summaryrefslogtreecommitdiffstats
path: root/include/2geom/conicsec.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
commit61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch)
tree885599a36a308f422af98616bc733a0494fe149a /include/2geom/conicsec.h
parentInitial commit. (diff)
downloadlib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz
lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'include/2geom/conicsec.h')
-rw-r--r--include/2geom/conicsec.h537
1 files changed, 537 insertions, 0 deletions
diff --git a/include/2geom/conicsec.h b/include/2geom/conicsec.h
new file mode 100644
index 0000000..bfd5f36
--- /dev/null
+++ b/include/2geom/conicsec.h
@@ -0,0 +1,537 @@
+/** @file
+ * @brief Conic Section
+ *//*
+ * Authors:
+ * Nathan Hurst <njh@njhurst.com>
+ *
+ * Copyright 2009 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+
+#ifndef LIB2GEOM_SEEN_CONICSEC_H
+#define LIB2GEOM_SEEN_CONICSEC_H
+
+#include <2geom/exception.h>
+#include <2geom/angle.h>
+#include <2geom/rect.h>
+#include <2geom/affine.h>
+#include <2geom/point.h>
+#include <2geom/line.h>
+#include <2geom/bezier-curve.h>
+#include <2geom/numeric/linear_system.h>
+#include <2geom/numeric/symmetric-matrix-fs.h>
+#include <2geom/numeric/symmetric-matrix-fs-operation.h>
+
+#include <optional>
+
+#include <string>
+#include <vector>
+#include <ostream>
+
+
+
+
+namespace Geom
+{
+
+class RatQuad{
+ /**
+ * A curve of the form B02*A + B12*B*w + B22*C/(B02 + B12*w + B22)
+ * These curves can exactly represent a piece conic section less than a certain angle (find out)
+ *
+ **/
+
+public:
+ Point P[3];
+ double w;
+ RatQuad() {}
+ RatQuad(Point a, Point b, Point c, double w) : w(w) {
+ P[0] = a;
+ P[1] = b;
+ P[2] = c;
+ }
+ double lambda() const;
+
+ static RatQuad fromPointsTangents(Point P0, Point dP0,
+ Point P,
+ Point P2, Point dP2);
+ static RatQuad circularArc(Point P0, Point P1, Point P2);
+
+ CubicBezier toCubic() const;
+ CubicBezier toCubic(double lam) const;
+
+ Point pointAt(double t) const;
+ Point at0() const {return P[0];}
+ Point at1() const {return P[2];}
+
+ void split(RatQuad &a, RatQuad &b) const;
+
+ D2<SBasis> hermite() const;
+ std::vector<SBasis> homogeneous() const;
+};
+
+
+
+
+class xAx{
+public:
+ double c[6];
+
+ enum kind_t
+ {
+ PARABOLA,
+ CIRCLE,
+ REAL_ELLIPSE,
+ IMAGINARY_ELLIPSE,
+ RECTANGULAR_HYPERBOLA,
+ HYPERBOLA,
+ DOUBLE_LINE,
+ TWO_REAL_PARALLEL_LINES,
+ TWO_IMAGINARY_PARALLEL_LINES,
+ TWO_REAL_CROSSING_LINES,
+ TWO_IMAGINARY_CROSSING_LINES, // crossing at a real point
+ SINGLE_POINT = TWO_IMAGINARY_CROSSING_LINES,
+ UNKNOWN
+ };
+
+
+ xAx() {}
+
+ /*
+ * Define the conic section by its algebraic equation coefficients
+ *
+ * c0, .., c5: equation coefficients
+ */
+ xAx (double c0, double c1, double c2, double c3, double c4, double c5)
+ {
+ set (c0, c1, c2, c3, c4, c5);
+ }
+
+ /*
+ * Define a conic section by its related symmetric matrix
+ */
+ xAx (const NL::ConstSymmetricMatrixView<3> & C)
+ {
+ set(C);
+ }
+
+ /*
+ * Define a conic section by computing the one that fits better with
+ * N points.
+ *
+ * points: points to fit
+ *
+ * precondition: there must be at least 5 non-overlapping points
+ */
+ xAx (std::vector<Point> const& points)
+ {
+ set (points);
+ }
+
+ /*
+ * Define a section conic by providing the coordinates of one of its
+ * vertex,the major axis inclination angle and the coordinates of its foci
+ * with respect to the unidimensional system defined by the major axis with
+ * origin set at the provided vertex.
+ *
+ * _vertex : section conic vertex V
+ * _angle : section conic major axis angle
+ * _dist1: +/-distance btw V and nearest focus
+ * _dist2: +/-distance btw V and farest focus
+ *
+ * prerequisite: _dist1 <= _dist2
+ */
+ xAx (const Point& _vertex, double _angle, double _dist1, double _dist2)
+ {
+ set (_vertex, _angle, _dist1, _dist2);
+ }
+
+ /*
+ * Define a conic section by providing one of its vertex and its foci.
+ *
+ * _vertex: section conic vertex
+ * _focus1: section conic focus
+ * _focus2: section conic focus
+ */
+ xAx (const Point& _vertex, const Point& _focus1, const Point& _focus2)
+ {
+ set(_vertex, _focus1, _focus2);
+ }
+
+ /*
+ * Define a conic section by passing a focus, the related directrix,
+ * and the eccentricity (e)
+ * (e < 1 -> ellipse; e = 1 -> parabola; e > 1 -> hyperbola)
+ *
+ * _focus: a focus of the conic section
+ * _directrix: the directrix related to the given focus
+ * _eccentricity: the eccentricity parameter of the conic section
+ */
+ xAx (const Point & _focus, const Line & _directrix, double _eccentricity)
+ {
+ set (_focus, _directrix, _eccentricity);
+ }
+
+ /*
+ * Made up a degenerate conic section as a pair of lines
+ *
+ * l1, l2: lines that made up the conic section
+ */
+ xAx (const Line& l1, const Line& l2)
+ {
+ set (l1, l2);
+ }
+
+ /*
+ * Define the conic section by its algebraic equation coefficients
+ * c0, ..., c5: equation coefficients
+ */
+ void set (double c0, double c1, double c2, double c3, double c4, double c5)
+ {
+ c[0] = c0; c[1] = c1; c[2] = c2; // xx, xy, yy
+ c[3] = c3; c[4] = c4; // x, y
+ c[5] = c5; // 1
+ }
+
+ /*
+ * Define a conic section by its related symmetric matrix
+ */
+ void set (const NL::ConstSymmetricMatrixView<3> & C)
+ {
+ set(C(0,0), 2*C(1,0), C(1,1), 2*C(2,0), 2*C(2,1), C(2,2));
+ }
+
+ void set (std::vector<Point> const& points);
+
+ void set (const Point& _vertex, double _angle, double _dist1, double _dist2);
+
+ void set (const Point& _vertex, const Point& _focus1, const Point& _focus2);
+
+ void set (const Point & _focus, const Line & _directrix, double _eccentricity);
+
+ void set (const Line& l1, const Line& l2);
+
+
+ static xAx fromPoint(Point p);
+ static xAx fromDistPoint(Point p, double d);
+ static xAx fromLine(Point n, double d);
+ static xAx fromLine(Line l);
+ static xAx fromPoints(std::vector<Point> const &pts);
+
+
+ template<typename T>
+ T evaluate_at(T x, T y) const {
+ return c[0]*x*x + c[1]*x*y + c[2]*y*y + c[3]*x + c[4]*y + c[5];
+ }
+
+ double valueAt(Point P) const;
+
+ std::vector<double> implicit_form_coefficients() const {
+ return std::vector<double>(c, c+6);
+ }
+
+ template<typename T>
+ T evaluate_at(T x, T y, T w) const {
+ return c[0]*x*x + c[1]*x*y + c[2]*y*y + c[3]*x*w + c[4]*y*w + c[5]*w*w;
+ }
+
+ xAx scale(double sx, double sy) const;
+
+ Point gradient(Point p) const;
+
+ xAx operator-(xAx const &b) const;
+ xAx operator+(xAx const &b) const;
+ xAx operator+(double const &b) const;
+ xAx operator*(double const &b) const;
+
+ std::vector<Point> crossings(Rect r) const;
+ std::optional<RatQuad> toCurve(Rect const & bnd) const;
+ std::vector<double> roots(Point d, Point o) const;
+
+ std::vector<double> roots(Line const &l) const;
+
+ static Interval quad_ex(double a, double b, double c, Interval ivl);
+
+ Geom::Affine hessian() const;
+
+ std::optional<Point> bottom() const;
+
+ Interval extrema(Rect r) const;
+
+
+ /*
+ * Return the symmetric matrix related to the conic section.
+ * Modifying the matrix does not modify the conic section
+ */
+ NL::SymmetricMatrix<3> get_matrix() const
+ {
+ NL::SymmetricMatrix<3> C(c);
+ C(1,0) *= 0.5; C(2,0) *= 0.5; C(2,1) *= 0.5;
+ return C;
+ }
+
+ /*
+ * Return the i-th coefficient of the conic section algebraic equation
+ * Modifying the returned value does not modify the conic section coefficient
+ */
+ double coeff (size_t i) const
+ {
+ return c[i];
+ }
+
+ /*
+ * Return the i-th coefficient of the conic section algebraic equation
+ * Modifying the returned value modifies the conic section coefficient
+ */
+ double& coeff (size_t i)
+ {
+ return c[i];
+ }
+
+ kind_t kind () const;
+
+ std::string categorise() const;
+
+ /*
+ * Return true if the equation:
+ * c0*x^2 + c1*xy + c2*y^2 + c3*x + c4*y +c5 == 0
+ * really defines a conic, false otherwise
+ */
+ bool is_quadratic() const
+ {
+ return (coeff(0) != 0 || coeff(1) != 0 || coeff(2) != 0);
+ }
+
+ /*
+ * Return true if the conic is degenerate, i.e. if the related matrix
+ * determinant is null, false otherwise
+ */
+ bool isDegenerate() const
+ {
+ return (det_sgn (get_matrix()) == 0);
+ }
+
+ /*
+ * Compute the centre of symmetry of the conic section when it exists,
+ * else it return an uninitialized std::optional<Point> instance.
+ */
+ std::optional<Point> centre() const
+ {
+ typedef std::optional<Point> opt_point_t;
+
+ double d = coeff(1) * coeff(1) - 4 * coeff(0) * coeff(2);
+ if (are_near (d, 0)) return opt_point_t();
+ NL::Matrix Q(2, 2);
+ Q(0,0) = coeff(0);
+ Q(1,1) = coeff(2);
+ Q(0,1) = Q(1,0) = coeff(1) * 0.5;
+ NL::Vector T(2);
+ T[0] = - coeff(3) * 0.5;
+ T[1] = - coeff(4) * 0.5;
+
+ NL::LinearSystem ls (Q, T);
+ NL::Vector sol = ls.SV_solve();
+ Point C;
+ C[0] = sol[0];
+ C[1] = sol[1];
+
+ return opt_point_t(C);
+ }
+
+ double axis_angle() const;
+
+ void roots (std::vector<double>& sol, Coord v, Dim2 d) const;
+
+ xAx translate (const Point & _offset) const;
+
+ xAx rotate (double angle) const;
+
+ /*
+ * Rotate the conic section by the given angle wrt the provided point.
+ *
+ * _rot_centre: the rotation centre
+ * _angle: the rotation angle
+ */
+ xAx rotate (const Point & _rot_centre, double _angle) const
+ {
+ xAx result
+ = translate (-_rot_centre).rotate (_angle).translate (_rot_centre);
+ return result;
+ }
+
+ /*
+ * Compute the tangent line of the conic section at the provided point
+ *
+ * _point: the conic section point the tangent line pass through
+ */
+ Line tangent (const Point & _point) const
+ {
+ NL::Vector pp(3);
+ pp[0] = _point[0]; pp[1] = _point[1]; pp[2] = 1;
+ NL::SymmetricMatrix<3> C = get_matrix();
+ NL::Vector line = C * pp;
+ return Line(line[0], line[1], line[2]);
+ }
+
+ /*
+ * For a non degenerate conic compute the dual conic.
+ * TODO: investigate degenerate case
+ */
+ xAx dual () const
+ {
+ //assert (! isDegenerate());
+ NL::SymmetricMatrix<3> C = get_matrix();
+ NL::SymmetricMatrix<3> D = adj(C);
+ xAx dc(D);
+ return dc;
+ }
+
+ bool decompose (Line& l1, Line& l2) const;
+
+ /**
+ * @brief Division-free decomposition of a degenerate conic section, without
+ * degeneration test.
+ *
+ * When the conic is degenerate, it consists of 0, 1 or 2 lines in the xy-plane.
+ * This function returns these lines. But it does not check whether the conic
+ * is really degenerate, so calling it on a non-degenerate conic produces a
+ * meaningless result.
+ *
+ * If the number of lines is less than two, the trailing lines in the returned
+ * array will be degenerate. Use Line::isDegenerate() to test for that.
+ *
+ * This version of the decomposition is division-free, which improves numerical
+ * stability compared to decompose().
+ *
+ * @param epsilon The numerical threshold for floating point comparison of discriminants.
+ */
+ std::array<Line, 2> decompose_df(Coord epsilon = EPSILON) const;
+
+ /*
+ * Generate a RatQuad object from a conic arc.
+ *
+ * p0: the initial point of the arc
+ * p1: the inner point of the arc
+ * p2: the final point of the arc
+ */
+ RatQuad toRatQuad (const Point & p0,
+ const Point & p1,
+ const Point & p2) const
+ {
+ Point dp0 = gradient (p0);
+ Point dp2 = gradient (p2);
+ return
+ RatQuad::fromPointsTangents (p0, rot90 (dp0), p1, p2, rot90 (dp2));
+ }
+
+ /*
+ * Return the angle related to the normal gradient computed at the passed
+ * point.
+ *
+ * _point: the point at which computes the angle
+ *
+ * prerequisite: the passed point must lie on the conic
+ */
+ double angle_at (const Point & _point) const
+ {
+ double angle = atan2 (gradient (_point));
+ if (angle < 0) angle += (2*M_PI);
+ return angle;
+ }
+
+ /*
+ * Return true if the given point is contained in the conic arc determined
+ * by the passed points.
+ *
+ * _point: the point to be tested
+ * _initial: the initial point of the arc
+ * _inner: an inner point of the arc
+ * _final: the final point of the arc
+ *
+ * prerequisite: the passed points must lie on the conic, the inner point
+ * has to be strictly contained in the arc, except when the
+ * initial and final points are equal: in such a case if the
+ * inner point is also equal to them, then they define an arc
+ * made up by a single point.
+ *
+ */
+ bool arc_contains (const Point & _point, const Point & _initial,
+ const Point & _inner, const Point & _final) const
+ {
+ AngleInterval ai(angle_at(_initial), angle_at(_inner), angle_at(_final));
+ return ai.contains(angle_at(_point));
+ }
+
+ Rect arc_bound (const Point & P1, const Point & Q, const Point & P2) const;
+
+ std::vector<Point> allNearestTimes (const Point &P) const;
+
+ /*
+ * Return the point on the conic section nearest to the passed point "P".
+ *
+ * P: the point to compute the nearest one
+ */
+ Point nearestTime (const Point &P) const
+ {
+ std::vector<Point> points = allNearestTimes (P);
+ if ( !points.empty() )
+ {
+ return points.front();
+ }
+ // else
+ THROW_LOGICALERROR ("nearestTime: no nearest point found");
+ return Point();
+ }
+
+};
+
+std::vector<Point> intersect(const xAx & C1, const xAx & C2);
+
+bool clip (std::vector<RatQuad> & rq, const xAx & cs, const Rect & R);
+
+inline std::ostream &operator<< (std::ostream &out_file, const xAx &x) {
+ for(double i : x.c) {
+ out_file << i << ", ";
+ }
+ return out_file;
+}
+
+};
+
+
+#endif // LIB2GEOM_SEEN_CONICSEC_H
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
+