, interval, interval));
}
|