summaryrefslogtreecommitdiffstats
path: root/lib/resolve.c
blob: e24a40b9cd6958b04095afe2f062401f2add2d44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
/*  Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
 *  SPDX-License-Identifier: GPL-3.0-or-later
 */

#include <ctype.h>
#include <inttypes.h>
#include <stdio.h>
#include <fcntl.h>
#include <arpa/inet.h>
#include <libknot/rrtype/rdname.h>
#include <libknot/descriptor.h>
#include <ucw/mempool.h>
#include <sys/socket.h>
#include "lib/resolve.h"
#include "lib/layer.h"
#include "lib/rplan.h"
#include "lib/layer/iterate.h"
#include "lib/dnssec/ta.h"
#include "lib/dnssec.h"
#if ENABLE_COOKIES
#include "lib/cookies/control.h"
#include "lib/cookies/helper.h"
#include "lib/cookies/nonce.h"
#else /* Define compatibility macros */
#define KNOT_EDNS_OPTION_COOKIE 10
#endif /* ENABLE_COOKIES */

#define VERBOSE_MSG(qry, ...) kr_log_q((qry), RESOLVER,  __VA_ARGS__)

bool kr_rank_check(uint8_t rank)
{
	switch (rank & ~KR_RANK_AUTH) {
	case KR_RANK_INITIAL:
	case KR_RANK_OMIT:
	case KR_RANK_TRY:
	case KR_RANK_INDET:
	case KR_RANK_BOGUS:
	case KR_RANK_MISMATCH:
	case KR_RANK_MISSING:
	case KR_RANK_INSECURE:
	case KR_RANK_SECURE:
		return true;
	default:
		return false;
	}
}

bool kr_rank_test(uint8_t rank, uint8_t kr_flag)
{
	if (kr_fails_assert(kr_rank_check(rank) && kr_rank_check(kr_flag)))
		return false;
	if (kr_flag == KR_RANK_AUTH) {
		return rank & KR_RANK_AUTH;
	}
	if (kr_fails_assert(!(kr_flag & KR_RANK_AUTH)))
		return false;
	/* The rest are exclusive values - exactly one has to be set. */
	return (rank & ~KR_RANK_AUTH) == kr_flag;
}

/** @internal Set @a yielded to all RRs with matching @a qry_uid. */
static void set_yield(ranked_rr_array_t *array, const uint32_t qry_uid, const bool yielded)
{
	for (unsigned i = 0; i < array->len; ++i) {
		ranked_rr_array_entry_t *entry = array->at[i];
		if (entry->qry_uid == qry_uid) {
			entry->yielded = yielded;
		}
	}
}

/**
 * @internal Defer execution of current query.
 * The current layer state and input will be pushed to a stack and resumed on next iteration.
 */
static int consume_yield(kr_layer_t *ctx, knot_pkt_t *pkt)
{
	struct kr_request *req = ctx->req;
	size_t pkt_size = pkt->size;
	if (knot_pkt_has_tsig(pkt)) {
		pkt_size += pkt->tsig_wire.len;
	}
	knot_pkt_t *pkt_copy = knot_pkt_new(NULL, pkt_size, &req->pool);
	struct kr_layer_pickle *pickle = mm_alloc(&req->pool, sizeof(*pickle));
	if (pickle && pkt_copy && knot_pkt_copy(pkt_copy, pkt) == 0) {
		struct kr_query *qry = req->current_query;
		pickle->api = ctx->api;
		pickle->state = ctx->state;
		pickle->pkt = pkt_copy;
		pickle->next = qry->deferred;
		qry->deferred = pickle;
		set_yield(&req->answ_selected, qry->uid, true);
		set_yield(&req->auth_selected, qry->uid, true);
		return kr_ok();
	}
	return kr_error(ENOMEM);
}
static int begin_yield(kr_layer_t *ctx) { return kr_ok(); }
static int reset_yield(kr_layer_t *ctx) { return kr_ok(); }
static int finish_yield(kr_layer_t *ctx) { return kr_ok(); }
static int produce_yield(kr_layer_t *ctx, knot_pkt_t *pkt) { return kr_ok(); }
static int checkout_yield(kr_layer_t *ctx, knot_pkt_t *packet, struct sockaddr *dst, int type) { return kr_ok(); }
static int answer_finalize_yield(kr_layer_t *ctx) { return kr_ok(); }

/** @internal Macro for iterating module layers. */
#define RESUME_LAYERS(from, r, qry, func, ...) \
    (r)->current_query = (qry); \
	for (size_t i = (from); i < (r)->ctx->modules->len; ++i) { \
		struct kr_module *mod = (r)->ctx->modules->at[i]; \
		if (mod->layer) { \
			struct kr_layer layer = {.state = (r)->state, .api = mod->layer, .req = (r)}; \
			if (layer.api && layer.api->func) { \
				(r)->state = layer.api->func(&layer, ##__VA_ARGS__); \
				/* It's an easy mistake to return error code, for example. */ \
				/* (though we could allow such an overload later) */ \
				if (kr_fails_assert(kr_state_consistent((r)->state))) { \
					(r)->state = KR_STATE_FAIL; \
				} else \
				if ((r)->state == KR_STATE_YIELD) { \
					func ## _yield(&layer, ##__VA_ARGS__); \
					break; \
				} \
			} \
		} \
	} /* Invalidate current query. */ \
	(r)->current_query = NULL

/** @internal Macro for starting module iteration. */
#define ITERATE_LAYERS(req, qry, func, ...) RESUME_LAYERS(0, req, qry, func, ##__VA_ARGS__)

/** @internal Find layer id matching API. */
static inline size_t layer_id(struct kr_request *req, const struct kr_layer_api *api) {
	module_array_t *modules = req->ctx->modules;
	for (size_t i = 0; i < modules->len; ++i) {
		if (modules->at[i]->layer == api) {
			return i;
		}
	}
	return 0; /* Not found, try all. */
}

/* @internal We don't need to deal with locale here */
KR_CONST static inline bool isletter(unsigned chr)
{ return (chr | 0x20 /* tolower */) - 'a' <= 'z' - 'a'; }

/* Randomize QNAME letter case.
 * This adds 32 bits of randomness at maximum, but that's more than an average domain name length.
 * https://tools.ietf.org/html/draft-vixie-dnsext-dns0x20-00
 */
static void randomized_qname_case(knot_dname_t * restrict qname, uint32_t secret)
{
	if (secret == 0)
		return;
	if (kr_fails_assert(qname))
		return;
	const int len = knot_dname_size(qname) - 2; /* Skip first, last label. First is length, last is always root */
	for (int i = 0; i < len; ++i) {
		/* Note: this relies on the fact that correct label lengths
		 * can't pass the isletter() test (by "luck"). */
		if (isletter(*++qname)) {
				*qname ^= ((secret >> (i & 31)) & 1) * 0x20;
		}
	}
}

/** This turns of QNAME minimisation if there is a non-terminal between current zone cut, and name target.
 *  It save several minimization steps, as the zone cut is likely final one.
 */
static void check_empty_nonterms(struct kr_query *qry, knot_pkt_t *pkt, struct kr_cache *cache, uint32_t timestamp)
{
	// FIXME cleanup, etc.
#if 0
	if (qry->flags.NO_MINIMIZE) {
		return;
	}

	const knot_dname_t *target = qry->sname;
	const knot_dname_t *cut_name = qry->zone_cut.name;
	if (!target || !cut_name)
		return;

	struct kr_cache_entry *entry = NULL;
	/* @note: The non-terminal must be direct child of zone cut (e.g. label distance <= 2),
	 *        otherwise this would risk leaking information to parent if the NODATA TTD > zone cut TTD. */
	int labels = knot_dname_labels(target, NULL) - knot_dname_labels(cut_name, NULL);
	while (target[0] && labels > 2) {
		target = knot_wire_next_label(target, NULL);
		--labels;
	}
	for (int i = 0; i < labels; ++i) {
		int ret = kr_cache_peek(cache, KR_CACHE_PKT, target, KNOT_RRTYPE_NS, &entry, &timestamp);
		if (ret == 0) { /* Either NXDOMAIN or NODATA, start here. */
			/* @todo We could stop resolution here for NXDOMAIN, but we can't because of broken CDNs */
			qry->flags.NO_MINIMIZE = true;
			kr_make_query(qry, pkt);
			break;
		}
		kr_assert(target[0]);
		target = knot_wire_next_label(target, NULL);
	}
	kr_cache_commit(cache);
#endif
}

static int ns_fetch_cut(struct kr_query *qry, const knot_dname_t *requested_name,
			struct kr_request *req, knot_pkt_t *pkt)
{
	/* It can occur that here parent query already have
	 * provably insecure zonecut which not in the cache yet. */
	struct kr_qflags pflags;
	if (qry->parent) {
		pflags = qry->parent->flags;
	}
	const bool is_insecure = qry->parent != NULL
		&& !(pflags.AWAIT_IPV4 || pflags.AWAIT_IPV6)
		&& (pflags.DNSSEC_INSECURE || pflags.DNSSEC_NODS);

	/* Want DNSSEC if it's possible to secure this name
	 * (e.g. is covered by any TA) */
	if (is_insecure) {
		/* If parent is insecure we don't want DNSSEC
		 * even if cut name is covered by TA. */
		qry->flags.DNSSEC_WANT = false;
		qry->flags.DNSSEC_INSECURE = true;
		VERBOSE_MSG(qry, "=> going insecure because parent query is insecure\n");
	} else if (kr_ta_closest(req->ctx, qry->zone_cut.name, KNOT_RRTYPE_NS)) {
		qry->flags.DNSSEC_WANT = true;
	} else {
		qry->flags.DNSSEC_WANT = false;
		VERBOSE_MSG(qry, "=> going insecure because there's no covering TA\n");
	}

	struct kr_zonecut cut_found;
	kr_zonecut_init(&cut_found, requested_name, req->rplan.pool);
	/* Cut that has been found can differs from cut that has been requested.
	 * So if not already insecure,
	 * try to fetch ta & keys even if initial cut name not covered by TA */
	bool secure = !is_insecure;
	int ret = kr_zonecut_find_cached(req->ctx, &cut_found, requested_name,
					 qry, &secure);
	if (ret == kr_error(ENOENT)) {
		/* No cached cut found, start from SBELT
		 * and issue priming query. */
		kr_zonecut_deinit(&cut_found);
		ret = kr_zonecut_set_sbelt(req->ctx, &qry->zone_cut);
		if (ret != 0) {
			return KR_STATE_FAIL;
		}
		VERBOSE_MSG(qry, "=> using root hints\n");
		qry->flags.AWAIT_CUT = false;
		return KR_STATE_DONE;
	} else if (ret != kr_ok()) {
		kr_zonecut_deinit(&cut_found);
		return KR_STATE_FAIL;
	}

	/* Find out security status.
	 * Go insecure if the zone cut is provably insecure */
	if ((qry->flags.DNSSEC_WANT) && !secure) {
		VERBOSE_MSG(qry, "=> NS is provably without DS, going insecure\n");
		qry->flags.DNSSEC_WANT = false;
		qry->flags.DNSSEC_INSECURE = true;
	}
	/* Zonecut name can change, check it again
	 * to prevent unnecessary DS & DNSKEY queries */
	if (!(qry->flags.DNSSEC_INSECURE) &&
	    kr_ta_closest(req->ctx, cut_found.name, KNOT_RRTYPE_NS)) {
		qry->flags.DNSSEC_WANT = true;
	} else {
		qry->flags.DNSSEC_WANT = false;
	}
	/* Check if any DNSKEY found for cached cut */
	if (qry->flags.DNSSEC_WANT && cut_found.key == NULL &&
	    kr_zonecut_is_empty(&cut_found)) {
		/* Cut found and there are no proofs of zone insecurity.
		 * But no DNSKEY found and no glue fetched.
		 * We have got circular dependency - must fetch A\AAAA
		 * from authoritative, but we have no key to verify it. */
		kr_zonecut_deinit(&cut_found);
		if (requested_name[0] != '\0' ) {
			/* If not root - try next label */
			return KR_STATE_CONSUME;
		}
		/* No cached cut & keys found, start from SBELT */
		ret = kr_zonecut_set_sbelt(req->ctx, &qry->zone_cut);
		if (ret != 0) {
			return KR_STATE_FAIL;
		}
		VERBOSE_MSG(qry, "=> using root hints\n");
		qry->flags.AWAIT_CUT = false;
		return KR_STATE_DONE;
	}
	/* Use the found zone cut. */
	kr_zonecut_move(&qry->zone_cut, &cut_found);
	/* Check if there's a non-terminal between target and current cut. */
	struct kr_cache *cache = &req->ctx->cache;
	check_empty_nonterms(qry, pkt, cache, qry->timestamp.tv_sec);
	/* Cut found */
	return KR_STATE_PRODUCE;
}

static int edns_put(knot_pkt_t *pkt, bool reclaim)
{
	if (!pkt->opt_rr) {
		return kr_ok();
	}
	if (reclaim) {
		/* Reclaim reserved size. */
		int ret = knot_pkt_reclaim(pkt, knot_edns_wire_size(pkt->opt_rr));
		if (ret != 0) {
			return ret;
		}
	}
	/* Write to packet. */
	if (kr_fails_assert(pkt->current == KNOT_ADDITIONAL))
		return kr_error(EINVAL);
	return knot_pkt_put(pkt, KNOT_COMPR_HINT_NONE, pkt->opt_rr, KNOT_PF_FREE);
}

/** Removes last EDNS OPT RR written to the packet. */
static int edns_erase_and_reserve(knot_pkt_t *pkt)
{
	/* Nothing to be done. */
	if (!pkt || !pkt->opt_rr) {
		return 0;
	}

	/* Fail if the data are located elsewhere than at the end of packet. */
	if (pkt->current != KNOT_ADDITIONAL ||
	    pkt->opt_rr != &pkt->rr[pkt->rrset_count - 1]) {
		return -1;
	}

	size_t len = knot_rrset_size(pkt->opt_rr);
	int16_t rr_removed = pkt->opt_rr->rrs.count;
	/* Decrease rrset counters. */
	pkt->rrset_count -= 1;
	pkt->sections[pkt->current].count -= 1;
	pkt->size -= len;
	knot_wire_add_arcount(pkt->wire, -rr_removed); /* ADDITIONAL */

	pkt->opt_rr = NULL;

	/* Reserve the freed space. */
	return knot_pkt_reserve(pkt, len);
}

static inline size_t edns_padding_option_size(int32_t tls_padding)
{
	if (tls_padding == -1)
		/* FIXME: we do not know how to reserve space for the
		 * default padding policy, since we can't predict what
		 * it will select. So i'm just guessing :/ */
		return KNOT_EDNS_OPTION_HDRLEN + 512;
	if (tls_padding >= 2)
		return KNOT_EDNS_OPTION_HDRLEN + tls_padding;

	return 0;
}

static int edns_create(knot_pkt_t *pkt, const struct kr_request *req)
{
	pkt->opt_rr = knot_rrset_copy(req->ctx->upstream_opt_rr, &pkt->mm);
	size_t wire_size = knot_edns_wire_size(pkt->opt_rr);
#if ENABLE_COOKIES
	if (req->ctx->cookie_ctx.clnt.enabled ||
	    req->ctx->cookie_ctx.srvr.enabled) {
		wire_size += KR_COOKIE_OPT_MAX_LEN;
	}
#endif /* ENABLE_COOKIES */
	if (req->qsource.flags.tls || req->qsource.comm_flags.tls) {
		wire_size += edns_padding_option_size(req->ctx->tls_padding);
	}
	return knot_pkt_reserve(pkt, wire_size);
}

/**
 * @param all_secure optionally &&-combine security of written RRs into its value.
 *		     (i.e. if you pass a pointer to false, it will always remain)
 * @param all_cname optionally output if all written RRs are CNAMEs and RRSIGs of CNAMEs
 * @return error code, ignoring if forced to truncate the packet.
 */
static int write_extra_ranked_records(const ranked_rr_array_t *arr, uint16_t reorder,
				      knot_pkt_t *answer, bool *all_secure, bool *all_cname)
{
	const bool has_dnssec = knot_pkt_has_dnssec(answer);
	bool all_sec = true;
	bool all_cn = (all_cname != NULL); /* optim.: init as false if not needed */
	int err = kr_ok();

	for (size_t i = 0; i < arr->len; ++i) {
		ranked_rr_array_entry_t * entry = arr->at[i];
		kr_assert(!entry->in_progress);
		if (!entry->to_wire) {
			continue;
		}
		knot_rrset_t *rr = entry->rr;
		if (!has_dnssec) {
			if (rr->type != knot_pkt_qtype(answer) && knot_rrtype_is_dnssec(rr->type)) {
				continue;
			}
		}
		err = knot_pkt_put_rotate(answer, 0, rr, reorder, 0);
		if (err != KNOT_EOK) {
			if (err == KNOT_ESPACE) {
				err = kr_ok();
			}
			break;
		}

		if (rr->type != KNOT_RRTYPE_RRSIG) {
			all_sec = all_sec && kr_rank_test(entry->rank, KR_RANK_SECURE);
		}
		all_cn = all_cn && kr_rrset_type_maysig(entry->rr) == KNOT_RRTYPE_CNAME;
	}

	if (all_secure) {
		*all_secure = *all_secure && all_sec;
	}
	if (all_cname) {
		*all_cname = all_cn;
	}
	return err;
}

static int pkt_padding(knot_pkt_t *packet, int32_t padding)
{
	knot_rrset_t *opt_rr = packet->opt_rr;
	int32_t pad_bytes = -1;

	if (padding == -1) { /* use the default padding policy from libknot */
		const size_t block_size = knot_wire_get_qr(packet->wire)
					? KNOT_EDNS_ALIGNMENT_RESPONSE_DEFAULT
				#if KNOT_VERSION_HEX < 0x030200
					: KNOT_EDNS_ALIGNMENT_QUERY_DEFALT;
				#else
					: KNOT_EDNS_ALIGNMENT_QUERY_DEFAULT;
				#endif
		pad_bytes = knot_edns_alignment_size(packet->size, knot_rrset_size(opt_rr),
							block_size);
	}
	if (padding >= 2) {
		int32_t max_pad_bytes = knot_edns_get_payload(opt_rr) - (packet->size + knot_rrset_size(opt_rr));
		pad_bytes = MIN(knot_edns_alignment_size(packet->size, knot_rrset_size(opt_rr), padding),
				max_pad_bytes);
	}

	if (pad_bytes >= 0) {
		uint8_t zeros[MAX(1, pad_bytes)];
		memset(zeros, 0, sizeof(zeros));
		int r = knot_edns_add_option(opt_rr, KNOT_EDNS_OPTION_PADDING,
					     pad_bytes, zeros, &packet->mm);
		if (r != KNOT_EOK) {
			knot_rrset_clear(opt_rr, &packet->mm);
			return kr_error(r);
		}
	}
	return kr_ok();
}

/** @internal Add an EDNS padding RR into the answer if requested and required. */
static int answer_padding(struct kr_request *request)
{
	if (kr_fails_assert(request && request->answer && request->ctx))
		return kr_error(EINVAL);
	if (!request->qsource.flags.tls && !request->qsource.comm_flags.tls) {
		/* Not meaningful to pad without encryption. */
		return kr_ok();
	}
	return pkt_padding(request->answer, request->ctx->tls_padding);
}

/* Make a clean SERVFAIL answer. */
static void answer_fail(struct kr_request *request)
{
	/* Note: OPT in SERVFAIL response is still useful for cookies/additional info. */
	if (kr_log_is_debug(RESOLVER, request))  /* logging optimization */
		kr_log_req(request, 0, 0, RESOLVER,
			"request failed, answering with empty SERVFAIL\n");
	knot_pkt_t *answer = request->answer;
	knot_rrset_t *opt_rr = answer->opt_rr; /* it gets NULLed below */
	int ret = kr_pkt_clear_payload(answer);
	knot_wire_clear_ad(answer->wire);
	knot_wire_clear_aa(answer->wire);
	knot_wire_set_rcode(answer->wire, KNOT_RCODE_SERVFAIL);
	if (ret == 0 && opt_rr) {
		knot_pkt_begin(answer, KNOT_ADDITIONAL);
		answer->opt_rr = opt_rr;
		answer_padding(request); /* Ignore failed padding in SERVFAIL answer. */
		edns_put(answer, false);
	}
}

/* Append EDNS records into the answer. */
static int answer_append_edns(struct kr_request *request)
{
	knot_pkt_t *answer = request->answer;
	if (!answer->opt_rr)
		return kr_ok();
	int ret = answer_padding(request);
	if (!ret) ret = knot_pkt_begin(answer, KNOT_ADDITIONAL);
	if (!ret) ret = knot_pkt_put(answer, KNOT_COMPR_HINT_NONE,
				     answer->opt_rr, KNOT_PF_FREE);
	return ret;
}

static void answer_finalize(struct kr_request *request)
{
	struct kr_rplan *rplan = &request->rplan;
	knot_pkt_t *answer = request->answer;
	const uint8_t *q_wire = request->qsource.packet->wire;

	if (answer->rrset_count != 0) {
		/* Non-standard: we assume the answer had been constructed.
		 * Let's check we don't have a "collision". */
		const ranked_rr_array_t *selected[] = kr_request_selected(request);
		for (int psec = KNOT_ANSWER; psec <= KNOT_ADDITIONAL; ++psec) {
			const ranked_rr_array_t *arr = selected[psec];
			for (ssize_t i = 0; i < arr->len; ++i) {
				if (kr_fails_assert(!arr->at[i]->to_wire)) {
					answer_fail(request);
					return;
				}
			}
		}
		/* We only add EDNS, and we even assume AD bit was correct. */
		if (answer_append_edns(request)) {
			answer_fail(request);
			return;
		}
		return;
	}

	struct kr_query *const last =
		rplan->resolved.len > 0 ? array_tail(rplan->resolved) : NULL;
		/* TODO  ^^^^ this is slightly fragile */

	if (!last) {
		/* Suspicious: no kr_query got resolved (not even from cache),
		 * so let's (defensively) SERVFAIL the request.
		 * ATM many checks below depend on `last` anyway,
		 * so this helps to avoid surprises. */
		answer_fail(request);
		return;
	}
	/* TODO: clean this up in !660 or followup, and it isn't foolproof anyway. */
	if (last->flags.DNSSEC_BOGUS
	    || (rplan->pending.len > 0 && array_tail(rplan->pending)->flags.DNSSEC_BOGUS)) {
		if (!knot_wire_get_cd(q_wire)) {
			answer_fail(request);
			return;
		}
	}

	/* AD flag.  We can only change `secure` from true to false.
	 * Be conservative.  Primary approach: check ranks of all RRs in wire.
	 * Only "negative answers" need special handling. */
	bool secure = request->state == KR_STATE_DONE /*< suspicious otherwise */
		&& knot_pkt_qtype(answer) != KNOT_RRTYPE_RRSIG;
	if (last->flags.STUB) {
		secure = false; /* don't trust forwarding for now */
	}
	if (last->flags.DNSSEC_OPTOUT) {
		VERBOSE_MSG(last, "insecure because of opt-out\n");
		secure = false; /* the last answer is insecure due to opt-out */
	}

	/* Write all RRsets meant for the answer. */
	bool answ_all_cnames = false/*arbitrary*/;
	if (knot_pkt_begin(answer, KNOT_ANSWER)
	    || write_extra_ranked_records(&request->answ_selected, last->reorder,
					answer, &secure, &answ_all_cnames)
	    || knot_pkt_begin(answer, KNOT_AUTHORITY)
	    || write_extra_ranked_records(&request->auth_selected, last->reorder,
					answer, &secure, NULL)
	    || knot_pkt_begin(answer, KNOT_ADDITIONAL)
	    || write_extra_ranked_records(&request->add_selected, last->reorder,
					answer, NULL/*not relevant to AD*/, NULL)
	    || answer_append_edns(request)
	   )
	{
		answer_fail(request);
		return;
	}

	/* AD: "negative answers" need more handling. */
	if (kr_response_classify(answer) != PKT_NOERROR
	    /* Additionally check for CNAME chains that "end in NODATA",
	     * as those would also be PKT_NOERROR. */
	    || (answ_all_cnames && knot_pkt_qtype(answer) != KNOT_RRTYPE_CNAME)) {

		secure = secure && last->flags.DNSSEC_WANT
			&& !last->flags.DNSSEC_BOGUS && !last->flags.DNSSEC_INSECURE;
	}

	if (secure) {
		struct kr_query *cname_parent = last->cname_parent;
		while (cname_parent != NULL) {
			if (cname_parent->flags.DNSSEC_OPTOUT) {
				secure = false;
				break;
			}
			cname_parent = cname_parent->cname_parent;
		}
	}

	/* No detailed analysis ATM, just _SECURE or not.
	 * LATER: request->rank might better be computed in validator's finish phase. */
	VERBOSE_MSG(last, "AD: request%s classified as SECURE\n", secure ? "" : " NOT");
	request->rank = secure ? KR_RANK_SECURE : KR_RANK_INITIAL;

	/* Set AD if secure and AD bit "was requested". */
	if (secure && !knot_wire_get_cd(q_wire)
	    && (knot_pkt_has_dnssec(answer) || knot_wire_get_ad(q_wire))) {
		knot_wire_set_ad(answer->wire);
	}
}

static int query_finalize(struct kr_request *request, struct kr_query *qry, knot_pkt_t *pkt)
{
	knot_pkt_begin(pkt, KNOT_ADDITIONAL);
	const bool is_iter = !(qry->flags.STUB || qry->flags.FORWARD);
	if (!is_iter)
		knot_wire_set_rd(pkt->wire);
	// The rest of this function is all about EDNS.
	if (qry->flags.NO_EDNS)
		return kr_ok();
	// Replace any EDNS records from any previous iteration.
	int ret = edns_erase_and_reserve(pkt);
	if (ret == 0) ret = edns_create(pkt, request);
	if (ret) return ret;

	if (!qry->flags.STUB)
		knot_edns_set_do(pkt->opt_rr);

	// CD flag is a bit controversial for .FORWARD:
	//  The original DNSSEC RFCs assume that if someone is validating,
	//  they will use CD=1 in requests to upstream.  The intention was that
	//  this way both sides could use independent sets of trust anchors.
	//
	//  However, in practice the trust anchor differences seem rather rare/small.
	//  And some of the normal use cases get harmed.  With CD=1, the upstream
	//  (e.g. 1.1.1.1) can keep returning a cached bogus answer, even though they could
	//  instead retry with a different authoritative server and get a good one.
	//
	//  Therefore if we want validaton (CD from client, negative trust anchors),
	//  we send CD=0 and then propagate returned SERVFAIL (but some retry logic remains).
	//
	//  Theoretically it might be best to use both CD=0 and CD=1, with either of them
	//  in some kind of DNSSEC fallback, but I see bad complexity/improvement ratio.
	if (is_iter) {
		knot_wire_set_cd(pkt->wire);
	} else {
		if (knot_wire_get_cd(request->qsource.packet->wire) || !qry->flags.DNSSEC_WANT)
			knot_wire_set_cd(pkt->wire);
	}

	return kr_ok();
}

int kr_resolve_begin(struct kr_request *request, struct kr_context *ctx)
{
	/* Initialize request */
	request->ctx = ctx;
	request->answer = NULL;
	request->options = ctx->options;
	request->state = KR_STATE_CONSUME;
	request->current_query = NULL;
	array_init(request->answ_selected);
	array_init(request->auth_selected);
	array_init(request->add_selected);
	request->answ_validated = false;
	request->auth_validated = false;
	request->rank = KR_RANK_INITIAL;
	request->trace_log = NULL;
	request->trace_finish = NULL;

	/* Expect first query */
	kr_rplan_init(&request->rplan, request, &request->pool);
	return KR_STATE_CONSUME;
}

static int resolve_query(struct kr_request *request, const knot_pkt_t *packet)
{
	struct kr_rplan *rplan = &request->rplan;
	const knot_dname_t *qname = knot_pkt_qname(packet);
	uint16_t qclass = knot_pkt_qclass(packet);
	uint16_t qtype = knot_pkt_qtype(packet);
	struct kr_query *qry = NULL;
	struct kr_context *ctx = request->ctx;
	struct kr_cookie_ctx *cookie_ctx = ctx ? &ctx->cookie_ctx : NULL;

	if (qname != NULL) {
		qry = kr_rplan_push(rplan, NULL, qname, qclass, qtype);
	} else if (cookie_ctx && cookie_ctx->srvr.enabled &&
		   knot_wire_get_qdcount(packet->wire) == 0 &&
		   knot_pkt_has_edns(packet) &&
		   knot_pkt_edns_option(packet, KNOT_EDNS_OPTION_COOKIE)) {
		/* Plan empty query only for cookies. */
		qry = kr_rplan_push_empty(rplan, NULL);
	}
	if (!qry) {
		return KR_STATE_FAIL;
	}

	if (qname != NULL) {
		/* Deferred zone cut lookup for this query. */
		qry->flags.AWAIT_CUT = true;
		/* Want DNSSEC if it's possible to secure this name (e.g. is covered by any TA) */
		if ((knot_wire_get_ad(packet->wire) || knot_pkt_has_dnssec(packet)) &&
		    kr_ta_closest(request->ctx, qry->sname, qtype)) {
			qry->flags.DNSSEC_WANT = true;
		}
	}

	/* Expect answer, pop if satisfied immediately */
	ITERATE_LAYERS(request, qry, begin);
	if ((request->state & KR_STATE_DONE) != 0) {
		kr_rplan_pop(rplan, qry);
	} else if (qname == NULL) {
		/* it is an empty query which must be resolved by
		   `begin` layer of cookie module.
		   If query isn't resolved, fail. */
		request->state = KR_STATE_FAIL;
	}
	return request->state;
}

knot_rrset_t* kr_request_ensure_edns(struct kr_request *request)
{
	kr_require(request && request->answer && request->qsource.packet && request->ctx);
	knot_pkt_t* answer = request->answer;
	bool want_edns = knot_pkt_has_edns(request->qsource.packet);
	if (!want_edns) {
		kr_assert(!answer->opt_rr);
		return answer->opt_rr;
	} else if (answer->opt_rr) {
		return answer->opt_rr;
	}

	kr_assert(request->ctx->downstream_opt_rr);
	answer->opt_rr = knot_rrset_copy(request->ctx->downstream_opt_rr, &answer->mm);
	if (!answer->opt_rr)
		return NULL;
	if (knot_pkt_has_dnssec(request->qsource.packet))
		knot_edns_set_do(answer->opt_rr);
	return answer->opt_rr;
}

knot_pkt_t *kr_request_ensure_answer(struct kr_request *request)
{
	if (request->options.NO_ANSWER) {
		kr_assert(request->state & KR_STATE_FAIL);
		return NULL;
	}
	if (request->answer)
		return request->answer;

	const knot_pkt_t *qs_pkt = request->qsource.packet;
	if (kr_fails_assert(qs_pkt))
		goto fail;
	// Find answer_max: limit on DNS wire length.
	uint16_t answer_max;
	const struct kr_request_qsource_flags *qs_flags = &request->qsource.flags;
	const struct kr_request_qsource_flags *qs_cflags = &request->qsource.comm_flags;
	if (kr_fails_assert(!(qs_flags->tls || qs_cflags->tls || qs_cflags->http) || qs_flags->tcp))
		goto fail;
	if (!request->qsource.addr || qs_flags->tcp || qs_cflags->tcp) {
		// not on UDP
		answer_max = KNOT_WIRE_MAX_PKTSIZE;
	} else if (knot_pkt_has_edns(qs_pkt)) {
		// UDP with EDNS
		answer_max = MIN(knot_edns_get_payload(qs_pkt->opt_rr),
				 knot_edns_get_payload(request->ctx->downstream_opt_rr));
		answer_max = MAX(answer_max, KNOT_WIRE_MIN_PKTSIZE);
	} else {
		// UDP without EDNS
		answer_max = KNOT_WIRE_MIN_PKTSIZE;
	}

	// Allocate the packet.
	uint8_t *wire = NULL;
	if (request->alloc_wire_cb) {
		wire = request->alloc_wire_cb(request, &answer_max);
		if (!wire)
			goto enomem;
	}
	knot_pkt_t *answer = request->answer =
		knot_pkt_new(wire, answer_max, &request->pool);
	if (!answer || knot_pkt_init_response(answer, qs_pkt) != 0) {
		kr_assert(!answer); // otherwise we messed something up
		goto enomem;
	}
	if (!wire)
		wire = answer->wire;

	// Much was done by knot_pkt_init_response()
	knot_wire_set_ra(wire);
	knot_wire_set_rcode(wire, KNOT_RCODE_NOERROR);
	if (knot_wire_get_cd(qs_pkt->wire)) {
		knot_wire_set_cd(wire);
	}

	// Prepare EDNS if required.
	if (knot_pkt_has_edns(qs_pkt) && kr_fails_assert(kr_request_ensure_edns(request)))
		goto enomem; // answer is on mempool, so "leak" is OK

	return request->answer;
enomem:
fail:
	request->state = KR_STATE_FAIL; // TODO: really combine with another flag?
	return request->answer = NULL;
}

int kr_resolve_consume(struct kr_request *request, struct kr_transport **transport, knot_pkt_t *packet)
{
	struct kr_rplan *rplan = &request->rplan;

	/* Empty resolution plan, push packet as the new query */
	if (packet && kr_rplan_empty(rplan)) {
		return resolve_query(request, packet);
	}

	/* Different processing for network error */
	struct kr_query *qry = array_tail(rplan->pending);
	/* Check overall resolution time */
	if (kr_now() - qry->creation_time_mono >= KR_RESOLVE_TIME_LIMIT) {
		kr_query_inform_timeout(request, qry);
		return KR_STATE_FAIL;
	}
	bool tried_tcp = (qry->flags.TCP);
	if (!packet || packet->size == 0)
		return KR_STATE_PRODUCE;

	/* Packet cleared, derandomize QNAME. */
	knot_dname_t *qname_raw = kr_pkt_qname_raw(packet);
	if (qname_raw && qry->secret != 0) {
		randomized_qname_case(qname_raw, qry->secret);
	}
	request->state = KR_STATE_CONSUME;
	if (qry->flags.CACHED) {
		ITERATE_LAYERS(request, qry, consume, packet);
	} else {
		/* Fill in source and latency information. */
		request->upstream.rtt = kr_now() - qry->timestamp_mono;
		request->upstream.transport = transport ? *transport : NULL;
		ITERATE_LAYERS(request, qry, consume, packet);
		/* Clear temporary information */
		request->upstream.transport = NULL;
		request->upstream.rtt = 0;
	}

	if (transport && !qry->flags.CACHED) {
		if (!(request->state & KR_STATE_FAIL)) {
			/* Do not complete NS address resolution on soft-fail. */
			const int rcode = knot_wire_get_rcode(packet->wire);
			if (rcode != KNOT_RCODE_SERVFAIL && rcode != KNOT_RCODE_REFUSED) {
				qry->flags.AWAIT_IPV6 = false;
				qry->flags.AWAIT_IPV4 = false;
			}
		}
	}

	if (request->state & KR_STATE_FAIL) {
		qry->flags.RESOLVED = false;
	}

	if (!qry->flags.CACHED) {
		if (request->state & KR_STATE_FAIL) {
			if (++request->count_fail_row > KR_CONSUME_FAIL_ROW_LIMIT) {
				if (kr_log_is_debug(RESOLVER, request)) {  /* logging optimization */
					kr_log_req(request, 0, 2, RESOLVER,
						"=> too many failures in a row, "
						"bail out (mitigation for NXNSAttack "
						"CVE-2020-12667)\n");
				}
				if (!qry->flags.NO_NS_FOUND) {
					qry->flags.NO_NS_FOUND = true;
					return KR_STATE_PRODUCE;
				}
				return KR_STATE_FAIL;
			}
		} else {
			request->count_fail_row = 0;
		}
	}

	/* Pop query if resolved. */
	if (request->state == KR_STATE_YIELD) {
		return KR_STATE_PRODUCE; /* Requery */
	} else if (qry->flags.RESOLVED) {
		kr_rplan_pop(rplan, qry);
	} else if (!tried_tcp && (qry->flags.TCP)) {
		return KR_STATE_PRODUCE; /* Requery over TCP */
	} else { /* Clear query flags for next attempt */
		qry->flags.CACHED = false;
		if (!request->options.TCP) {
			qry->flags.TCP = false;
		}
	}

	ITERATE_LAYERS(request, qry, reset);

	/* Do not finish with bogus answer. */
	if (qry->flags.DNSSEC_BOGUS)  {
		if (qry->flags.FORWARD || qry->flags.STUB
				/* Probably CPU exhaustion attempt, so do not retry. */
				|| qry->vld_limit_crypto_remains <= 0) {
			return KR_STATE_FAIL;
		}
		/* Other servers might not have broken DNSSEC. */
		qry->flags.DNSSEC_BOGUS = false;
		return KR_STATE_PRODUCE;
	}

	return kr_rplan_empty(&request->rplan) ? KR_STATE_DONE : KR_STATE_PRODUCE;
}

/** @internal Spawn subrequest in current zone cut (no minimization or lookup). */
static struct kr_query *zone_cut_subreq(struct kr_rplan *rplan, struct kr_query *parent,
                           const knot_dname_t *qname, uint16_t qtype)
{
	struct kr_query *next = kr_rplan_push(rplan, parent, qname, parent->sclass, qtype);
	if (!next) {
		return NULL;
	}
	kr_zonecut_set(&next->zone_cut, parent->zone_cut.name);
	if (kr_zonecut_copy(&next->zone_cut, &parent->zone_cut) != 0 ||
	    kr_zonecut_copy_trust(&next->zone_cut, &parent->zone_cut) != 0) {
		return NULL;
	}
	next->flags.NO_MINIMIZE = true;
	if (parent->flags.DNSSEC_WANT) {
		next->flags.DNSSEC_WANT = true;
	}
	return next;
}

static int forward_trust_chain_check(struct kr_request *request, struct kr_query *qry, bool resume)
{
	struct kr_rplan *rplan = &request->rplan;
	trie_t *trust_anchors = request->ctx->trust_anchors;
	trie_t *negative_anchors = request->ctx->negative_anchors;

	if (qry->parent != NULL &&
	    !(qry->forward_flags.CNAME) &&
	    !(qry->flags.DNS64_MARK) &&
	    knot_dname_in_bailiwick(qry->zone_cut.name, qry->parent->zone_cut.name) >= 0) {
		return KR_STATE_PRODUCE;
	}

	if (kr_fails_assert(qry->flags.FORWARD))
		return KR_STATE_FAIL;

	if (!trust_anchors) {
		qry->flags.AWAIT_CUT = false;
		return KR_STATE_PRODUCE;
	}

	if (qry->flags.DNSSEC_INSECURE) {
		qry->flags.AWAIT_CUT = false;
		return KR_STATE_PRODUCE;
	}

	if (qry->forward_flags.NO_MINIMIZE) {
		qry->flags.AWAIT_CUT = false;
		return KR_STATE_PRODUCE;
	}

	const knot_dname_t *start_name = qry->sname;
	if ((qry->flags.AWAIT_CUT) && !resume) {
		qry->flags.AWAIT_CUT = false;
		const knot_dname_t *longest_ta = kr_ta_closest(request->ctx, qry->sname, qry->stype);
		if (longest_ta) {
			start_name = longest_ta;
			qry->zone_cut.name = knot_dname_copy(start_name, qry->zone_cut.pool);
			qry->flags.DNSSEC_WANT = true;
		} else {
			qry->flags.DNSSEC_WANT = false;
			return KR_STATE_PRODUCE;
		}
	}

	bool has_ta = (qry->zone_cut.trust_anchor != NULL);
	knot_dname_t *ta_name = (has_ta ? qry->zone_cut.trust_anchor->owner : NULL);
	bool refetch_ta = (!has_ta || !knot_dname_is_equal(qry->zone_cut.name, ta_name));
	bool is_dnskey_subreq = kr_rplan_satisfies(qry, ta_name, KNOT_CLASS_IN, KNOT_RRTYPE_DNSKEY);
	bool refetch_key = has_ta && (!qry->zone_cut.key || !knot_dname_is_equal(ta_name, qry->zone_cut.key->owner));
	if (refetch_key && !is_dnskey_subreq) {
		struct kr_query *next = zone_cut_subreq(rplan, qry, ta_name, KNOT_RRTYPE_DNSKEY);
		if (!next) {
			return KR_STATE_FAIL;
		}
		return KR_STATE_DONE;
	}

	int name_offset = 1;
	const knot_dname_t *wanted_name;
	bool nods, ds_req, ns_req, minimized, ns_exist;
	do {
		wanted_name = start_name;
		ds_req = false;
		ns_req = false;
		ns_exist = true;

		int cut_labels = knot_dname_labels(qry->zone_cut.name, NULL);
		int wanted_name_labels = knot_dname_labels(wanted_name, NULL);
		while (wanted_name[0] && wanted_name_labels > cut_labels + name_offset) {
			wanted_name = knot_wire_next_label(wanted_name, NULL);
			wanted_name_labels -= 1;
		}
		minimized = (wanted_name != qry->sname);

		for (int i = 0; i < request->rplan.resolved.len; ++i) {
			struct kr_query *q = request->rplan.resolved.at[i];
			if (q->parent == qry &&
			    q->sclass == qry->sclass &&
			    (q->stype == KNOT_RRTYPE_DS || q->stype == KNOT_RRTYPE_NS) &&
			    knot_dname_is_equal(q->sname, wanted_name)) {
				if (q->stype == KNOT_RRTYPE_DS) {
					ds_req = true;
					if (q->flags.CNAME) {
						ns_exist = false;
					} else if (!(q->flags.DNSSEC_OPTOUT)) {
						int ret = kr_dnssec_matches_name_and_type(&request->auth_selected, q->uid,
											  wanted_name, KNOT_RRTYPE_NS);
						ns_exist = (ret == kr_ok());
					}
				} else {
					if (q->flags.CNAME) {
						ns_exist = false;
					}
					ns_req = true;
				}
			}
		}

		if (ds_req && ns_exist && !ns_req && (minimized || resume)) {
			struct kr_query *next = zone_cut_subreq(rplan, qry, wanted_name,
								KNOT_RRTYPE_NS);
			if (!next) {
				return KR_STATE_FAIL;
			}
			return KR_STATE_DONE;
		}

		if (qry->parent == NULL && (qry->flags.CNAME) &&
		    ds_req && ns_req) {
			return KR_STATE_PRODUCE;
		}

		/* set `nods` */
		if ((qry->stype == KNOT_RRTYPE_DS) &&
	            knot_dname_is_equal(wanted_name, qry->sname)) {
			nods = true;
		} else if (resume && !ds_req) {
			nods = false;
		} else if (!minimized && qry->stype != KNOT_RRTYPE_DNSKEY) {
			nods = true;
		} else {
			nods = ds_req;
		}
		name_offset += 1;
	} while (ds_req && (ns_req || !ns_exist) && minimized);

	/* Disable DNSSEC if it enters NTA. */
	if (kr_ta_get(negative_anchors, wanted_name)){
		VERBOSE_MSG(qry, ">< negative TA, going insecure\n");
		qry->flags.DNSSEC_WANT = false;
	}

	/* Enable DNSSEC if enters a new island of trust. */
	bool want_secure = (qry->flags.DNSSEC_WANT) &&
			    !knot_wire_get_cd(request->qsource.packet->wire);
	if (!(qry->flags.DNSSEC_WANT) &&
	    !knot_wire_get_cd(request->qsource.packet->wire) &&
	    kr_ta_get(trust_anchors, wanted_name)) {
		qry->flags.DNSSEC_WANT = true;
		want_secure = true;
		if (kr_log_is_debug_qry(RESOLVER, qry)) {
			KR_DNAME_GET_STR(qname_str, wanted_name);
			VERBOSE_MSG(qry, ">< TA: '%s'\n", qname_str);
		}
	}

	if (want_secure && !qry->zone_cut.trust_anchor) {
		knot_rrset_t *ta_rr = kr_ta_get(trust_anchors, wanted_name);
		if (!ta_rr) {
			char name[] = "\0";
			ta_rr = kr_ta_get(trust_anchors, (knot_dname_t*)name);
		}
		if (ta_rr) {
			qry->zone_cut.trust_anchor = knot_rrset_copy(ta_rr, qry->zone_cut.pool);
		}
	}

	has_ta = (qry->zone_cut.trust_anchor != NULL);
	ta_name = (has_ta ? qry->zone_cut.trust_anchor->owner : NULL);
	refetch_ta = (!has_ta || !knot_dname_is_equal(wanted_name, ta_name));
	if (!nods && want_secure && refetch_ta) {
		struct kr_query *next = zone_cut_subreq(rplan, qry, wanted_name,
							KNOT_RRTYPE_DS);
		if (!next) {
			return KR_STATE_FAIL;
		}
		return KR_STATE_DONE;
	}

	/* Try to fetch missing DNSKEY.
	 * Do not fetch if this is a DNSKEY subrequest to avoid circular dependency. */
	is_dnskey_subreq = kr_rplan_satisfies(qry, ta_name, KNOT_CLASS_IN, KNOT_RRTYPE_DNSKEY);
	refetch_key = has_ta && (!qry->zone_cut.key || !knot_dname_is_equal(ta_name, qry->zone_cut.key->owner));
	if (want_secure && refetch_key && !is_dnskey_subreq) {
		struct kr_query *next = zone_cut_subreq(rplan, qry, ta_name, KNOT_RRTYPE_DNSKEY);
		if (!next) {
			return KR_STATE_FAIL;
		}
		return KR_STATE_DONE;
	}

	return KR_STATE_PRODUCE;
}

/* @todo: Validator refactoring, keep this in driver for now. */
static int trust_chain_check(struct kr_request *request, struct kr_query *qry)
{
	struct kr_rplan *rplan = &request->rplan;
	trie_t *trust_anchors = request->ctx->trust_anchors;
	trie_t *negative_anchors = request->ctx->negative_anchors;

	/* Disable DNSSEC if it enters NTA. */
	if (kr_ta_get(negative_anchors, qry->zone_cut.name)){
		VERBOSE_MSG(qry, ">< negative TA, going insecure\n");
		qry->flags.DNSSEC_WANT = false;
		qry->flags.DNSSEC_INSECURE = true;
	}
	if (qry->flags.DNSSEC_NODS) {
		/* This is the next query iteration with minimized qname.
		 * At previous iteration DS non-existence has been proven */
		VERBOSE_MSG(qry, "<= DS doesn't exist, going insecure\n");
		qry->flags.DNSSEC_NODS = false;
		qry->flags.DNSSEC_WANT = false;
		qry->flags.DNSSEC_INSECURE = true;
	}
	/* Enable DNSSEC if entering a new (or different) island of trust,
	 * and update the TA RRset if required. */
	const bool has_cd = knot_wire_get_cd(request->qsource.packet->wire);
	knot_rrset_t *ta_rr = kr_ta_get(trust_anchors, qry->zone_cut.name);
	if (!has_cd && ta_rr) {
		qry->flags.DNSSEC_WANT = true;
		if (qry->zone_cut.trust_anchor == NULL
		    || !knot_dname_is_equal(qry->zone_cut.trust_anchor->owner, qry->zone_cut.name)) {
			mm_free(qry->zone_cut.pool, qry->zone_cut.trust_anchor);
			qry->zone_cut.trust_anchor = knot_rrset_copy(ta_rr, qry->zone_cut.pool);

			if (kr_log_is_debug_qry(RESOLVER, qry)) {
				KR_DNAME_GET_STR(qname_str, ta_rr->owner);
				VERBOSE_MSG(qry, ">< TA: '%s'\n", qname_str);
			}
		}
	}

	/* Try to fetch missing DS (from above the cut). */
	const bool has_ta = (qry->zone_cut.trust_anchor != NULL);
	const knot_dname_t *ta_name = (has_ta ? qry->zone_cut.trust_anchor->owner : NULL);
	const bool refetch_ta = !has_ta || !knot_dname_is_equal(qry->zone_cut.name, ta_name);
	const bool want_secure = qry->flags.DNSSEC_WANT && !has_cd;
	if (want_secure && refetch_ta) {
		/* @todo we could fetch the information from the parent cut, but we don't remember that now */
		struct kr_query *next = kr_rplan_push(rplan, qry, qry->zone_cut.name, qry->sclass, KNOT_RRTYPE_DS);
		if (!next) {
			return KR_STATE_FAIL;
		}
		next->flags.AWAIT_CUT = true;
		next->flags.DNSSEC_WANT = true;
		return KR_STATE_DONE;
	}
	/* Try to fetch missing DNSKEY (either missing or above current cut).
	 * Do not fetch if this is a DNSKEY subrequest to avoid circular dependency. */
	const bool is_dnskey_subreq = kr_rplan_satisfies(qry, ta_name, KNOT_CLASS_IN, KNOT_RRTYPE_DNSKEY);
	const bool refetch_key = has_ta && (!qry->zone_cut.key || !knot_dname_is_equal(ta_name, qry->zone_cut.key->owner));
	if (want_secure && refetch_key && !is_dnskey_subreq) {
		struct kr_query *next = zone_cut_subreq(rplan, qry, ta_name, KNOT_RRTYPE_DNSKEY);
		if (!next) {
			return KR_STATE_FAIL;
		}
		return KR_STATE_DONE;
	}

	return KR_STATE_PRODUCE;
}

/** @internal Check current zone cut status and credibility, spawn subrequests if needed. */
static int zone_cut_check(struct kr_request *request, struct kr_query *qry, knot_pkt_t *packet)
/* TODO: using cache on this point in this way just isn't nice; remove in time */
{
	/* Stub mode, just forward and do not solve cut. */
	if (qry->flags.STUB) {
		return KR_STATE_PRODUCE;
	}

	/* Forwarding to upstream resolver mode.
	 * Since forwarding targets already are in qry->ns -
	 * cut fetching is not needed. */
	if (qry->flags.FORWARD) {
		return forward_trust_chain_check(request, qry, false);
	}
	if (!(qry->flags.AWAIT_CUT)) {
		/* The query was resolved from cache.
		 * Spawn DS \ DNSKEY requests if needed and exit */
		return trust_chain_check(request, qry);
	}

	/* The query wasn't resolved from cache,
	 * now it's the time to look up closest zone cut from cache. */
	struct kr_cache *cache = &request->ctx->cache;
	if (!kr_cache_is_open(cache)) {
		int ret = kr_zonecut_set_sbelt(request->ctx, &qry->zone_cut);
		if (ret != 0) {
			return KR_STATE_FAIL;
		}
		VERBOSE_MSG(qry, "=> no cache open, using root hints\n");
		qry->flags.AWAIT_CUT = false;
		return KR_STATE_DONE;
	}

	const knot_dname_t *requested_name = qry->sname;
	/* If at/subdomain of parent zone cut, start from its encloser.
	 * This is for case when we get to a dead end
	 * (and need glue from parent), or DS refetch. */
	if (qry->parent) {
		const knot_dname_t *parent = qry->parent->zone_cut.name;
		if (parent[0] != '\0'
		    && knot_dname_in_bailiwick(qry->sname, parent) >= 0) {
			requested_name = knot_wire_next_label(parent, NULL);
		}
	} else if ((qry->stype == KNOT_RRTYPE_DS) && (qry->sname[0] != '\0')) {
		/* If this is explicit DS query, start from encloser too. */
		requested_name = knot_wire_next_label(requested_name, NULL);
	}

	int state = KR_STATE_FAIL;
	do {
		state = ns_fetch_cut(qry, requested_name, request, packet);
		if (state == KR_STATE_DONE || (state & KR_STATE_FAIL)) {
			return state;
		} else if (state == KR_STATE_CONSUME) {
			requested_name = knot_wire_next_label(requested_name, NULL);
		}
	} while (state == KR_STATE_CONSUME);

	/* Update minimized QNAME if zone cut changed */
	if (qry->zone_cut.name && qry->zone_cut.name[0] != '\0' && !(qry->flags.NO_MINIMIZE)) {
		if (kr_make_query(qry, packet) != 0) {
			return KR_STATE_FAIL;
		}
	}
	qry->flags.AWAIT_CUT = false;

	/* Check trust chain */
	return trust_chain_check(request, qry);
}


static int ns_resolve_addr(struct kr_query *qry, struct kr_request *param, struct kr_transport *transport, uint16_t next_type)
{
	struct kr_rplan *rplan = &param->rplan;
	struct kr_context *ctx = param->ctx;


	/* Start NS queries from root, to avoid certain cases
	 * where a NS drops out of cache and the rest is unavailable,
	 * this would lead to dependency loop in current zone cut.
	 */

	/* Bail out if the query is already pending or dependency loop. */
	if (!next_type || kr_rplan_satisfies(qry->parent, transport->ns_name, KNOT_CLASS_IN, next_type)) {
		/* Fall back to SBELT if root server query fails. */
		if (!next_type && qry->zone_cut.name[0] == '\0') {
			VERBOSE_MSG(qry, "=> fallback to root hints\n");
			kr_zonecut_set_sbelt(ctx, &qry->zone_cut);
			return kr_error(EAGAIN);
		}
		/* No IPv4 nor IPv6, flag server as unusable. */
		VERBOSE_MSG(qry, "=> unresolvable NS address, bailing out\n");
		kr_zonecut_del_all(&qry->zone_cut, transport->ns_name);
		return kr_error(EHOSTUNREACH);
	}
	/* Push new query to the resolution plan */
	struct kr_query *next =
		kr_rplan_push(rplan, qry, transport->ns_name, KNOT_CLASS_IN, next_type);
	if (!next) {
		return kr_error(ENOMEM);
	}
	next->flags.NONAUTH = true;

	/* At the root level with no NS addresses, add SBELT subrequest. */
	int ret = 0;
	if (qry->zone_cut.name[0] == '\0') {
		ret = kr_zonecut_set_sbelt(ctx, &next->zone_cut);
		if (ret == 0) { /* Copy TA and key since it's the same cut to avoid lookup. */
			kr_zonecut_copy_trust(&next->zone_cut, &qry->zone_cut);
			kr_zonecut_set_sbelt(ctx, &qry->zone_cut); /* Add SBELT to parent in case query fails. */
		}
	} else {
		next->flags.AWAIT_CUT = true;
	}

	if (ret == 0) {
		if (next_type == KNOT_RRTYPE_AAAA) {
			qry->flags.AWAIT_IPV6 = true;
		} else {
			qry->flags.AWAIT_IPV4 = true;
		}
	}

	return ret;
}

int kr_resolve_produce(struct kr_request *request, struct kr_transport **transport, knot_pkt_t *packet)
{
	struct kr_rplan *rplan = &request->rplan;

	/* No query left for resolution */
	if (kr_rplan_empty(rplan)) {
		return KR_STATE_FAIL;
	}

	struct kr_query *qry = array_tail(rplan->pending);

	/* Initialize server selection */
	if (!qry->server_selection.initialized) {
		kr_server_selection_init(qry);
	}

	/* If we have deferred answers, resume them. */
	if (qry->deferred != NULL) {
		/* @todo: Refactoring validator, check trust chain before resuming. */
		int state = 0;
		if (((qry->flags.FORWARD) == 0) ||
		    ((qry->stype == KNOT_RRTYPE_DS) && (qry->flags.CNAME))) {
			state = trust_chain_check(request, qry);
		} else {
			state = forward_trust_chain_check(request, qry, true);
		}

		switch(state) {
		case KR_STATE_FAIL: return KR_STATE_FAIL;
		case KR_STATE_DONE: return KR_STATE_PRODUCE;
		default: break;
		}
		VERBOSE_MSG(qry, "=> resuming yielded answer\n");
		struct kr_layer_pickle *pickle = qry->deferred;
		request->state = KR_STATE_YIELD;
		set_yield(&request->answ_selected, qry->uid, false);
		set_yield(&request->auth_selected, qry->uid, false);
		RESUME_LAYERS(layer_id(request, pickle->api), request, qry, consume, pickle->pkt);
		if (request->state != KR_STATE_YIELD) {
			/* No new deferred answers, take the next */
			qry->deferred = pickle->next;
		}
	} else {
		/* Caller is interested in always tracking a zone cut, even if the answer is cached
		 * this is normally not required, and incurs another cache lookups for cached answer. */
		if (qry->flags.ALWAYS_CUT) {
			if (!(qry->flags.STUB)) {
				switch(zone_cut_check(request, qry, packet)) {
				case KR_STATE_FAIL: return KR_STATE_FAIL;
				case KR_STATE_DONE: return KR_STATE_PRODUCE;
				default: break;
				}
			}
		}
		/* Resolve current query and produce dependent or finish */
		request->state = KR_STATE_PRODUCE;
		ITERATE_LAYERS(request, qry, produce, packet);
		if (!(request->state & KR_STATE_FAIL) && knot_wire_get_qr(packet->wire)) {
			/* Produced an answer from cache, consume it. */
			qry->secret = 0;
			request->state = KR_STATE_CONSUME;
			ITERATE_LAYERS(request, qry, consume, packet);
		}
	}
	switch(request->state) {
	case KR_STATE_FAIL: return request->state;
	case KR_STATE_CONSUME: break;
	case KR_STATE_DONE:
	default: /* Current query is done */
		if (qry->flags.RESOLVED && request->state != KR_STATE_YIELD) {
			kr_rplan_pop(rplan, qry);
		}
		ITERATE_LAYERS(request, qry, reset);
		return kr_rplan_empty(rplan) ? KR_STATE_DONE : KR_STATE_PRODUCE;
	}


	/* This query has RD=0 or is ANY, stop here. */
	if (qry->stype == KNOT_RRTYPE_ANY ||
	    !knot_wire_get_rd(request->qsource.packet->wire)) {
		VERBOSE_MSG(qry, "=> qtype is ANY or RD=0, bail out\n");
		return KR_STATE_FAIL;
	}

	/* Update zone cut, spawn new subrequests. */
	if (!(qry->flags.STUB)) {
		int state = zone_cut_check(request, qry, packet);
		switch(state) {
		case KR_STATE_FAIL: return KR_STATE_FAIL;
		case KR_STATE_DONE: return KR_STATE_PRODUCE;
		default: break;
		}
	}


	const struct kr_qflags qflg = qry->flags;
	const bool retry = qflg.TCP || qflg.BADCOOKIE_AGAIN;
	if (!qflg.FORWARD && !qflg.STUB && !retry) { /* Keep NS when requerying/stub/badcookie. */
		/* Root DNSKEY must be fetched from the hints to avoid chicken and egg problem. */
		if (qry->sname[0] == '\0' && qry->stype == KNOT_RRTYPE_DNSKEY) {
			kr_zonecut_set_sbelt(request->ctx, &qry->zone_cut);
		}
	}

	qry->server_selection.choose_transport(qry, transport);

	if (*transport == NULL) {
		/* Properly signal to serve_stale module. */
		if (qry->flags.NO_NS_FOUND) {
			ITERATE_LAYERS(request, qry, reset);
			kr_rplan_pop(rplan, qry);
			return KR_STATE_FAIL;
		} else {
			/* FIXME: This is probably quite inefficient:
			* we go through the whole qr_task_step loop just because of the serve_stale
			* module which might not even be loaded. */
			qry->flags.NO_NS_FOUND = true;
			return KR_STATE_PRODUCE;
		}
	}

	if ((*transport)->protocol == KR_TRANSPORT_RESOLVE_A || (*transport)->protocol == KR_TRANSPORT_RESOLVE_AAAA) {
		uint16_t type = (*transport)->protocol == KR_TRANSPORT_RESOLVE_A ? KNOT_RRTYPE_A : KNOT_RRTYPE_AAAA;
		ns_resolve_addr(qry, qry->request, *transport, type);
		ITERATE_LAYERS(request, qry, reset);
		return KR_STATE_PRODUCE;
	}

	/* Randomize query case (if not in not turned off) */
	qry->secret = qry->flags.NO_0X20 ? 0 : kr_rand_bytes(sizeof(qry->secret));
	knot_dname_t *qname_raw = kr_pkt_qname_raw(packet);
	randomized_qname_case(qname_raw, qry->secret);

	/*
	 * Additional query is going to be finalized when calling
	 * kr_resolve_checkout().
	 */
	qry->timestamp_mono = kr_now();
	return request->state;
}

#if ENABLE_COOKIES
/** Update DNS cookie data in packet. */
static bool outbound_request_update_cookies(struct kr_request *req,
                                            const struct sockaddr *src,
                                            const struct sockaddr *dst)
{
	if (kr_fails_assert(req))
		return false;

	/* RFC7873 4.1 strongly requires server address. */
	if (!dst)
		return false;

	struct kr_cookie_settings *clnt_sett = &req->ctx->cookie_ctx.clnt;

	/* Cookies disabled or packet has no EDNS section. */
	if (!clnt_sett->enabled)
		return true;

	/*
	 * RFC7873 4.1 recommends using also the client address. The matter is
	 * also discussed in section 6.
	 */

	kr_request_put_cookie(&clnt_sett->current, req->ctx->cache_cookie,
	                      src, dst, req);

	return true;
}
#endif /* ENABLE_COOKIES */

int kr_resolve_checkout(struct kr_request *request, const struct sockaddr *src,
                        struct kr_transport *transport, knot_pkt_t *packet)
{
	/* @todo: Update documentation if this function becomes approved. */

	struct kr_rplan *rplan = &request->rplan;

	if (knot_wire_get_qr(packet->wire) != 0) {
		return kr_ok();
	}

	/* No query left for resolution */
	if (kr_rplan_empty(rplan)) {
		return kr_error(EINVAL);
	}
	struct kr_query *qry = array_tail(rplan->pending);

#if ENABLE_COOKIES
	/* Update DNS cookies in request. */
	if (type == SOCK_DGRAM) { /* @todo: Add cookies also over TCP? */
		/*
		 * The actual server IP address is needed before generating the
		 * actual cookie. If we don't know the server address then we
		 * also don't know the actual cookie size.
		 */
		if (!outbound_request_update_cookies(request, src, &transport->address.ip)) {
			return kr_error(EINVAL);
		}
	}
#endif /* ENABLE_COOKIES */

	int ret = query_finalize(request, qry, packet);
	if (ret != 0) {
		return kr_error(EINVAL);
	}

	/* Track changes in minimization secret to enable/disable minimization */
	uint32_t old_minimization_secret = qry->secret;

	/* Run the checkout layers and cancel on failure.
	 * The checkout layer doesn't persist the state, so canceled subrequests
	 * don't affect the resolution or rest of the processing. */
	int type = -1;
	switch(transport->protocol) {
	case KR_TRANSPORT_UDP:
		type = SOCK_DGRAM;
		break;
	case KR_TRANSPORT_TCP:
	case KR_TRANSPORT_TLS:
		type = SOCK_STREAM;
		break;
	default:
		kr_assert(false);
	}
	int state = request->state;
	ITERATE_LAYERS(request, qry, checkout, packet, &transport->address.ip, type);
	if (request->state & KR_STATE_FAIL) {
		request->state = state; /* Restore */
		return kr_error(ECANCELED);
	}

	/* Randomize query case (if secret changed) */
	knot_dname_t *qname_raw = kr_pkt_qname_raw(packet);
	if (qry->secret != old_minimization_secret) {
		randomized_qname_case(qname_raw, qry->secret);
	}

	/* Write down OPT unless in safemode */
	if (!(qry->flags.NO_EDNS)) {
		/* TLS padding */
		if (transport->protocol == KR_TRANSPORT_TLS) {
			size_t padding_size = edns_padding_option_size(request->ctx->tls_padding);
			ret = knot_pkt_reserve(packet, padding_size);
			if (ret)
				return kr_error(EINVAL);
			ret = pkt_padding(packet, request->ctx->tls_padding);
			if (ret)
				return kr_error(EINVAL);
		}

		ret = edns_put(packet, true);
		if (ret != 0) {
			return kr_error(EINVAL);
		}
	}

	if (kr_log_is_debug_qry(RESOLVER, qry)) {
		KR_DNAME_GET_STR(qname_str, knot_pkt_qname(packet));
		KR_DNAME_GET_STR(ns_name, transport->ns_name);
		KR_DNAME_GET_STR(zonecut_str, qry->zone_cut.name);
		KR_RRTYPE_GET_STR(type_str, knot_pkt_qtype(packet));
		const char *ns_str = kr_straddr(&transport->address.ip);

		VERBOSE_MSG(qry,
			"=> id: '%05u' querying: '%s'@'%s' zone cut: '%s' "
			"qname: '%s' qtype: '%s' proto: '%s'\n",
			qry->id, ns_name, ns_str ? ns_str : "", zonecut_str,
			qname_str, type_str, (qry->flags.TCP) ? "tcp" : "udp");
	}

	return kr_ok();
}

int kr_resolve_finish(struct kr_request *request, int state)
{
	request->state = state;
	/* Finalize answer and construct whole wire-format (unless dropping). */
	knot_pkt_t *answer = kr_request_ensure_answer(request);
	if (answer) {
		ITERATE_LAYERS(request, NULL, answer_finalize);
		answer_finalize(request);

		/* Defensive style, in case someone has forgotten.
		 * Beware: non-empty answers do make sense even with SERVFAIL case, etc. */
		if (request->state != KR_STATE_DONE) {
			uint8_t *wire = answer->wire;
			switch (knot_wire_get_rcode(wire)) {
			case KNOT_RCODE_NOERROR:
			case KNOT_RCODE_NXDOMAIN:
				knot_wire_clear_ad(wire);
				knot_wire_clear_aa(wire);
				knot_wire_set_rcode(wire, KNOT_RCODE_SERVFAIL);
			}
		}
	}

	ITERATE_LAYERS(request, NULL, finish);

	struct kr_rplan *rplan = &request->rplan;
	struct kr_query *last = kr_rplan_last(rplan);
	VERBOSE_MSG(last, "finished in state: %d, queries: %zu, mempool: %zu B\n",
		  request->state, rplan->resolved.len, (size_t) mp_total_size(request->pool.ctx));

	/* Trace request finish */
	if (request->trace_finish) {
		request->trace_finish(request);
	}

	/* Uninstall all tracepoints */
	request->trace_finish = NULL;
	request->trace_log = NULL;

	return KR_STATE_DONE;
}

struct kr_rplan *kr_resolve_plan(struct kr_request *request)
{
	if (request) {
		return &request->rplan;
	}
	return NULL;
}

knot_mm_t *kr_resolve_pool(struct kr_request *request)
{
	if (request) {
		return &request->pool;
	}
	return NULL;
}

static int ede_priority(int info_code)
{
	switch(info_code) {
	case KNOT_EDNS_EDE_DNSKEY_BIT:
	case KNOT_EDNS_EDE_DNSKEY_MISS:
	case KNOT_EDNS_EDE_SIG_EXPIRED:
	case KNOT_EDNS_EDE_SIG_NOTYET:
	case KNOT_EDNS_EDE_RRSIG_MISS:
	case KNOT_EDNS_EDE_NSEC_MISS:
		return 900;  /* Specific DNSSEC failures */
	case KNOT_EDNS_EDE_BOGUS:
		return 800;  /* Generic DNSSEC failure */
	case KNOT_EDNS_EDE_FORGED:
	case KNOT_EDNS_EDE_FILTERED:
		return 700;  /* Considered hard fail by firefox */
	case KNOT_EDNS_EDE_PROHIBITED:
	case KNOT_EDNS_EDE_BLOCKED:
	case KNOT_EDNS_EDE_CENSORED:
		return 600;  /* Policy related */
	case KNOT_EDNS_EDE_DNSKEY_ALG:
	case KNOT_EDNS_EDE_DS_DIGEST:
		return 500;  /* Non-critical DNSSEC issues */
	case KNOT_EDNS_EDE_STALE:
	case KNOT_EDNS_EDE_STALE_NXD:
		return 300;  /* Serve-stale answers. */
	case KNOT_EDNS_EDE_INDETERMINATE:
	case KNOT_EDNS_EDE_CACHED_ERR:
	case KNOT_EDNS_EDE_NOT_READY:
	case KNOT_EDNS_EDE_NOTAUTH:
	case KNOT_EDNS_EDE_NOTSUP:
	case KNOT_EDNS_EDE_NREACH_AUTH:
	case KNOT_EDNS_EDE_NETWORK:
	case KNOT_EDNS_EDE_INV_DATA:
		return 200;  /* Assorted codes */
	case KNOT_EDNS_EDE_OTHER:
		return 100;  /* Most generic catch-all error */
	case KNOT_EDNS_EDE_NONE:
		return 0;  /* No error - allow overriding */
	default:
		kr_assert(false);  /* Unknown info_code */
		return 50;
	}
}

int kr_request_set_extended_error(struct kr_request *request, int info_code, const char *extra_text)
{
	if (kr_fails_assert(request))
		return KNOT_EDNS_EDE_NONE;

	struct kr_extended_error *ede = &request->extended_error;

	/* Clear any previously set error. */
	if (info_code == KNOT_EDNS_EDE_NONE) {
		kr_assert(extra_text == NULL);
		ede->info_code = KNOT_EDNS_EDE_NONE;
		ede->extra_text = NULL;
		return KNOT_EDNS_EDE_NONE;
	}

	if (ede_priority(info_code) > ede_priority(ede->info_code)) {
		ede->info_code = info_code;
		ede->extra_text = extra_text;
	}

	return ede->info_code;
}

#undef VERBOSE_MSG