/* * Copyright (C) 2005-2018 Team Kodi * This file is part of Kodi - https://kodi.tv * * SPDX-License-Identifier: GPL-2.0-or-later * See LICENSES/README.md for more information. */ #include "DirectXGraphics.h" #include "Texture.h" #include "XBTF.h" LPVOID XPhysicalAlloc(SIZE_T s, DWORD ulPhysicalAddress, DWORD ulAlignment, DWORD flProtect) { return malloc(s); } void XPhysicalFree(LPVOID lpAddress) { free(lpAddress); } DWORD GetD3DFormat(XB_D3DFORMAT format) { #ifndef MAKEFOURCC #define MAKEFOURCC(ch0, ch1, ch2, ch3) \ ((DWORD)(BYTE)(ch0) | ((DWORD)(BYTE)(ch1) << 8) | \ ((DWORD)(BYTE)(ch2) << 16) | ((DWORD)(BYTE)(ch3) << 24 )) #endif switch (format) { case XB_D3DFMT_A8R8G8B8: case XB_D3DFMT_LIN_A8R8G8B8: case XB_D3DFMT_P8: return 21; case XB_D3DFMT_DXT1: return MAKEFOURCC('D', 'X', 'T', '1'); case XB_D3DFMT_DXT2: return MAKEFOURCC('D', 'X', 'T', '2'); case XB_D3DFMT_DXT4: return MAKEFOURCC('D', 'X', 'T', '4'); default: return 0; } } DWORD BytesPerPixelFromFormat(XB_D3DFORMAT format) { switch (format) { case XB_D3DFMT_A8R8G8B8: case XB_D3DFMT_LIN_A8R8G8B8: case XB_D3DFMT_DXT4: return 4; case XB_D3DFMT_P8: case XB_D3DFMT_DXT1: case XB_D3DFMT_DXT2: return 1; default: return 0; } } bool IsPalettedFormat(XB_D3DFORMAT format) { if (format == XB_D3DFMT_P8) return true; return false; } void ParseTextureHeader(D3DTexture *tex, XB_D3DFORMAT &fmt, DWORD &width, DWORD &height, DWORD &pitch, DWORD &offset) { fmt = (XB_D3DFORMAT)((tex->Format & 0xff00) >> 8); offset = tex->Data; if (tex->Size) { width = (tex->Size & 0x00000fff) + 1; height = ((tex->Size & 0x00fff000) >> 12) + 1; pitch = (((tex->Size & 0xff000000) >> 24) + 1) << 6; } else { width = 1 << ((tex->Format & 0x00f00000) >> 20); height = 1 << ((tex->Format & 0x0f000000) >> 24); pitch = width * BytesPerPixelFromFormat(fmt); } } bool IsSwizzledFormat(XB_D3DFORMAT format) { switch (format) { case XB_D3DFMT_A8R8G8B8: case XB_D3DFMT_P8: return true; default: return false; } } // Unswizzle. // Format is: // 00 01 04 05 // 02 03 06 07 // 08 09 12 13 // 10 11 14 15 ... // Currently only works for 32bit and 8bit textures, with power of 2 width and height void Unswizzle(const void *src, unsigned int depth, unsigned int width, unsigned int height, void *dest) { if (height == 0 || width == 0) return; for (UINT y = 0; y < height; y++) { UINT sy = 0; if (y < width) { for (int bit = 0; bit < 16; bit++) sy |= ((y >> bit) & 1) << (2*bit); sy <<= 1; // y counts twice } else { UINT y_mask = y % width; for (int bit = 0; bit < 16; bit++) sy |= ((y_mask >> bit) & 1) << (2*bit); sy <<= 1; // y counts twice sy += (y / width) * width * width; } BYTE *d = (BYTE *)dest + y * width * depth; for (UINT x = 0; x < width; x++) { UINT sx = 0; if (x < height * 2) { for (int bit = 0; bit < 16; bit++) sx |= ((x >> bit) & 1) << (2*bit); } else { int x_mask = x % (2*height); for (int bit = 0; bit < 16; bit++) sx |= ((x_mask >> bit) & 1) << (2*bit); sx += (x / (2 * height)) * 2 * height * height; } BYTE *s = (BYTE *)src + (sx + sy)*depth; for (unsigned int i = 0; i < depth; ++i) *d++ = *s++; } } } void DXT1toARGB(const void *src, void *dest, unsigned int destWidth) { const BYTE *b = (const BYTE *)src; // colour is in R5G6B5 format, convert to R8G8B8 DWORD colour[4]; BYTE red[4]; BYTE green[4]; BYTE blue[4]; for (int i = 0; i < 2; i++) { red[i] = b[2*i+1] & 0xf8; green[i] = ((b[2*i+1] & 0x7) << 5) | ((b[2*i] & 0xe0) >> 3); blue[i] = (b[2*i] & 0x1f) << 3; colour[i] = (red[i] << 16) | (green[i] << 8) | blue[i]; } if (colour[0] > colour[1]) { red[2] = (2 * red[0] + red[1] + 1) / 3; green[2] = (2 * green[0] + green[1] + 1) / 3; blue[2] = (2 * blue[0] + blue[1] + 1) / 3; red[3] = (red[0] + 2 * red[1] + 1) / 3; green[3] = (green[0] + 2 * green[1] + 1) / 3; blue[3] = (blue[0] + 2 * blue[1] + 1) / 3; for (int i = 0; i < 4; i++) colour[i] = (red[i] << 16) | (green[i] << 8) | blue[i] | 0xFF000000; } else { red[2] = (red[0] + red[1]) / 2; green[2] = (green[0] + green[1]) / 2; blue[2] = (blue[0] + blue[1]) / 2; for (int i = 0; i < 3; i++) colour[i] = (red[i] << 16) | (green[i] << 8) | blue[i] | 0xFF000000; colour[3] = 0; // transparent } // ok, now grab the bits for (int y = 0; y < 4; y++) { DWORD *d = (DWORD *)dest + destWidth * y; *d++ = colour[(b[4 + y] & 0x03)]; *d++ = colour[(b[4 + y] & 0x0c) >> 2]; *d++ = colour[(b[4 + y] & 0x30) >> 4]; *d++ = colour[(b[4 + y] & 0xc0) >> 6]; } } void DXT4toARGB(const void *src, void *dest, unsigned int destWidth) { const BYTE *b = (const BYTE *)src; BYTE alpha[8]; alpha[0] = b[0]; alpha[1] = b[1]; if (alpha[0] > alpha[1]) { alpha[2] = (6 * alpha[0] + 1 * alpha[1]+ 3) / 7; alpha[3] = (5 * alpha[0] + 2 * alpha[1] + 3) / 7; // bit code 011 alpha[4] = (4 * alpha[0] + 3 * alpha[1] + 3) / 7; // bit code 100 alpha[5] = (3 * alpha[0] + 4 * alpha[1] + 3) / 7; // bit code 101 alpha[6] = (2 * alpha[0] + 5 * alpha[1] + 3) / 7; // bit code 110 alpha[7] = (1 * alpha[0] + 6 * alpha[1] + 3) / 7; // bit code 111 } else { alpha[2] = (4 * alpha[0] + 1 * alpha[1] + 2) / 5; // Bit code 010 alpha[3] = (3 * alpha[0] + 2 * alpha[1] + 2) / 5; // Bit code 011 alpha[4] = (2 * alpha[0] + 3 * alpha[1] + 2) / 5; // Bit code 100 alpha[5] = (1 * alpha[0] + 4 * alpha[1] + 2) / 5; // Bit code 101 alpha[6] = 0; // Bit code 110 alpha[7] = 255; // Bit code 111 } // ok, now grab the bits BYTE a[4][4]; a[0][0] = alpha[(b[2] & 0xe0) >> 5]; a[0][1] = alpha[(b[2] & 0x1c) >> 2]; a[0][2] = alpha[((b[2] & 0x03) << 1) | ((b[3] & 0x80) >> 7)]; a[0][3] = alpha[(b[3] & 0x70) >> 4]; a[1][0] = alpha[(b[3] & 0x0e) >> 1]; a[1][1] = alpha[((b[3] & 0x01) << 2) | ((b[4] & 0xc0) >> 6)]; a[1][2] = alpha[(b[4] & 0x38) >> 3]; a[1][3] = alpha[(b[4] & 0x07)]; a[2][0] = alpha[(b[5] & 0xe0) >> 5]; a[2][1] = alpha[(b[5] & 0x1c) >> 2]; a[2][2] = alpha[((b[5] & 0x03) << 1) | ((b[6] & 0x80) >> 7)]; a[2][3] = alpha[(b[6] & 0x70) >> 4]; a[3][0] = alpha[(b[6] & 0x0e) >> 1]; a[3][1] = alpha[((b[6] & 0x01) << 2) | ((b[7] & 0xc0) >> 6)]; a[3][2] = alpha[(b[7] & 0x38) >> 3]; a[3][3] = alpha[(b[7] & 0x07)]; b = (BYTE *)src + 8; // colour is in R5G6B5 format, convert to R8G8B8 DWORD colour[4]; BYTE red[4]; BYTE green[4]; BYTE blue[4]; for (int i = 0; i < 2; i++) { red[i] = b[2*i+1] & 0xf8; green[i] = ((b[2*i+1] & 0x7) << 5) | ((b[2*i] & 0xe0) >> 3); blue[i] = (b[2*i] & 0x1f) << 3; } red[2] = (2 * red[0] + red[1] + 1) / 3; green[2] = (2 * green[0] + green[1] + 1) / 3; blue[2] = (2 * blue[0] + blue[1] + 1) / 3; red[3] = (red[0] + 2 * red[1] + 1) / 3; green[3] = (green[0] + 2 * green[1] + 1) / 3; blue[3] = (blue[0] + 2 * blue[1] + 1) / 3; for (int i = 0; i < 4; i++) colour[i] = (red[i] << 16) | (green[i] << 8) | blue[i]; // and assign them to our texture for (int y = 0; y < 4; y++) { DWORD *d = (DWORD *)dest + destWidth * y; *d++ = colour[(b[4 + y] & 0x03)] | (a[y][0] << 24); *d++ = colour[(b[4 + y] & 0x0e) >> 2] | (a[y][1] << 24); *d++ = colour[(b[4 + y] & 0x30) >> 4] | (a[y][2] << 24); *d++ = colour[(b[4 + y] & 0xe0) >> 6] | (a[y][3] << 24); } } void ConvertDXT1(const void *src, unsigned int width, unsigned int height, void *dest) { for (unsigned int y = 0; y < height; y += 4) { for (unsigned int x = 0; x < width; x += 4) { const BYTE *s = (const BYTE *)src + y * width / 2 + x * 2; DWORD *d = (DWORD *)dest + y * width + x; DXT1toARGB(s, d, width); } } } void ConvertDXT4(const void *src, unsigned int width, unsigned int height, void *dest) { // [4 4 4 4][4 4 4 4] // // // for (unsigned int y = 0; y < height; y += 4) { for (unsigned int x = 0; x < width; x += 4) { const BYTE *s = (const BYTE *)src + y * width + x * 4; DWORD *d = (DWORD *)dest + y * width + x; DXT4toARGB(s, d, width); } } } void GetTextureFromData(D3DTexture* pTex, void* texData, std::unique_ptr* ppTexture) { XB_D3DFORMAT fmt; DWORD width, height, pitch, offset; ParseTextureHeader(pTex, fmt, width, height, pitch, offset); *ppTexture = CTexture::CreateTexture(width, height, XB_FMT_A8R8G8B8); if (*ppTexture) { BYTE *texDataStart = (BYTE *)texData; COLOR *color = (COLOR *)texData; texDataStart += offset; /* DXMERGE - We should really support DXT1,DXT2 and DXT4 in both renderers Perhaps we should extend CTexture::Update() to support a bunch of different texture types Rather than assuming linear 32bits We could just override, as at least then all the loading code from various texture formats will be in one place BYTE *dstPixels = (BYTE *)lr.pBits; DWORD destPitch = lr.Pitch; if (fmt == XB_D3DFMT_DXT1) // Not sure if these are 100% correct, but they seem to work :P { pitch /= 2; destPitch /= 4; } else if (fmt == XB_D3DFMT_DXT2) { destPitch /= 4; } else if (fmt == XB_D3DFMT_DXT4) { pitch /= 4; destPitch /= 4; } */ if (fmt == XB_D3DFMT_DXT1) { pitch = width * 4; BYTE *decoded = new BYTE[pitch * height]; ConvertDXT1(texDataStart, width, height, decoded); texDataStart = decoded; } else if (fmt == XB_D3DFMT_DXT2 || fmt == XB_D3DFMT_DXT4) { pitch = width * 4; BYTE *decoded = new BYTE[pitch * height]; ConvertDXT4(texDataStart, width, height, decoded); texDataStart = decoded; } if (IsSwizzledFormat(fmt)) { // first we unswizzle BYTE *unswizzled = new BYTE[pitch * height]; Unswizzle(texDataStart, BytesPerPixelFromFormat(fmt), width, height, unswizzled); texDataStart = unswizzled; } if (IsPalettedFormat(fmt)) (*ppTexture)->LoadPaletted(width, height, pitch, XB_FMT_A8R8G8B8, texDataStart, color); else (*ppTexture)->LoadFromMemory(width, height, pitch, XB_FMT_A8R8G8B8, true, texDataStart); if (IsSwizzledFormat(fmt) || fmt == XB_D3DFMT_DXT1 || fmt == XB_D3DFMT_DXT2 || fmt == XB_D3DFMT_DXT4) { delete[] texDataStart; } } }