1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
/* Copyright (C) 2024 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <tap/basic.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdatomic.h>
#include "libdnssec/crypto.h"
#include "libdnssec/random.h"
#include "libknot/libknot.h"
#include "contrib/openbsd/siphash.h"
#include "contrib/sockaddr.h"
#include "time.h"
int fakeclock_gettime(clockid_t clockid, struct timespec *tp);
#define clock_gettime fakeclock_gettime
#include "knot/modules/rrl/functions.c"
#undef clock_gettime
#define RRL_THREADS 4
//#define RRL_SYNC_WITH_REAL_TIME
#define BATCH_QUERIES_LOG 3 // threads acquire queries in batches of 8
#define HOSTS_LOG 3 // at most 6 attackers + 2 wildcard addresses for normal users
#define TICK_QUERIES_LOG 13 // at most 1024 queries per host per tick
// Accessing RRL configuration of INSTANT/RATE limits for V4/V6 and specific prefix.
#define LIMIT(type, Vx, prefix) (RRL_MULT(Vx, prefix) * RRL_ ## type ## _LIMIT)
#define RRL_CONFIG(Vx, name) RRL_ ## Vx ## _ ## name
#define RRL_MULT(Vx, prefix) get_mult(RRL_CONFIG(Vx, PREFIXES), RRL_CONFIG(Vx, RATE_MULT), RRL_CONFIG(Vx, PREFIXES_CNT), prefix)
static inline kru_price_t get_mult(uint8_t prefixes[], kru_price_t mults[], size_t cnt, uint8_t wanted_prefix) {
for (size_t i = 0; i < cnt; i++)
if (prefixes[i] == wanted_prefix)
return mults[i];
assert(0);
return 0;
}
// Macro correction depending on the table mode.
int DIFF = 0;
// Instant limits and rate limits per msec.
#define INST(Vx, prefix) (LIMIT(INSTANT, Vx, prefix) + DIFF)
#define RATEM(Vx, prefix) (LIMIT(RATE, Vx, prefix) / 1000 + DIFF)
// Expected range of limits for parallel test.
#define RANGE_INST(Vx, prefix) INST(Vx, prefix) - 1, INST(Vx, prefix) + RRL_THREADS - 1
#define RANGE_RATEM(Vx, prefix) RATEM(Vx, prefix) - 1 - DIFF, RATEM(Vx, prefix) + RRL_THREADS - DIFF
#define RANGE_UNLIM(queries) queries, queries
/* Fix seed for randomness in RLL module. Change if improbable collisions arise. (one byte) */
#define RRL_SEED_GENERIC 1
#define RRL_SEED_AVX2 1
struct kru_generic {
SIPHASH_KEY hash_key;
// ...
};
struct kru_avx2 {
_Alignas(32) char hash_key[48];
// ...
};
/* Override time in RRL module. */
struct timespec fakeclock_start;
uint32_t fakeclock_tick = 0;
void fakeclock_init(void)
{
clock_gettime(CLOCK_MONOTONIC_COARSE, &fakeclock_start);
fakeclock_tick = 0;
}
int fakeclock_gettime(clockid_t clockid, struct timespec *tp)
{
uint32_t inc_msec = fakeclock_tick;
tp->tv_sec = fakeclock_start.tv_sec + (fakeclock_start.tv_nsec / 1000000 + inc_msec) / 1000;
tp->tv_nsec = (fakeclock_start.tv_nsec + (inc_msec % 1000) * 1000000) % 1000000000;
return 0;
}
struct host {
uint32_t queries_per_tick;
int addr_family;
char *addr_format;
uint32_t min_passed, max_passed;
_Atomic uint32_t passed;
};
struct stage {
uint32_t first_tick, last_tick;
struct host hosts[1 << HOSTS_LOG];
};
struct runnable_data {
rrl_table_t *rrl;
int prime;
_Atomic uint32_t *queries_acquired, *queries_done;
struct stage *stages;
};
static void *rrl_runnable(void *arg)
{
struct runnable_data *d = (struct runnable_data *)arg;
size_t si = 0;
char addr_str[40];
struct sockaddr_storage addr;
while (true) {
uint32_t qi1 = atomic_fetch_add(d->queries_acquired, 1 << BATCH_QUERIES_LOG);
/* increment time if needed; sync on incrementing using spinlock */
uint32_t tick = qi1 >> TICK_QUERIES_LOG;
for (size_t i = 1; tick != fakeclock_tick; i++) {
if ((*d->queries_done >> TICK_QUERIES_LOG) >= tick) {
fakeclock_tick = tick;
}
if (i % (1<<14) == 0) sched_yield();
__sync_synchronize();
}
/* increment stage if needed */
while (tick > d->stages[si].last_tick) {
++si;
if (!d->stages[si].first_tick) return NULL;
}
#ifdef RRL_SYNC_WITH_REAL_TIME
{
struct timespec ts_fake, ts_real;
do {
fakeclock_gettime(CLOCK_MONOTONIC_COARSE, &ts_fake);
clock_gettime(CLOCK_MONOTONIC_COARSE, &ts_real);
} while (!((ts_real.tv_sec > ts_fake.tv_sec) ||
((ts_real.tv_sec == ts_fake.tv_sec) && (ts_real.tv_nsec >= ts_fake.tv_nsec))));
}
#endif
if (tick >= d->stages[si].first_tick) {
uint32_t qi2 = 0;
do {
uint32_t qi = qi1 + qi2;
/* perform query qi */
uint32_t hi = qi % (1 << HOSTS_LOG);
if (!d->stages[si].hosts[hi].queries_per_tick) continue;
uint32_t hqi = (qi % (1 << TICK_QUERIES_LOG)) >> HOSTS_LOG; // host query index within tick
if (hqi >= d->stages[si].hosts[hi].queries_per_tick) continue;
hqi += (qi >> TICK_QUERIES_LOG) * d->stages[si].hosts[hi].queries_per_tick; // across ticks
(void)snprintf(addr_str, sizeof(addr_str), d->stages[si].hosts[hi].addr_format,
hqi % 0xff, (hqi >> 8) % 0xff, (hqi >> 16) % 0xff);
sockaddr_set(&addr, d->stages[si].hosts[hi].addr_family, addr_str, 0);
if (rrl_query(d->rrl, &addr, NULL) == KNOT_EOK) {
atomic_fetch_add(&d->stages[si].hosts[hi].passed, 1);
if (!d->rrl->rw_mode) {
rrl_update(d->rrl, &addr, 1);
}
}
} while ((qi2 = (qi2 + d->prime) % (1 << BATCH_QUERIES_LOG)));
}
atomic_fetch_add(d->queries_done, 1 << BATCH_QUERIES_LOG);
}
}
char *impl_name = "";
rrl_table_t *rrl = NULL;
void count_test(char *desc, int expected_passing, double margin_fract,
int addr_family, char *addr_format, uint32_t min_value, uint32_t max_value)
{
uint32_t max_queries = expected_passing > 0 ? 2 * expected_passing : -expected_passing;
struct sockaddr_storage addr;
char addr_str[40];
int cnt = -1;
for (size_t i = 0; i < max_queries; i++) {
(void)snprintf(addr_str, sizeof(addr_str), addr_format,
i % (max_value - min_value + 1) + min_value,
i / (max_value - min_value + 1) % 256);
sockaddr_set(&addr, addr_family, addr_str, 0);
if (rrl_query(rrl, &addr, NULL) != KNOT_EOK) {
cnt = i;
break;
}
if (!rrl->rw_mode) {
rrl_update(rrl, &addr, 1);
}
}
if (expected_passing < 0) expected_passing = -1;
if (margin_fract == 0) {
is_int(expected_passing, cnt, "rrl(%s): %-48s [%7d ]", impl_name, desc, expected_passing);
} else {
int max_diff = expected_passing * margin_fract;
ok((expected_passing - max_diff <= cnt) && (cnt <= expected_passing + max_diff),
"rrl(%s): %-48s [%7d <=%7d <=%7d ]", impl_name, desc,
expected_passing - max_diff, cnt, expected_passing + max_diff);
}
}
void test_rrl(bool rw_mode)
{
size_t RRL_TABLE_SIZE = (1 << 20);
uint32_t RRL_INSTANT_LIMIT = (1 << 7);
uint32_t RRL_RATE_LIMIT = (1 << 16);
if (rw_mode) {
RRL_INSTANT_LIMIT = (1 << 8);
RRL_RATE_LIMIT = (1 << 17);
}
fakeclock_init();
/* create rrl table */
rrl = rrl_create(RRL_TABLE_SIZE, RRL_INSTANT_LIMIT, RRL_RATE_LIMIT, rw_mode, 0);
ok(rrl != NULL, "rrl(%s): create", impl_name);
assert(rrl);
if (KRU.initialize == KRU_GENERIC.initialize) {
struct kru_generic *kru = (struct kru_generic *) rrl->kru;
memset(&kru->hash_key, RRL_SEED_GENERIC, sizeof(kru->hash_key));
} else if (KRU.initialize == KRU_AVX2.initialize) {
struct kru_avx2 *kru = (struct kru_avx2 *) rrl->kru;
memset(&kru->hash_key, RRL_SEED_AVX2, sizeof(kru->hash_key));
} else {
assert(0);
}
/* IPv4 multi-prefix tests */
static_assert(RRL_V4_PREFIXES_CNT == 4,
"There are no more IPv4 limited prefixes (/32, /24, /20, /18 will be tested).");
count_test("IPv4 instant limit /32", INST(V4, 32), 0,
AF_INET, "128.0.0.0", 0, 0);
count_test("IPv4 instant limit /32 not applied on /31", -1, 0,
AF_INET, "128.0.0.1", 0, 0);
count_test("IPv4 instant limit /24", INST(V4, 24) - INST(V4, 32) - 1, 0,
AF_INET, "128.0.0.%d", 2, 255);
count_test("IPv4 instant limit /24 not applied on /23", -1, 0,
AF_INET, "128.0.1.0", 0, 0);
count_test("IPv4 instant limit /20", INST(V4, 20) - INST(V4, 24) - 1, 0.001,
AF_INET, "128.0.%d.%d", 2, 15);
count_test("IPv4 instant limit /20 not applied on /19", -1, 0,
AF_INET, "128.0.16.0", 0, 0);
count_test("IPv4 instant limit /18", INST(V4, 18) - INST(V4, 20) - 1, 0.01,
AF_INET, "128.0.%d.%d", 17, 63);
count_test("IPv4 instant limit /18 not applied on /17", -1, 0,
AF_INET, "128.0.64.0", 0, 0);
/* IPv6 multi-prefix tests */
static_assert(RRL_V6_PREFIXES_CNT == 5,
"There are no more IPv6 limited prefixes (/128, /64, /56, /48, /32 will be tested).");
count_test("IPv6 instant limit /128, independent to IPv4", INST(V6, 128), 0,
AF_INET6, "8000::", 0, 0);
count_test("IPv6 instant limit /128 not applied on /127", -1, 0,
AF_INET6, "8000::1", 0, 0);
count_test("IPv6 instant limit /64", INST(V6, 64) - INST(V6, 128) - 1, 0,
AF_INET6, "8000:0:0:0:%02x%02x::", 0x01, 0xff);
count_test("IPv6 instant limit /64 not applied on /63", -1, 0,
AF_INET6, "8000:0:0:1::", 0, 0);
count_test("IPv6 instant limit /56", INST(V6, 56) - INST(V6, 64) - 1, rw_mode ? 0 : 0.01,
AF_INET6, "8000:0:0:00%02x:%02x00::", 0x02, 0xff);
count_test("IPv6 instant limit /56 not applied on /55", -1, 0,
AF_INET6, "8000:0:0:0100::", 0, 0);
count_test("IPv6 instant limit /48", INST(V6, 48) - INST(V6, 56) - 1, 0.01,
AF_INET6, "8000:0:0:%02x%02x::", 0x02, 0xff);
count_test("IPv6 instant limit /48 not applied on /47", -1, 0,
AF_INET6, "8000:0:1::", 0, 0);
count_test("IPv6 instant limit /32", INST(V6, 32) - INST(V6, 48) - 1, rw_mode ? 0.001 : 0,
AF_INET6, "8000:0:%02x%02x::", 0x02, 0xff);
count_test("IPv6 instant limit /32 not applied on /31", -1, 0,
AF_INET6, "8000:1::", 0, 0);
/* limit after 1 msec */
fakeclock_tick++;
count_test("IPv4 rate limit /32 after 1 msec", RATEM(V4, 32), 0,
AF_INET, "128.0.0.0", 0, 0);
count_test("IPv6 rate limit /128 after 1 msec", RATEM(V6, 128), 0,
AF_INET6, "8000::", 0, 0);
/* parallel tests */
struct stage stages[] = {
/* first tick, last tick, hosts */
{32, 32, {
/* queries per tick, family, address, min passed, max passed */
{1024, AF_INET, "%d.%d.%d.1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET, "3.3.3.3", RANGE_INST ( V4, 32 )},
{ 512, AF_INET, "4.4.4.4", RANGE_INST ( V4, 32 )},
{1024, AF_INET6, "%x%x:%x00::1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET6, "3333::3333", RANGE_INST ( V6, 128 )},
{ 512, AF_INET6, "4444::4444", RANGE_INST ( V6, 128 )}
}},
{33, 255, {
{1024, AF_INET, "%d.%d.%d.1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET, "3.3.3.3", RANGE_RATEM ( V4, 32 )},
{ 512, AF_INET, "4.4.4.4", RANGE_RATEM ( V4, 32 )},
{1024, AF_INET6, "%x%x:%x00::1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET6, "3333::3333", RANGE_RATEM ( V6, 128 )},
{ 512, AF_INET6, "4444::4444", RANGE_RATEM ( V6, 128 )},
}},
{256, 511, {
{1024, AF_INET, "3.3.3.3", RANGE_RATEM ( V4, 32 )},
{1024, AF_INET6, "3333::3333", RANGE_RATEM ( V6, 128 )}
}},
{512, 512, {
{1024, AF_INET, "%d.%d.%d.1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET, "3.3.3.3", RANGE_RATEM ( V4, 32 )},
{ 512, AF_INET, "4.4.4.4", RANGE_INST ( V4, 32 )},
{1024, AF_INET6, "%x%x:%x00::1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET6, "3333::3333", RANGE_RATEM ( V6, 128 )},
{ 512, AF_INET6, "4444::4444", RANGE_INST ( V6, 128 )}
}},
{0}
};
pthread_t thr[RRL_THREADS];
struct runnable_data rd[RRL_THREADS];
_Atomic uint32_t queries_acquired = 0, queries_done = 0;
int primes[] = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61};
assert(sizeof(primes)/sizeof(*primes) >= RRL_THREADS);
for (unsigned i = 0; i < RRL_THREADS; ++i) {
rd[i].rrl = rrl;
rd[i].queries_acquired = &queries_acquired;
rd[i].queries_done = &queries_done;
rd[i].prime = primes[i];
rd[i].stages = stages;
pthread_create(thr + i, NULL, &rrl_runnable, rd + i);
}
for (unsigned i = 0; i < RRL_THREADS; ++i) {
pthread_join(thr[i], NULL);
}
unsigned si = 0;
do {
struct host * const h = stages[si].hosts;
uint32_t ticks = stages[si].last_tick - stages[si].first_tick + 1;
for (size_t i = 0; h[i].queries_per_tick; i++) {
ok( h[i].min_passed * ticks <= h[i].passed && h[i].passed <= h[i].max_passed * ticks,
"rrl(%s): parallel stage %d, addr %-25s [%7d <=%12.4f <=%7d ]", impl_name,
si, h[i].addr_format, h[i].min_passed, (double)h[i].passed / ticks, h[i].max_passed);
}
} while (stages[++si].first_tick);
rrl_destroy(rrl);
}
void test_rrl_mode(bool test_avx2, bool rw_mode)
{
if (!rw_mode) {
DIFF = 1;
}
KRU = KRU_GENERIC;
impl_name = "KRU_GENERIC";
test_rrl(rw_mode);
if (test_avx2) {
KRU = KRU_AVX2;
impl_name = "KRU_AVX2";
test_rrl(rw_mode);
} else {
diag("AVX2 NOT available");
}
}
int main(int argc, char *argv[])
{
plan_lazy();
dnssec_crypto_init();
assert(KRU_GENERIC.initialize != KRU_AVX2.initialize);
bool test_avx2 = (KRU.initialize == KRU_AVX2.initialize);
test_rrl_mode(test_avx2, true);
test_rrl_mode(test_avx2, false);
dnssec_crypto_cleanup();
return 0;
}
|