1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include "lib/cache/impl.h"
#include "lib/dnssec/ta.h"
#include "lib/layer/iterate.h"
/* The whole file only exports peek_nosync().
* Forwards for larger chunks of code: */
static int found_exact_hit(kr_layer_t *ctx, knot_pkt_t *pkt, knot_db_val_t val,
uint8_t lowest_rank);
static int closest_NS(struct kr_cache *cache, struct key *k, entry_list_t el,
struct kr_query *qry, bool only_NS, bool is_DS);
static int answer_simple_hit(kr_layer_t *ctx, knot_pkt_t *pkt, uint16_t type,
const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl);
static int answer_dname_hit(kr_layer_t *ctx, knot_pkt_t *pkt, const knot_dname_t *dname_owner,
const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl);
static int try_wild(struct key *k, struct answer *ans, const knot_dname_t *clencl_name,
uint16_t type, uint8_t lowest_rank,
const struct kr_query *qry, struct kr_cache *cache);
static int peek_encloser(
struct key *k, struct answer *ans, int sname_labels,
uint8_t lowest_rank, const struct kr_query *qry, struct kr_cache *cache);
static int nsec_p_init(struct nsec_p *nsec_p, knot_db_val_t nsec_p_entry, bool with_knot)
{
const size_t stamp_len = sizeof(uint32_t);
if (nsec_p_entry.len <= stamp_len) { /* plain NSEC if equal */
nsec_p->raw = NULL;
nsec_p->hash = 0;
return kr_ok();
}
nsec_p->raw = (uint8_t *)nsec_p_entry.data + stamp_len;
nsec_p->hash = nsec_p_mkHash(nsec_p->raw);
if (!with_knot) return kr_ok();
/* Convert NSEC3 params to another format. */
const dnssec_binary_t rdata = {
.size = nsec_p_rdlen(nsec_p->raw),
.data = (uint8_t *)/*const-cast*/nsec_p->raw,
};
int ret = dnssec_nsec3_params_from_rdata(&nsec_p->libknot, &rdata);
return ret == DNSSEC_EOK ? kr_ok() : kr_error(ret);
}
static void nsec_p_cleanup(struct nsec_p *nsec_p)
{
dnssec_binary_free(&nsec_p->libknot.salt);
/* We don't really need to clear it, but it's not large. (`salt` zeroed above) */
memset(nsec_p, 0, sizeof(*nsec_p));
}
/** Compute new TTL for nsec_p entry, using SOA serial arith.
* \param new_ttl (optionally) write the new TTL (even if negative)
* \return error code, e.g. kr_error(ESTALE) */
static int nsec_p_ttl(knot_db_val_t entry, const uint32_t timestamp, int32_t *new_ttl)
{
if (kr_fails_assert(entry.data))
return kr_error(EINVAL);
uint32_t stamp;
if (!entry.len)
return kr_error(ENOENT);
if (kr_fails_assert(entry.len >= sizeof(stamp)))
return kr_error(EILSEQ);
memcpy(&stamp, entry.data, sizeof(stamp));
int32_t newttl = stamp - timestamp;
if (new_ttl) *new_ttl = newttl;
return newttl < 0 ? kr_error(ESTALE) : kr_ok();
}
static uint8_t get_lowest_rank(const struct kr_query *qry, const knot_dname_t *name, const uint16_t type)
{
/* Shut up linters. */
kr_require(qry && qry->request);
/* TODO: move rank handling into the iterator (DNSSEC_* flags)? */
const bool allow_unverified =
knot_wire_get_cd(qry->request->qsource.packet->wire) || qry->flags.STUB;
/* in stub mode we don't trust RRs anyway ^^ */
if (qry->flags.NONAUTH) {
return KR_RANK_INITIAL;
/* Note: there's little sense in validation status for non-auth records.
* In case of using NONAUTH to get NS IPs, knowing that you ask correct
* IP doesn't matter much for security; it matters whether you can
* validate the answers from the NS.
*/
} else if (!allow_unverified) {
/* Records not present under any TA don't have their security
* verified at all, so we also accept low ranks in that case. */
const bool ta_covers = kr_ta_closest(qry->request->ctx, name, type);
/* ^ TODO: performance? TODO: stype - call sites */
if (ta_covers) {
return KR_RANK_INSECURE | KR_RANK_AUTH;
} /* else fallthrough */
}
return KR_RANK_INITIAL | KR_RANK_AUTH;
}
/** Almost whole .produce phase for the cache module.
* \note we don't transition to KR_STATE_FAIL even in case of "unexpected errors".
*/
int peek_nosync(kr_layer_t *ctx, knot_pkt_t *pkt)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
struct kr_cache *cache = &req->ctx->cache;
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, qry->sname, false);
if (kr_fails_assert(ret == 0))
return ctx->state;
const uint8_t lowest_rank = get_lowest_rank(qry, qry->sname, qry->stype);
/**** 1. find the name or the closest (available) zone, not considering wildcards
**** 1a. exact name+type match (can be negative, mainly in insecure zones) */
{
knot_db_val_t key = key_exact_type_maypkt(k, qry->stype);
knot_db_val_t val = { NULL, 0 };
ret = cache_op(cache, read, &key, &val, 1);
if (!ret) {
/* found an entry: test conditions, materialize into pkt, etc. */
ret = found_exact_hit(ctx, pkt, val, lowest_rank);
}
}
if (!ret) {
return KR_STATE_DONE;
} else if (kr_fails_assert(ret == kr_error(ENOENT))) {
VERBOSE_MSG(qry, "=> exact hit error: %d %s\n", ret, kr_strerror(ret));
return ctx->state;
}
/* Avoid aggressive answers in STUB mode.
* As STUB mode doesn't validate, it wouldn't save the necessary records.
* Moreover, this special case avoids unintentional NXDOMAIN on grafted subtrees. */
if (qry->flags.STUB)
return ctx->state;
/**** 1b. otherwise, find the longest prefix zone/xNAME (with OK time+rank). [...] */
k->zname = qry->sname;
ret = kr_dname_lf(k->buf, k->zname, false); /* LATER(optim.): probably remove */
if (kr_fails_assert(ret == 0))
return ctx->state;
entry_list_t el;
ret = closest_NS(cache, k, el, qry, false, qry->stype == KNOT_RRTYPE_DS);
if (ret) {
if (kr_fails_assert(ret == kr_error(ENOENT)) || !el[0].len) {
return ctx->state;
}
}
switch (k->type) {
case KNOT_RRTYPE_CNAME: {
const knot_db_val_t v = el[EL_CNAME];
if (kr_fails_assert(v.data && v.len))
return ctx->state;
const int32_t new_ttl = get_new_ttl(v.data, qry, qry->sname,
KNOT_RRTYPE_CNAME, qry->timestamp.tv_sec);
ret = answer_simple_hit(ctx, pkt, KNOT_RRTYPE_CNAME, v.data,
knot_db_val_bound(v), new_ttl);
return ret == kr_ok() ? KR_STATE_DONE : ctx->state;
}
case KNOT_RRTYPE_DNAME: {
const knot_db_val_t v = el[EL_DNAME];
if (kr_fails_assert(v.data && v.len))
return ctx->state;
/* TTL: for simplicity, we just ask for TTL of the generated CNAME. */
const int32_t new_ttl = get_new_ttl(v.data, qry, qry->sname,
KNOT_RRTYPE_CNAME, qry->timestamp.tv_sec);
ret = answer_dname_hit(ctx, pkt, k->zname, v.data,
knot_db_val_bound(v), new_ttl);
return ret == kr_ok() ? KR_STATE_DONE : ctx->state;
}
}
/* We have to try proving from NSEC*. */
auto_free char *log_zname = NULL;
WITH_VERBOSE(qry) {
log_zname = kr_dname_text(k->zname);
if (!el[0].len) {
VERBOSE_MSG(qry, "=> no NSEC* cached for zone: %s\n", log_zname);
}
}
#if 0
if (!eh) { /* fall back to root hints? */
ret = kr_zonecut_set_sbelt(req->ctx, &qry->zone_cut);
if (ret) return ctx->state;
kr_assert(!qry->zone_cut.parent);
//VERBOSE_MSG(qry, "=> using root hints\n");
//qry->flags.AWAIT_CUT = false;
return ctx->state;
}
/* Now `eh` points to the closest NS record that we've found,
* and that's the only place to start - we may either find
* a negative proof or we may query upstream from that point. */
kr_zonecut_set(&qry->zone_cut, k->zname);
ret = kr_make_query(qry, pkt); // TODO: probably not yet - qname minimization
if (ret) return ctx->state;
#endif
/** Structure for collecting multiple NSEC* + RRSIG records,
* in preparation for the answer, and for tracking the progress. */
struct answer ans;
memset(&ans, 0, sizeof(ans));
ans.mm = &pkt->mm;
const int sname_labels = knot_dname_labels(qry->sname, NULL);
/* Try the NSEC* parameters in order, until success.
* Let's not mix different parameters for NSEC* RRs in a single proof. */
for (int i = 0; ;) {
int32_t log_new_ttl = -123456789; /* visually recognizable value */
ret = nsec_p_ttl(el[i], qry->timestamp.tv_sec, &log_new_ttl);
if (!ret || kr_log_is_debug_qry(CACHE, qry)) {
nsec_p_init(&ans.nsec_p, el[i], !ret);
}
if (ret) {
VERBOSE_MSG(qry, "=> skipping zone: %s, %s, hash %x;"
"new TTL %d, ret %d\n",
log_zname, (ans.nsec_p.raw ? "NSEC3" : "NSEC"),
(unsigned)ans.nsec_p.hash, (int)log_new_ttl, ret);
/* no need for nsec_p_cleanup() in this case */
goto cont;
}
VERBOSE_MSG(qry, "=> trying zone: %s, %s, hash %x\n",
log_zname, (ans.nsec_p.raw ? "NSEC3" : "NSEC"),
(unsigned)ans.nsec_p.hash);
/**** 2. and 3. inside */
ret = peek_encloser(k, &ans, sname_labels,
lowest_rank, qry, cache);
nsec_p_cleanup(&ans.nsec_p);
if (!ret) break;
if (ret < 0) return ctx->state;
cont:
/* Otherwise we try another nsec_p, if available. */
if (++i == ENTRY_APEX_NSECS_CNT) return ctx->state;
/* clear possible partial answers in `ans` (no need to deallocate) */
ans.rcode = 0;
memset(&ans.rrsets, 0, sizeof(ans.rrsets));
}
/**** 4. add SOA iff needed */
if (ans.rcode != PKT_NOERROR) {
/* Assuming k->buf still starts with zone's prefix,
* look up the SOA in cache. */
k->buf[0] = k->zlf_len;
knot_db_val_t key = key_exact_type(k, KNOT_RRTYPE_SOA);
knot_db_val_t val = { NULL, 0 };
ret = cache_op(cache, read, &key, &val, 1);
const struct entry_h *eh;
if (ret || !(eh = entry_h_consistent_E(val, KNOT_RRTYPE_SOA))) {
kr_assert(ret); /* only want to catch `eh` failures */
VERBOSE_MSG(qry, "=> SOA missed\n");
return ctx->state;
}
/* Check if the record is OK. */
int32_t new_ttl = get_new_ttl(eh, qry, k->zname, KNOT_RRTYPE_SOA,
qry->timestamp.tv_sec);
if (new_ttl < 0 || eh->rank < lowest_rank || eh->is_packet) {
VERBOSE_MSG(qry, "=> SOA unfit %s: rank 0%.2o, new TTL %d\n",
(eh->is_packet ? "packet" : "RR"),
eh->rank, new_ttl);
return ctx->state;
}
/* Add the SOA into the answer. */
ret = entry2answer(&ans, AR_SOA, eh, knot_db_val_bound(val),
k->zname, KNOT_RRTYPE_SOA, new_ttl);
if (ret) return ctx->state;
}
/* Find our target RCODE. */
int real_rcode;
switch (ans.rcode) {
case PKT_NODATA:
case PKT_NOERROR: /* positive wildcarded response */
real_rcode = KNOT_RCODE_NOERROR;
break;
case PKT_NXDOMAIN:
real_rcode = KNOT_RCODE_NXDOMAIN;
break;
default:
kr_assert(false);
case 0: /* i.e. nothing was found */
/* LATER(optim.): zone cut? */
VERBOSE_MSG(qry, "=> cache miss\n");
return ctx->state;
}
if (pkt_renew(pkt, qry->sname, qry->stype)
|| knot_pkt_begin(pkt, KNOT_ANSWER)
) {
kr_assert(false);
return ctx->state;
}
knot_wire_set_rcode(pkt->wire, real_rcode);
bool expiring = false; // TODO
for (int i = 0; i < sizeof(ans.rrsets) / sizeof(ans.rrsets[0]); ++i) {
if (i == 1) knot_pkt_begin(pkt, KNOT_AUTHORITY);
if (!ans.rrsets[i].set.rr) continue;
expiring = expiring || ans.rrsets[i].set.expiring;
ret = pkt_append(pkt, &ans.rrsets[i], ans.rrsets[i].set.rank);
if (kr_fails_assert(ret == 0))
return ctx->state;
}
/* Finishing touches. */
struct kr_qflags * const qf = &qry->flags;
qf->EXPIRING = expiring;
qf->CACHED = true;
qf->NO_MINIMIZE = true;
return KR_STATE_DONE;
}
/**
* This is where the high-level "business logic" of aggressive cache is.
* \return 0: success (may need SOA); >0: try other nsec_p; <0: exit cache immediately.
*/
static int peek_encloser(
struct key *k, struct answer *ans, const int sname_labels,
uint8_t lowest_rank, const struct kr_query *qry, struct kr_cache *cache)
{
/** Start of NSEC* covering the sname;
* it's part of key - the one within zone (read only) */
knot_db_val_t cover_low_kwz = { NULL, 0 };
knot_dname_t cover_hi_storage[KNOT_DNAME_MAXLEN];
/** End of NSEC* covering the sname. */
knot_db_val_t cover_hi_kwz = {
.data = cover_hi_storage,
.len = sizeof(cover_hi_storage),
};
/**** 2. Find a closest (provable) encloser (of sname). */
int clencl_labels = -1;
bool clencl_is_tentative = false;
if (!ans->nsec_p.raw) { /* NSEC */
int ret = nsec1_encloser(k, ans, sname_labels, &clencl_labels,
&cover_low_kwz, &cover_hi_kwz, qry, cache);
if (ret) return ret;
} else {
int ret = nsec3_encloser(k, ans, sname_labels, &clencl_labels,
qry, cache);
clencl_is_tentative = ret == ABS(ENOENT) && clencl_labels >= 0;
/* ^^ Last chance: *positive* wildcard record under this clencl. */
if (ret && !clencl_is_tentative) return ret;
}
/* We should have either a match or a cover at this point. */
if (kr_fails_assert(ans->rcode == PKT_NODATA || ans->rcode == PKT_NXDOMAIN))
return kr_error(EINVAL);
const bool ncloser_covered = ans->rcode == PKT_NXDOMAIN;
/** Name of the closest (provable) encloser. */
const knot_dname_t *clencl_name = qry->sname;
for (int l = sname_labels; l > clencl_labels; --l)
clencl_name = knot_wire_next_label(clencl_name, NULL);
/**** 3. source of synthesis checks, in case the next closer name was covered.
**** 3a. We want to query for NSEC* of source of synthesis (SS) or its
* predecessor, providing us with a proof of its existence or non-existence. */
if (ncloser_covered && !ans->nsec_p.raw) {
int ret = nsec1_src_synth(k, ans, clencl_name,
cover_low_kwz, cover_hi_kwz, qry, cache);
if (ret == AR_SOA) return 0;
kr_assert(ret <= 0);
if (ret) return ret;
} else if (ncloser_covered && ans->nsec_p.raw && !clencl_is_tentative) {
int ret = nsec3_src_synth(k, ans, clencl_name, qry, cache);
if (ret == AR_SOA) return 0;
kr_assert(ret <= 0);
if (ret) return ret;
} /* else (!ncloser_covered) so no wildcard checks needed,
* as we proved that sname exists. */
/**** 3b. find wildcarded answer, if next closer name was covered
* and we don't have a full proof yet. (common for NSEC*) */
if (!ncloser_covered)
return kr_ok(); /* decrease indentation */
/* Construct key for exact qry->stype + source of synthesis. */
int ret = kr_dname_lf(k->buf, clencl_name, true);
if (kr_fails_assert(ret == 0))
return kr_error(ret);
const uint16_t types[] = { qry->stype, KNOT_RRTYPE_CNAME };
for (int i = 0; i < (2 - (qry->stype == KNOT_RRTYPE_CNAME)); ++i) {
ret = try_wild(k, ans, clencl_name, types[i],
lowest_rank, qry, cache);
if (ret == kr_ok()) {
return kr_ok();
} else if (kr_fails_assert(ret == kr_error(ENOENT) || ret == kr_error(ESTALE))) {
return kr_error(ret);
}
/* else continue */
}
/* Neither attempt succeeded, but the NSEC* proofs were found,
* so skip trying other parameters, as it seems very unlikely
* to turn out differently than by the same wildcard search. */
return kr_error(ENOENT);
}
static void answer_simple_qflags(struct kr_qflags *qf, const struct entry_h *eh,
uint32_t new_ttl)
{
/* Finishing touches. */
qf->EXPIRING = is_expiring(eh->ttl, new_ttl);
qf->CACHED = true;
qf->NO_MINIMIZE = true;
qf->DNSSEC_INSECURE = kr_rank_test(eh->rank, KR_RANK_INSECURE);
if (qf->DNSSEC_INSECURE) {
qf->DNSSEC_WANT = false;
}
}
#define CHECK_RET(ret) do { \
if (kr_fails_assert((ret) >= 0)) return kr_error((ret)); \
} while (false)
static int answer_simple_hit(kr_layer_t *ctx, knot_pkt_t *pkt, uint16_t type,
const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
/* All OK, so start constructing the (pseudo-)packet. */
int ret = pkt_renew(pkt, qry->sname, qry->stype);
CHECK_RET(ret);
/* Materialize the sets for the answer in (pseudo-)packet. */
struct answer ans;
memset(&ans, 0, sizeof(ans));
ans.mm = &pkt->mm;
ret = entry2answer(&ans, AR_ANSWER, eh, eh_bound,
qry->sname, type, new_ttl);
CHECK_RET(ret);
/* Put links to the materialized data into the pkt. */
ret = pkt_append(pkt, &ans.rrsets[AR_ANSWER], eh->rank);
CHECK_RET(ret);
answer_simple_qflags(&qry->flags, eh, new_ttl);
VERBOSE_MSG(qry, "=> satisfied by exact %s: rank 0%.2o, new TTL %d\n",
(type == KNOT_RRTYPE_CNAME ? "CNAME" : "RRset"),
eh->rank, new_ttl);
return kr_ok();
}
static int answer_dname_hit(kr_layer_t *ctx, knot_pkt_t *pkt, const knot_dname_t *dname_owner,
const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
/* All OK, so start constructing the (pseudo-)packet. */
int ret = pkt_renew(pkt, qry->sname, qry->stype);
CHECK_RET(ret);
/* Materialize the DNAME for the answer in (pseudo-)packet. */
struct answer ans;
memset(&ans, 0, sizeof(ans));
ans.mm = &pkt->mm;
ret = entry2answer(&ans, AR_ANSWER, eh, eh_bound,
dname_owner, KNOT_RRTYPE_DNAME, new_ttl);
CHECK_RET(ret);
/* Put link to the RRset into the pkt. */
ret = pkt_append(pkt, &ans.rrsets[AR_ANSWER], eh->rank);
CHECK_RET(ret);
const knot_dname_t *dname_target =
knot_dname_target(ans.rrsets[AR_ANSWER].set.rr->rrs.rdata);
/* Generate CNAME RRset for the answer in (pseudo-)packet. */
const int AR_CNAME = AR_SOA;
knot_rrset_t *rr = ans.rrsets[AR_CNAME].set.rr
= knot_rrset_new(qry->sname, KNOT_RRTYPE_CNAME, KNOT_CLASS_IN,
new_ttl, ans.mm);
CHECK_RET(rr ? kr_ok() : -ENOMEM);
const knot_dname_t *cname_target = knot_dname_replace_suffix(qry->sname,
knot_dname_labels(dname_owner, NULL), dname_target, ans.mm);
CHECK_RET(cname_target ? kr_ok() : -ENOMEM);
const int rdata_len = knot_dname_size(cname_target);
if (rdata_len <= KNOT_DNAME_MAXLEN
&& knot_dname_labels(cname_target, NULL) <= KNOT_DNAME_MAXLABELS) {
/* Normal case: the target name fits. */
rr->rrs.count = 1;
rr->rrs.size = knot_rdata_size(rdata_len);
rr->rrs.rdata = mm_alloc(ans.mm, rr->rrs.size);
CHECK_RET(rr->rrs.rdata ? kr_ok() : -ENOMEM);
knot_rdata_init(rr->rrs.rdata, rdata_len, cname_target);
/* Put link to the RRset into the pkt. */
ret = pkt_append(pkt, &ans.rrsets[AR_CNAME], eh->rank);
CHECK_RET(ret);
} else {
/* Note that it's basically a successful answer; name just doesn't fit. */
knot_wire_set_rcode(pkt->wire, KNOT_RCODE_YXDOMAIN);
}
answer_simple_qflags(&qry->flags, eh, new_ttl);
VERBOSE_MSG(qry, "=> satisfied by DNAME+CNAME: rank 0%.2o, new TTL %d\n",
eh->rank, new_ttl);
return kr_ok();
}
#undef CHECK_RET
/** TODO: description; see the single call site for now. */
static int found_exact_hit(kr_layer_t *ctx, knot_pkt_t *pkt, knot_db_val_t val,
uint8_t lowest_rank)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
int ret = entry_h_seek(&val, qry->stype);
if (ret) return ret;
const struct entry_h *eh = entry_h_consistent_E(val, qry->stype);
if (kr_fails_assert(eh))
return kr_error(ENOENT);
// LATER: recovery in case of error, perhaps via removing the entry?
// LATER(optim): perhaps optimize the zone cut search
int32_t new_ttl = get_new_ttl(eh, qry, qry->sname, qry->stype,
qry->timestamp.tv_sec);
if (new_ttl < 0 || eh->rank < lowest_rank) {
/* Positive record with stale TTL or bad rank.
* LATER(optim.): It's unlikely that we find a negative one,
* so we might theoretically skip all the cache code. */
VERBOSE_MSG(qry, "=> skipping exact %s: rank 0%.2o (min. 0%.2o), new TTL %d\n",
eh->is_packet ? "packet" : "RR", eh->rank, lowest_rank, new_ttl);
return kr_error(ENOENT);
}
const uint8_t *eh_bound = knot_db_val_bound(val);
if (eh->is_packet) {
/* Note: we answer here immediately, even if it's (theoretically)
* possible that we could generate a higher-security negative proof.
* Rank is high-enough so we take it to save time searching;
* in practice this also helps in some incorrect zones (live-signed). */
return answer_from_pkt (ctx, pkt, qry->stype, eh, eh_bound, new_ttl);
} else {
return answer_simple_hit(ctx, pkt, qry->stype, eh, eh_bound, new_ttl);
}
}
/** Try to satisfy via wildcard (positively). See the single call site. */
static int try_wild(struct key *k, struct answer *ans, const knot_dname_t *clencl_name,
const uint16_t type, const uint8_t lowest_rank,
const struct kr_query *qry, struct kr_cache *cache)
{
knot_db_val_t key = key_exact_type(k, type);
/* Find the record. */
knot_db_val_t val = { NULL, 0 };
int ret = cache_op(cache, read, &key, &val, 1);
if (!ret) {
ret = entry_h_seek(&val, type);
}
if (ret) {
if (kr_fails_assert(ret == kr_error(ENOENT)))
VERBOSE_MSG(qry, "=> wildcard: hit error %d %s\n",
ret, strerror(abs(ret)));
WITH_VERBOSE(qry) {
auto_free char *clencl_str = kr_dname_text(clencl_name),
*type_str = kr_rrtype_text(type);
VERBOSE_MSG(qry, "=> wildcard: not found: *.%s %s\n",
clencl_str, type_str);
}
return ret;
}
/* Check if the record is OK. */
const struct entry_h *eh = entry_h_consistent_E(val, type);
if (kr_fails_assert(eh))
return kr_error(ret);
// LATER: recovery in case of error, perhaps via removing the entry?
int32_t new_ttl = get_new_ttl(eh, qry, qry->sname, type, qry->timestamp.tv_sec);
/* ^^ here we use the *expanded* wildcard name */
if (new_ttl < 0 || eh->rank < lowest_rank || eh->is_packet) {
/* Wildcard record with stale TTL, bad rank or packet. */
VERBOSE_MSG(qry, "=> wildcard: skipping %s, rank 0%.2o, new TTL %d\n",
eh->is_packet ? "packet" : "RR", eh->rank, new_ttl);
return kr_error(ESTALE);
}
/* Add the RR into the answer. */
ret = entry2answer(ans, AR_ANSWER, eh, knot_db_val_bound(val),
qry->sname, type, new_ttl);
VERBOSE_MSG(qry, "=> wildcard: answer expanded, ret = %d, new TTL %d\n",
ret, (int)new_ttl);
if (ret) return kr_error(ret);
ans->rcode = PKT_NOERROR;
return kr_ok();
}
int kr_cache_closest_apex(struct kr_cache *cache, const knot_dname_t *name, bool is_DS,
knot_dname_t ** apex)
{
if (kr_fails_assert(cache && cache->db && name && apex && *apex == NULL))
return kr_error(EINVAL);
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, name, false);
if (ret)
return kr_error(ret);
entry_list_t el_;
k->zname = name;
ret = closest_NS(cache, k, el_, NULL, true, is_DS);
if (ret && ret != -abs(ENOENT))
return ret;
*apex = knot_dname_copy(k->zname, NULL);
if (!*apex)
return kr_error(ENOMEM);
return kr_ok();
}
/** \internal for closest_NS. Check suitability of a single entry, setting k->type if OK.
* \return error code, negative iff whole list should be skipped.
*/
static int check_NS_entry(struct key *k, knot_db_val_t entry, int i,
bool exact_match, bool is_DS,
const struct kr_query *qry, uint32_t timestamp);
/**
* Find the longest prefix zone/xNAME (with OK time+rank), starting at k->*.
*
* The found type is returned via k->type; the values are returned in el.
* \note we use k->type = KNOT_RRTYPE_NS also for the nsec_p result.
* \param qry can be NULL (-> gettimeofday(), but you lose the stale-serve hook)
* \param only_NS don't consider xNAMEs
* \return error code
*/
static int closest_NS(struct kr_cache *cache, struct key *k, entry_list_t el,
struct kr_query *qry, const bool only_NS, const bool is_DS)
{
/* get the current timestamp */
uint32_t timestamp;
if (qry) {
timestamp = qry->timestamp.tv_sec;
} else {
struct timeval tv;
if (gettimeofday(&tv, NULL)) return kr_error(errno);
timestamp = tv.tv_sec;
}
int zlf_len = k->buf[0];
// LATER(optim): if stype is NS, we check the same value again
bool exact_match = true;
bool need_zero = true;
/* Inspect the NS/xNAME entries, shortening by a label on each iteration. */
do {
k->buf[0] = zlf_len;
knot_db_val_t key = key_exact_type(k, KNOT_RRTYPE_NS);
knot_db_val_t val;
int ret = cache_op(cache, read, &key, &val, 1);
if (ret == kr_error(ENOENT)) goto next_label;
if (kr_fails_assert(ret == 0)) {
if (need_zero) memset(el, 0, sizeof(entry_list_t));
return kr_error(ret);
}
/* Check consistency, find any type;
* using `goto` for shortening by another label. */
ret = entry_list_parse(val, el);
if (kr_fails_assert(ret == 0)) // do something about it?
goto next_label;
need_zero = false;
/* More types are possible; try in order.
* For non-fatal failures just "continue;" to try the next type. */
/* Now a complication - we need to try EL_DNAME before NSEC*
* (Unfortunately that's not easy to write very nicely.) */
if (!only_NS) {
const int i = EL_DNAME;
ret = check_NS_entry(k, el[i], i, exact_match, is_DS,
qry, timestamp);
if (ret < 0) goto next_label; else
if (!ret) {
/* We found our match. */
k->zlf_len = zlf_len;
return kr_ok();
}
}
const int el_count = only_NS ? EL_NS + 1 : EL_LENGTH;
for (int i = 0; i < el_count; ++i) {
if (i == EL_DNAME) continue;
ret = check_NS_entry(k, el[i], i, exact_match, is_DS,
qry, timestamp);
if (ret < 0) goto next_label; else
if (!ret) {
/* We found our match. */
k->zlf_len = zlf_len;
return kr_ok();
}
}
next_label:
/* remove one more label */
exact_match = false;
if (k->zname[0] == 0) {
/* We miss root NS in cache, but let's at least assume it exists. */
k->type = KNOT_RRTYPE_NS;
k->zlf_len = zlf_len;
kr_assert(zlf_len == 0);
if (need_zero) memset(el, 0, sizeof(entry_list_t));
return kr_error(ENOENT);
}
zlf_len -= (k->zname[0] + 1);
k->zname += (k->zname[0] + 1);
k->buf[zlf_len + 1] = 0;
} while (true);
}
static int check_NS_entry(struct key *k, const knot_db_val_t entry, const int i,
const bool exact_match, const bool is_DS,
const struct kr_query *qry, uint32_t timestamp)
{
const int ESKIP = ABS(ENOENT);
if (!entry.len
/* On a zone cut we want DS from the parent zone. */
|| (exact_match && is_DS)
/* CNAME is interesting only if we
* directly hit the name that was asked.
* Note that we want it even in the DS case. */
|| (i == EL_CNAME && !exact_match)
/* DNAME is interesting only if we did NOT
* directly hit the name that was asked. */
|| (i == EL_DNAME && exact_match)
) {
return ESKIP;
}
uint16_t type;
if (i < ENTRY_APEX_NSECS_CNT) {
type = KNOT_RRTYPE_NS;
int32_t log_new_ttl = -123456789; /* visually recognizable value */
const int err = nsec_p_ttl(entry, timestamp, &log_new_ttl);
if (err) {
VERBOSE_MSG(qry,
"=> skipping unfit nsec_p: new TTL %d, error %d\n",
(int)log_new_ttl, err);
return ESKIP;
}
} else {
type = EL2RRTYPE(i);
/* Find the entry for the type, check positivity, TTL */
const struct entry_h *eh = entry_h_consistent_E(entry, type);
if (kr_fails_assert(eh)) {
VERBOSE_MSG(qry, "=> EH not consistent\n");
return kr_error(EILSEQ);
}
const int32_t log_new_ttl = get_new_ttl(eh, qry, k->zname, type, timestamp);
const bool ok = /* Not interested in negative bogus or outdated RRs. */
!eh->is_packet && log_new_ttl >= 0
/* For NS any kr_rank is accepted, as insecure or even nonauth is OK */
&& (type == KNOT_RRTYPE_NS
|| eh->rank >= get_lowest_rank(qry, k->zname, type));
WITH_VERBOSE(qry) { if (!ok) {
auto_free char *type_str = kr_rrtype_text(type);
const char *packet_str = eh->is_packet ? "packet" : "RR";
VERBOSE_MSG(qry,
"=> skipping unfit %s %s: rank 0%.2o, new TTL %d\n",
type_str, packet_str, eh->rank, (int)log_new_ttl);
} }
if (!ok) return ESKIP;
}
k->type = type;
return kr_ok();
}
|