summaryrefslogtreecommitdiffstats
path: root/tests/knot/test_zone_serial.c
blob: 5728e974620c1e91a5311dff3449a687e047657c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*  Copyright (C) 2023 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

#include <tap/basic.h>
#include <stdlib.h>
#include <time.h>

#include "knot/zone/serial.h"
#include "knot/conf/schema.h"
#include "contrib/strtonum.h"

enum serials {
	S_LOWEST = 0,			// lowest value
	S_2LOWEST = 1,			// second lowest value
	S_BELOW_MIDDLE = 0x7fffffff,	// one below middle
	S_ABOVE_MIDDLE = 0x80000000,	// one above middle
	S_2HIGHEST = 0xffffffff - 1,	// second highest value
	S_HIGHEST = 0xffffffff		// highest value
};

static uint32_t random_serial(void)
{
	uint32_t s = rand() & 0xff;
	s |= (rand() & 0xff) << 8;
	s |= (rand() & 0xff) << 16;
	s |= (rand() & 0xff) << 24;

	return s;
}

static void check_unixtime(uint32_t current, uint32_t increment, uint32_t expected, const char *msg)
{
	uint32_t next = serial_next_generic(current, SERIAL_POLICY_UNIXTIME, increment, 0, 1);
	ok(next == expected, "unixtime: %s", msg);
}

/* Test will wrongly fail if the next second starts while running;
 * this is unlikely, so not taking any action */
static void test_unixtime(void)
{
	time_t serial0 = time(NULL);

	check_unixtime(1000000000, 1, serial0, "from old second or policy");
	check_unixtime(serial0, 0, serial0, "reuse current second");
	check_unixtime(serial0, 1, serial0 + 1, "this second's first increment");
	check_unixtime(serial0 + 1, 1, serial0 + 2, "this second's second increment");
	check_unixtime(3000000000, 1, 3000000001, "from future second");
	check_unixtime(3000000000, 0, 3000000000, "at future second");
}

static void check_dateserial(uint32_t current, uint32_t increment, uint32_t expected, const char *msg)
{
	uint32_t next = serial_next_generic(current, SERIAL_POLICY_DATESERIAL, increment, 0, 1);
	ok(next == expected, "dateserial: %s", msg);
}

/* Test will wrongly fail if the next day starts while running;
 * this is EXTREMELY unlikely, so definitely not taking any action */
static void test_dateserial(void)
{
	time_t now = time(NULL);

	struct tm *gm_ret = gmtime(&now);

	char str[32];
	int ret1 = strftime(str, sizeof(str), "%Y%m%d00", gm_ret);

	uint32_t serial0 = 0;
	int ret2 = str_to_u32(str, &serial0);

	ok(gm_ret != NULL && ret1 > 0 && ret2 == KNOT_EOK,
	   "dateserial: prepare current value");

	check_dateserial(2000010100, 1, serial0, "from old date or policy");
	check_dateserial(serial0, 1, serial0 + 1, "today's first increment");
	check_dateserial(serial0 + 98, 1, serial0 + 99, "today's last increment");
	check_dateserial(serial0 + 99, 1, serial0 + 100, "wrap from today");
	check_dateserial(2100010100, 1, 2100010101, "from future date");
	check_dateserial(2100010100, 0, 2100010100, "at future date");
}

static void check_modulo(uint32_t current, uint32_t expected, uint8_t rem, uint8_t mod)
{
	uint32_t next = serial_next_generic(current, SERIAL_POLICY_INCREMENT, 1, rem, mod);
	ok(next == expected, "modulo: %u->%u %u/%u", current, expected, rem, mod);
}

static void test_modulo(void)
{
	// mod 1

	check_modulo(0, 1, 0, 1);
	check_modulo(1, 2, 0, 1);
	check_modulo(2, 3, 0, 1);
	check_modulo(3, 4, 0, 1);
	check_modulo(S_2HIGHEST, S_HIGHEST, 0, 1);
	check_modulo(S_HIGHEST, S_LOWEST,   0, 1);

	// mod 2

	check_modulo(0, 2, 0, 2);
	check_modulo(1, 2, 0, 2);
	check_modulo(2, 4, 0, 2);
	check_modulo(3, 4, 0, 2);
	check_modulo(4, 6, 0, 2);
	check_modulo(S_2HIGHEST, S_LOWEST, 0, 2);

	check_modulo(0, 1, 1, 2);
	check_modulo(1, 3, 1, 2);
	check_modulo(2, 3, 1, 2);
	check_modulo(3, 5, 1, 2);
	check_modulo(4, 5, 1, 2);
	check_modulo(S_2HIGHEST, S_HIGHEST, 1, 2);

	// mod 3

	check_modulo(0, 3, 0, 3);
	check_modulo(1, 3, 0, 3);
	check_modulo(2, 3, 0, 3);
	check_modulo(3, 6, 0, 3);
	check_modulo(4, 6, 0, 3);

	check_modulo(0, 1, 1, 3);
	check_modulo(1, 4, 1, 3);
	check_modulo(2, 4, 1, 3);
	check_modulo(3, 4, 1, 3);
	check_modulo(4, 7, 1, 3);

	check_modulo(0, 2, 2, 3);
	check_modulo(1, 2, 2, 3);
	check_modulo(2, 5, 2, 3);
	check_modulo(3, 5, 2, 3);
	check_modulo(4, 5, 2, 3);
}

int main(int argc, char *argv[])
{
	plan_lazy();

	/* Serial compare test. */
	ok(serial_compare(S_LOWEST, S_BELOW_MIDDLE) == SERIAL_LOWER,
	   "serial compare: lowest < below middle");
	ok(serial_compare(S_BELOW_MIDDLE, S_LOWEST) == SERIAL_GREATER,
	   "serial compare: below middle > lowest");

	/* Corner-case: these serials' distance is exactly 2^31. */
	ok(serial_compare(S_LOWEST, S_ABOVE_MIDDLE) == SERIAL_INCOMPARABLE,
	   "serial compare: lowest < above_middle");
	ok(serial_compare(S_ABOVE_MIDDLE, S_LOWEST) == SERIAL_INCOMPARABLE,
	   "serial compare: above_middle < lowest");

	ok(serial_compare(S_LOWEST, S_HIGHEST) == SERIAL_GREATER,
	   "serial compare: lowest > highest");
	ok(serial_compare(S_HIGHEST, S_LOWEST) == SERIAL_LOWER,
	   "serial compare: highest < lowest");

	ok(serial_compare(S_2LOWEST, S_ABOVE_MIDDLE) == SERIAL_LOWER,
	   "serial compare: 2nd lowest < above middle");
	ok(serial_compare(S_ABOVE_MIDDLE, S_2LOWEST) == SERIAL_GREATER,
	   "serial compare: above middle > 2nd lowest");

	/* Corner-case: these serials' distance is exactly 2^31. */
	ok(serial_compare(S_BELOW_MIDDLE, S_HIGHEST) == SERIAL_INCOMPARABLE,
	   "serial compare: below middle < highest");
	ok(serial_compare(S_HIGHEST, S_BELOW_MIDDLE) == SERIAL_INCOMPARABLE,
	   "serial compare: highest < below middle");

	ok(serial_compare(S_BELOW_MIDDLE, S_2HIGHEST) == SERIAL_LOWER,
	   "serial compare: below middle < 2nd highest");
	ok(serial_compare(S_2HIGHEST, S_BELOW_MIDDLE) == SERIAL_GREATER,
	   "serial compare: 2nd highest > below middle");

	ok(serial_compare(S_ABOVE_MIDDLE, S_HIGHEST) == SERIAL_LOWER,
	   "serial compare: above middle < highest");
	ok(serial_compare(S_HIGHEST, S_ABOVE_MIDDLE) == SERIAL_GREATER,
	   "serial compare: highest > above middle");

	ok(serial_compare(S_LOWEST, S_LOWEST) == SERIAL_EQUAL,
	   "serial compare: lowest == lowest");
	ok(serial_compare(S_HIGHEST, S_HIGHEST) == SERIAL_EQUAL,
	   "serial compare: highest == highest");

	ok(serial_compare(S_LOWEST - 1, S_HIGHEST) == SERIAL_EQUAL,
	   "serial compare: lowest - 1 == highest");
	ok(serial_compare(S_LOWEST, S_HIGHEST + 1) == SERIAL_EQUAL,
	   "serial compare: lowest== highest + 1");

	/* Corner-case: these serials' distance is exactly 2^31. */
	uint32_t s1 = random_serial();
	uint32_t s2 = s1 + S_ABOVE_MIDDLE;  // exactly the 'opposite' number
	ok(serial_compare(s1, s2) == SERIAL_INCOMPARABLE,
	   "serial compare: random opposites (s1 < s2)");
	ok(serial_compare(s2, s1) == SERIAL_INCOMPARABLE,
	   "serial compare: random opposites (s2 < s1)");

	test_dateserial();
	test_unixtime();
	test_modulo();

	return 0;
}