1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/*
* Copyright (c) 2002 Frodo
* Portions Copyright (c) by the authors of ffmpeg and xvid
* Copyright (C) 2002-2018 Team Kodi
* This file is part of Kodi - https://kodi.tv
*
* SPDX-License-Identifier: GPL-2.0-or-later
* See LICENSES/README.md for more information.
*/
#include "Thread.h"
#include "IRunnable.h"
#include "commons/Exception.h"
#include "threads/IThreadImpl.h"
#include "threads/SingleLock.h"
#include "utils/log.h"
#include <atomic>
#include <inttypes.h>
#include <iostream>
#include <mutex>
#include <stdlib.h>
static thread_local CThread* currentThread;
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CThread::CThread(const char* ThreadName)
:
m_bStop(false), m_StopEvent(true, true), m_StartEvent(true, true), m_pRunnable(nullptr)
{
if (ThreadName)
m_ThreadName = ThreadName;
}
CThread::CThread(IRunnable* pRunnable, const char* ThreadName)
:
m_bStop(false), m_StopEvent(true, true), m_StartEvent(true, true), m_pRunnable(pRunnable)
{
if (ThreadName)
m_ThreadName = ThreadName;
}
CThread::~CThread()
{
StopThread();
if (m_thread != nullptr)
{
m_thread->detach();
delete m_thread;
}
}
void CThread::Create(bool bAutoDelete)
{
if (m_thread != nullptr)
{
// if the thread exited on it's own, without a call to StopThread, then we can get here
// incorrectly. We should be able to determine this by checking the promise.
std::future_status stat = m_future.wait_for(std::chrono::milliseconds(0));
// a status of 'ready' means the future contains the value so the thread has exited
// since the thread can't exit without setting the future.
if (stat == std::future_status::ready) // this is an indication the thread has exited.
StopThread(true); // so let's just clean up
else
{ // otherwise we have a problem.
CLog::Log(LOGERROR, "{} - fatal error creating thread {} - old thread id not null",
__FUNCTION__, m_ThreadName);
exit(1);
}
}
m_bAutoDelete = bAutoDelete;
m_bStop = false;
m_StopEvent.Reset();
m_StartEvent.Reset();
// lock?
//std::unique_lock<CCriticalSection> l(m_CriticalSection);
std::promise<bool> prom;
m_future = prom.get_future();
{
// The std::thread internals must be set prior to the lambda doing
// any work. This will cause the lambda to wait until m_thread
// is fully initialized. Interestingly, using a std::atomic doesn't
// have the appropriate memory barrier behavior to accomplish the
// same thing so a full system mutex needs to be used.
std::unique_lock<CCriticalSection> blockLambdaTillDone(m_CriticalSection);
m_thread = new std::thread([](CThread* pThread, std::promise<bool> promise)
{
try
{
{
// Wait for the pThread->m_thread internals to be set. Otherwise we could
// get to a place where we're reading, say, the thread id inside this
// lambda's call stack prior to the thread that kicked off this lambda
// having it set. Once this lock is released, the CThread::Create function
// that kicked this off is done so everything should be set.
std::unique_lock<CCriticalSection> waitForThreadInternalsToBeSet(
pThread->m_CriticalSection);
}
// This is used in various helper methods like GetCurrentThread so it needs
// to be set before anything else is done.
currentThread = pThread;
std::string name;
bool autodelete;
if (pThread == nullptr)
{
CLog::Log(LOGERROR, "{}, sanity failed. thread is NULL.", __FUNCTION__);
promise.set_value(false);
return;
}
name = pThread->m_ThreadName;
std::stringstream ss;
ss << std::this_thread::get_id();
std::string id = ss.str();
autodelete = pThread->m_bAutoDelete;
pThread->m_impl = IThreadImpl::CreateThreadImpl(pThread->m_thread->native_handle());
pThread->m_impl->SetThreadInfo(name);
CLog::Log(LOGDEBUG, "Thread {} start, auto delete: {}", name,
(autodelete ? "true" : "false"));
pThread->m_StartEvent.Set();
pThread->Action();
if (autodelete)
{
CLog::Log(LOGDEBUG, "Thread {} {} terminating (autodelete)", name, id);
delete pThread;
pThread = NULL;
}
else
CLog::Log(LOGDEBUG, "Thread {} {} terminating", name, id);
}
catch (const std::exception& e)
{
CLog::Log(LOGDEBUG, "Thread Terminating with Exception: {}", e.what());
}
catch (...)
{
CLog::Log(LOGDEBUG,"Thread Terminating with Exception");
}
promise.set_value(true);
}, this, std::move(prom));
} // let the lambda proceed
m_StartEvent.Wait(); // wait for the thread just spawned to set its internals
}
bool CThread::IsRunning() const
{
if (m_thread != nullptr) {
// it's possible that the thread exited on it's own without a call to StopThread. If so then
// the promise should be fulfilled.
std::future_status stat = m_future.wait_for(std::chrono::milliseconds(0));
// a status of 'ready' means the future contains the value so the thread has exited
// since the thread can't exit without setting the future.
if (stat == std::future_status::ready) // this is an indication the thread has exited.
return false;
return true; // otherwise the thread is still active.
} else
return false;
}
bool CThread::SetPriority(const ThreadPriority& priority)
{
return m_impl->SetPriority(priority);
}
bool CThread::IsAutoDelete() const
{
return m_bAutoDelete;
}
void CThread::StopThread(bool bWait /*= true*/)
{
m_StartEvent.Wait();
m_bStop = true;
m_StopEvent.Set();
std::unique_lock<CCriticalSection> lock(m_CriticalSection);
std::thread* lthread = m_thread;
if (lthread != nullptr && bWait && !IsCurrentThread())
{
lock.unlock();
if (!Join(std::chrono::milliseconds::max())) // eh?
lthread->join();
m_thread = nullptr;
}
}
void CThread::Process()
{
if (m_pRunnable)
m_pRunnable->Run();
}
bool CThread::IsCurrentThread() const
{
CThread* pThread = currentThread;
if (pThread != nullptr)
return pThread == this;
else
return false;
}
CThread* CThread::GetCurrentThread()
{
return currentThread;
}
bool CThread::Join(std::chrono::milliseconds duration)
{
std::unique_lock<CCriticalSection> l(m_CriticalSection);
std::thread* lthread = m_thread;
if (lthread != nullptr)
{
if (IsCurrentThread())
return false;
{
CSingleExit exit(m_CriticalSection); // don't hold the thread lock while we're waiting
std::future_status stat = m_future.wait_for(duration);
if (stat != std::future_status::ready)
return false;
}
// it's possible it's already joined since we released the lock above.
if (lthread->joinable())
m_thread->join();
return true;
}
else
return false;
}
void CThread::Action()
{
try
{
OnStartup();
}
catch (const XbmcCommons::UncheckedException &e)
{
e.LogThrowMessage("OnStartup");
if (IsAutoDelete())
return;
}
try
{
Process();
}
catch (const XbmcCommons::UncheckedException &e)
{
e.LogThrowMessage("Process");
}
try
{
OnExit();
}
catch (const XbmcCommons::UncheckedException &e)
{
e.LogThrowMessage("OnExit");
}
}
|