1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
/*
* Copyright (C) 2005-2018 Team Kodi
* This file is part of Kodi - https://kodi.tv
*
* SPDX-License-Identifier: GPL-2.0-or-later
* See LICENSES/README.md for more information.
*/
#include "GLShader.h"
#include "ServiceBroker.h"
#include "rendering/MatrixGL.h"
#include "rendering/RenderSystem.h"
#include "utils/log.h"
#include "windowing/GraphicContext.h"
using namespace Shaders;
CGLShader::CGLShader(const char* shader, const std::string& prefix)
{
m_proj = nullptr;
m_model = nullptr;
m_clipPossible = false;
VertexShader()->LoadSource("gl_shader_vert.glsl");
PixelShader()->LoadSource(shader, prefix);
}
CGLShader::CGLShader(const char* vshader, const char* fshader, const std::string& prefix)
{
m_proj = nullptr;
m_model = nullptr;
m_clipPossible = false;
VertexShader()->LoadSource(vshader, prefix);
PixelShader()->LoadSource(fshader, prefix);
}
void CGLShader::OnCompiledAndLinked()
{
// This is called after CompileAndLink()
// Variables passed directly to the Fragment shader
m_hTex0 = glGetUniformLocation(ProgramHandle(), "m_samp0");
m_hTex1 = glGetUniformLocation(ProgramHandle(), "m_samp1");
m_hUniCol = glGetUniformLocation(ProgramHandle(), "m_unicol");
// Variables passed directly to the Vertex shader
m_hProj = glGetUniformLocation(ProgramHandle(), "m_proj");
m_hModel = glGetUniformLocation(ProgramHandle(), "m_model");
// Vertex attributes
m_hPos = glGetAttribLocation(ProgramHandle(), "m_attrpos");
m_hCol = glGetAttribLocation(ProgramHandle(), "m_attrcol");
m_hCord0 = glGetAttribLocation(ProgramHandle(), "m_attrcord0");
m_hCord1 = glGetAttribLocation(ProgramHandle(), "m_attrcord1");
// It's okay to do this only one time. Textures units never change.
glUseProgram(ProgramHandle());
glUniform1i(m_hTex0, 0);
glUniform1i(m_hTex1, 1);
glUniform4f(m_hUniCol, 1.0, 1.0, 1.0, 1.0);
glUseProgram(0);
}
bool CGLShader::OnEnabled()
{
// This is called after glUseProgram()
const GLfloat *projMatrix = glMatrixProject.Get();
const GLfloat *modelMatrix = glMatrixModview.Get();
glUniformMatrix4fv(m_hProj, 1, GL_FALSE, projMatrix);
glUniformMatrix4fv(m_hModel, 1, GL_FALSE, modelMatrix);
const TransformMatrix &guiMatrix = CServiceBroker::GetWinSystem()->GetGfxContext().GetGUIMatrix();
CRect viewPort; // absolute positions of corners
CServiceBroker::GetRenderSystem()->GetViewPort(viewPort);
/* glScissor operates in window coordinates. In order that we can use it to
* perform clipping, we must ensure that there is an independent linear
* transformation from the coordinate system used by CGraphicContext::ClipRect
* to window coordinates, separately for X and Y (in other words, no
* rotation or shear is introduced at any stage). To do, this, we need to
* check that zeros are present in the following locations:
*
* GUI matrix:
* / * 0 * * \
* | 0 * * * |
* \ 0 0 * * /
* ^ TransformMatrix::TransformX/Y/ZCoord are only ever called with
* input z = 0, so this column doesn't matter
* Model-view matrix:
* / * 0 0 * \
* | 0 * 0 * |
* | 0 0 * * |
* \ * * * * / <- eye w has no influence on window x/y (last column below
* is either 0 or ignored)
* Projection matrix:
* / * 0 0 0 \
* | 0 * 0 0 |
* | * * * * | <- normalised device coordinate z has no influence on window x/y
* \ 0 0 * 0 /
*
* Some of these zeros are not strictly required to ensure this, but they tend
* to be zeroed in the common case, so by checking for zeros here, we simplify
* the calculation of the window x/y coordinates further down the line.
*
* (Minor detail: we don't quite deal in window coordinates as defined by
* OpenGL, because CRenderSystemGLES::SetScissors flips the Y axis. But all
* that's needed to handle that is an effective negation at the stage where
* Y is in normalised device coordinates.)
*/
m_clipPossible = guiMatrix.m[0][1] == 0 &&
guiMatrix.m[1][0] == 0 &&
guiMatrix.m[2][0] == 0 &&
guiMatrix.m[2][1] == 0 &&
modelMatrix[0+1*4] == 0 &&
modelMatrix[0+2*4] == 0 &&
modelMatrix[1+0*4] == 0 &&
modelMatrix[1+2*4] == 0 &&
modelMatrix[2+0*4] == 0 &&
modelMatrix[2+1*4] == 0 &&
projMatrix[0+1*4] == 0 &&
projMatrix[0+2*4] == 0 &&
projMatrix[0+3*4] == 0 &&
projMatrix[1+0*4] == 0 &&
projMatrix[1+2*4] == 0 &&
projMatrix[1+3*4] == 0 &&
projMatrix[3+0*4] == 0 &&
projMatrix[3+1*4] == 0 &&
projMatrix[3+3*4] == 0;
m_clipXFactor = 0.0;
m_clipXOffset = 0.0;
m_clipYFactor = 0.0;
m_clipYOffset = 0.0;
if (m_clipPossible)
{
m_clipXFactor = guiMatrix.m[0][0] * modelMatrix[0+0*4] * projMatrix[0+0*4];
m_clipXOffset = (guiMatrix.m[0][3] * modelMatrix[0+0*4] + modelMatrix[0+3*4]) * projMatrix[0+0*4];
m_clipYFactor = guiMatrix.m[1][1] * modelMatrix[1+1*4] * projMatrix[1+1*4];
m_clipYOffset = (guiMatrix.m[1][3] * modelMatrix[1+1*4] + modelMatrix[1+3*4]) * projMatrix[1+1*4];
float clipW = (guiMatrix.m[2][3] * modelMatrix[2+2*4] + modelMatrix[2+3*4]) * projMatrix[3+2*4];
float xMult = (viewPort.x2 - viewPort.x1) / (2 * clipW);
float yMult = (viewPort.y1 - viewPort.y2) / (2 * clipW); // correct for inverted window coordinate scheme
m_clipXFactor = m_clipXFactor * xMult;
m_clipXOffset = m_clipXOffset * xMult + (viewPort.x2 + viewPort.x1) / 2;
m_clipYFactor = m_clipYFactor * yMult;
m_clipYOffset = m_clipYOffset * yMult + (viewPort.y2 + viewPort.y1) / 2;
}
return true;
}
void CGLShader::Free()
{
// Do Cleanup here
CGLSLShaderProgram::Free();
}
|