diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
commit | 61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch) | |
tree | 885599a36a308f422af98616bc733a0494fe149a /include/2geom/line.h | |
parent | Initial commit. (diff) | |
download | lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip |
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'include/2geom/line.h')
-rw-r--r-- | include/2geom/line.h | 605 |
1 files changed, 605 insertions, 0 deletions
diff --git a/include/2geom/line.h b/include/2geom/line.h new file mode 100644 index 0000000..9a56602 --- /dev/null +++ b/include/2geom/line.h @@ -0,0 +1,605 @@ +/** + * \file + * \brief Infinite straight line + *//* + * Authors: + * Marco Cecchetti <mrcekets at gmail.com> + * Krzysztof KosiĆski <tweenk.pl@gmail.com> + * Copyright 2008-2011 Authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#ifndef LIB2GEOM_SEEN_LINE_H +#define LIB2GEOM_SEEN_LINE_H + +#include <cmath> +#include <optional> +#include <2geom/bezier-curve.h> // for LineSegment +#include <2geom/rect.h> +#include <2geom/crossing.h> +#include <2geom/exception.h> +#include <2geom/ray.h> +#include <2geom/angle.h> +#include <2geom/intersection.h> + +namespace Geom +{ + +// class docs in cpp file +class Line + : boost::equality_comparable< Line > +{ +private: + Point _initial; + Point _final; +public: + /// @name Creating lines. + /// @{ + /** @brief Create a default horizontal line. + * Creates a line with unit speed going in +X direction. */ + Line() + : _initial(0,0), _final(1,0) + {} + /** @brief Create a line with the specified inclination. + * @param origin One of the points on the line + * @param angle Angle of the line in mathematical convention */ + Line(Point const &origin, Coord angle) + : _initial(origin) + { + Point v; + sincos(angle, v[Y], v[X]); + _final = _initial + v; + } + + /** @brief Create a line going through two points. + * The first point will be at time 0, while the second one + * will be at time 1. + * @param a Initial point + * @param b First point */ + Line(Point const &a, Point const &b) + : _initial(a) + , _final(b) + {} + + /** @brief Create a line based on the coefficients of its equation. + @see Line::setCoefficients() */ + Line(double a, double b, double c) { + setCoefficients(a, b, c); + } + + /// Create a line by extending a line segment. + explicit Line(LineSegment const &seg) + : _initial(seg.initialPoint()) + , _final(seg.finalPoint()) + {} + + /// Create a line by extending a ray. + explicit Line(Ray const &r) + : _initial(r.origin()) + , _final(r.origin() + r.vector()) + {} + + /// Create a line normal to a vector at a specified distance from origin. + static Line from_normal_distance(Point const &n, Coord c) { + Point start = c * n.normalized(); + Line l(start, start + rot90(n)); + return l; + } + /** @brief Create a line from origin and unit vector. + * Note that each line direction has two possible unit vectors. + * @param o Point through which the line will pass + * @param v Unit vector of the line's direction */ + static Line from_origin_and_vector(Point const &o, Point const &v) { + Line l(o, o + v); + return l; + } + + Line* duplicate() const { + return new Line(*this); + } + /// @} + + /// @name Retrieve and set the line's parameters. + /// @{ + + /// Get the line's origin point. + Point origin() const { return _initial; } + /** @brief Get the line's raw direction vector. + * The length of the retrieved vector is equal to the length of a segment parametrized by + * a time interval of length 1. */ + Point vector() const { return _final - _initial; } + /** @brief Get the line's normalized direction vector. + * The retrieved vector is normalized to unit length. */ + Point versor() const { return (_final - _initial).normalized(); } + /// Angle the line makes with the X axis, in mathematical convention. + Coord angle() const { + Point d = _final - _initial; + double a = std::atan2(d[Y], d[X]); + if (a < 0) a += M_PI; + if (a == M_PI) a = 0; + return a; + } + + /** @brief Set the point at zero time. + * The orientation remains unchanged, modulo numeric errors during addition. */ + void setOrigin(Point const &p) { + Point d = p - _initial; + _initial = p; + _final += d; + } + /** @brief Set the speed of the line. + * Origin remains unchanged. */ + void setVector(Point const &v) { + _final = _initial + v; + } + + /** @brief Set the angle the line makes with the X axis. + * Origin remains unchanged. */ + void setAngle(Coord angle) { + Point v; + sincos(angle, v[Y], v[X]); + v *= distance(_initial, _final); + _final = _initial + v; + } + + /// Set a line based on two points it should pass through. + void setPoints(Point const &a, Point const &b) { + _initial = a; + _final = b; + } + + /** @brief Set the coefficients of the line equation. + * The line equation is: \f$ax + by = c\f$. Points that satisfy the equation + * are on the line. */ + void setCoefficients(double a, double b, double c); + + /** @brief Get the coefficients of the line equation as a vector. + * @return STL vector @a v such that @a v[0] contains \f$a\f$, @a v[1] contains \f$b\f$, + * and @a v[2] contains \f$c\f$. */ + std::vector<double> coefficients() const; + + /// Get the coefficients of the line equation by reference. + void coefficients(Coord &a, Coord &b, Coord &c) const; + + /** @brief Check if the line has more than one point. + * A degenerate line can be created if the line is created from a line equation + * that has no solutions. + * @return True if the line has no points or exactly one point */ + bool isDegenerate() const { + return _initial == _final; + } + /// Check if the line is horizontal (y is constant). + bool isHorizontal() const { + return _initial[Y] == _final[Y]; + } + /// Check if the line is vertical (x is constant). + bool isVertical() const { + return _initial[X] == _final[X]; + } + + /** @brief Reparametrize the line so that it has unit speed. + * Note that the direction of the line may also change. */ + void normalize() { + // this helps with the nasty case of a line that starts somewhere far + // and ends very close to the origin + if (L2sq(_final) < L2sq(_initial)) { + std::swap(_initial, _final); + } + Point v = _final - _initial; + v.normalize(); + _final = _initial + v; + } + /** @brief Return a new line reparametrized for unit speed. */ + Line normalized() const { + Point v = _final - _initial; + v.normalize(); + Line ret(_initial, _initial + v); + return ret; + } + /// @} + + /// @name Evaluate the line as a function. + ///@{ + Point initialPoint() const { + return _initial; + } + Point finalPoint() const { + return _final; + } + Point pointAt(Coord t) const { + return lerp(t, _initial, _final);; + } + + Coord valueAt(Coord t, Dim2 d) const { + return lerp(t, _initial[d], _final[d]); + } + + Coord timeAt(Point const &p) const; + + /** @brief Get a time value corresponding to a projection of a point on the line. + * @param p Arbitrary point. + * @return Time value corresponding to a point closest to @c p. */ + Coord timeAtProjection(Point const& p) const { + if ( isDegenerate() ) return 0; + Point v = vector(); + return dot(p - _initial, v) / dot(v, v); + } + + /** @brief Find a point on the line closest to the query point. + * This is an alias for timeAtProjection(). */ + Coord nearestTime(Point const &p) const { + return timeAtProjection(p); + } + + std::vector<Coord> roots(Coord v, Dim2 d) const; + Coord root(Coord v, Dim2 d) const; + /// @} + + /// @name Create other objects based on this line. + /// @{ + void reverse() { + std::swap(_final, _initial); + } + /** @brief Create a line containing the same points, but in opposite direction. + * @return Line \f$g\f$ such that \f$g(t) = f(1-t)\f$ */ + Line reversed() const { + Line result(_final, _initial); + return result; + } + + /** @brief Same as segment(), but allocate the line segment dynamically. */ + // TODO remove this? + Curve* portion(Coord f, Coord t) const { + LineSegment* seg = new LineSegment(pointAt(f), pointAt(t)); + return seg; + } + + /** @brief Create a segment of this line. + * @param f Time value for the initial point of the segment + * @param t Time value for the final point of the segment + * @return Created line segment */ + LineSegment segment(Coord f, Coord t) const { + return LineSegment(pointAt(f), pointAt(t)); + } + + /// Return the portion of the line that is inside the given rectangle + std::optional<LineSegment> clip(Rect const &r) const; + + /** @brief Create a ray starting at the specified time value. + * The created ray will go in the direction of the line's vector (in the direction + * of increasing time values). + * @param t Time value where the ray should start + * @return Ray starting at t and going in the direction of the vector */ + Ray ray(Coord t) { + Ray result; + result.setOrigin(pointAt(t)); + result.setVector(vector()); + return result; + } + + /** @brief Create a derivative of the line. + * The new line will always be degenerate. Its origin will be equal to this + * line's vector. */ + Line derivative() const { + Point v = vector(); + Line result(v, v); + return result; + } + + /// Create a line transformed by an affine transformation. + Line transformed(Affine const& m) const { + Line l(_initial * m, _final * m); + return l; + } + + /** @brief Get a unit vector normal to the line. + * If Y grows upwards, then this is the left normal. If Y grows downwards, + * then this is the right normal. */ + Point normal() const { + return rot90(vector()).normalized(); + } + + // what does this do? + Point normalAndDist(double & dist) const { + Point n = normal(); + dist = -dot(n, _initial); + return n; + } + + /// Compute an affine matrix representing a reflection about the line. + Affine reflection() const { + Point v = versor(); + Coord x2 = v[X]*v[X], y2 = v[Y]*v[Y], xy = v[X]*v[Y]; + Affine m(x2-y2, 2.*xy, + 2.*xy, y2-x2, + _initial[X], _initial[Y]); + m = Translate(-_initial) * m; + return m; + } + + /** @brief Compute an affine which transforms all points on the line to zero X or Y coordinate. + * This operation is useful in reducing intersection problems to root-finding problems. + * There are many affines which do this transformation. This function returns one that + * preserves angles, areas and distances - a rotation combined with a translation, and + * additionally moves the initial point of the line to (0,0). This way it works without + * problems even for lines perpendicular to the target, though may in some cases have + * lower precision than e.g. a shear transform. + * @param d Which coordinate of points on the line should be zero after the transformation */ + Affine rotationToZero(Dim2 d) const { + Point v = vector(); + if (d == X) { + std::swap(v[X], v[Y]); + } else { + v[Y] = -v[Y]; + } + Affine m = Translate(-_initial) * Rotate(v); + return m; + } + /** @brief Compute a rotation affine which transforms the line to one of the axes. + * @param d Which line should be the axis */ + Affine rotationToAxis(Dim2 d) const { + Affine m = rotationToZero(other_dimension(d)); + return m; + } + + Affine transformTo(Line const &other) const; + /// @} + + std::vector<ShapeIntersection> intersect(Line const &other) const; + std::vector<ShapeIntersection> intersect(Ray const &r) const; + std::vector<ShapeIntersection> intersect(LineSegment const &ls) const; + + template <typename T> + Line &operator*=(T const &tr) { + BOOST_CONCEPT_ASSERT((TransformConcept<T>)); + _initial *= tr; + _final *= tr; + return *this; + } + + bool operator==(Line const &other) const { + if (distance(pointAt(nearestTime(other._initial)), other._initial) != 0) return false; + if (distance(pointAt(nearestTime(other._final)), other._final) != 0) return false; + return true; + } + + template <typename T> + friend Line operator*(Line const &l, T const &tr) { + BOOST_CONCEPT_ASSERT((TransformConcept<T>)); + Line result(l); + result *= tr; + return result; + } +}; // end class Line + +/** @brief Removes intersections outside of the unit interval. + * A helper used to implement line segment intersections. + * @param xs Line intersections + * @param a Whether the first time value has to be in the unit interval + * @param b Whether the second time value has to be in the unit interval + * @return Appropriately filtered intersections */ +void filter_line_segment_intersections(std::vector<ShapeIntersection> &xs, bool a=false, bool b=true); +void filter_ray_intersections(std::vector<ShapeIntersection> &xs, bool a=false, bool b=true); + +/// @brief Compute distance from point to line. +/// @relates Line +inline +double distance(Point const &p, Line const &line) +{ + if (line.isDegenerate()) { + return ::Geom::distance(p, line.initialPoint()); + } else { + Coord t = line.nearestTime(p); + return ::Geom::distance(line.pointAt(t), p); + } +} + +inline +bool are_near(Point const &p, Line const &line, double eps = EPSILON) +{ + return are_near(distance(p, line), 0, eps); +} + +inline +bool are_parallel(Line const &l1, Line const &l2, double eps = EPSILON) +{ + return are_near(cross(l1.vector(), l2.vector()), 0, eps); +} + +/** @brief Test whether two lines are approximately the same. + * This tests for being parallel and the origin of one line being close to the other, + * so it tests whether the images of the lines are similar, not whether the same time values + * correspond to similar points. For example a line from (1,1) to (2,2) and a line from + * (-1,-1) to (0,0) will be the same, because their images match, even though there is + * no time value for which the lines give similar points. + * @relates Line */ +inline +bool are_same(Line const &l1, Line const &l2, double eps = EPSILON) +{ + return are_parallel(l1, l2, eps) && are_near(l1.origin(), l2, eps); +} + +/// Test whether two lines are perpendicular. +/// @relates Line +inline +bool are_orthogonal(Line const &l1, Line const &l2, double eps = EPSILON) +{ + return are_near(dot(l1.vector(), l2.vector()), 0, eps); +} + +// evaluate the angle between l1 and l2 rotating l1 in cw direction +// until it overlaps l2 +// the returned value is an angle in the interval [0, PI[ +inline +double angle_between(Line const& l1, Line const& l2) +{ + double angle = angle_between(l1.vector(), l2.vector()); + if (angle < 0) angle += M_PI; + if (angle == M_PI) angle = 0; + return angle; +} + +inline +double distance(Point const &p, LineSegment const &seg) +{ + double t = seg.nearestTime(p); + return distance(p, seg.pointAt(t)); +} + +inline +bool are_near(Point const &p, LineSegment const &seg, double eps = EPSILON) +{ + return are_near(distance(p, seg), 0, eps); +} + +// build a line passing by _point and orthogonal to _line +inline +Line make_orthogonal_line(Point const &p, Line const &line) +{ + Point d = line.vector().cw(); + Line l(p, p + d); + return l; +} + +// build a line passing by _point and parallel to _line +inline +Line make_parallel_line(Point const &p, Line const &line) +{ + Line result(line); + result.setOrigin(p); + return result; +} + +// build a line passing by the middle point of _segment and orthogonal to it. +inline +Line make_bisector_line(LineSegment const& _segment) +{ + return make_orthogonal_line( middle_point(_segment), Line(_segment) ); +} + +// build the bisector line of the angle between ray(O,A) and ray(O,B) +inline +Line make_angle_bisector_line(Point const &A, Point const &O, Point const &B) +{ + AngleInterval ival(Angle(A-O), Angle(B-O)); + Angle bisect = ival.angleAt(0.5); + return Line(O, bisect); +} + +// prj(P) = rot(v, Point( rot(-v, P-O)[X], 0 )) + O +inline +Point projection(Point const &p, Line const &line) +{ + return line.pointAt(line.nearestTime(p)); +} + +inline +LineSegment projection(LineSegment const &seg, Line const &line) +{ + return line.segment(line.nearestTime(seg.initialPoint()), + line.nearestTime(seg.finalPoint())); +} + +inline +std::optional<LineSegment> clip(Line const &l, Rect const &r) { + return l.clip(r); +} + + +namespace detail +{ + +OptCrossing intersection_impl(Ray const& r1, Line const& l2, unsigned int i); +OptCrossing intersection_impl( LineSegment const& ls1, + Line const& l2, + unsigned int i ); +OptCrossing intersection_impl( LineSegment const& ls1, + Ray const& r2, + unsigned int i ); +} + + +inline +OptCrossing intersection(Ray const& r1, Line const& l2) +{ + return detail::intersection_impl(r1, l2, 0); + +} + +inline +OptCrossing intersection(Line const& l1, Ray const& r2) +{ + return detail::intersection_impl(r2, l1, 1); +} + +inline +OptCrossing intersection(LineSegment const& ls1, Line const& l2) +{ + return detail::intersection_impl(ls1, l2, 0); +} + +inline +OptCrossing intersection(Line const& l1, LineSegment const& ls2) +{ + return detail::intersection_impl(ls2, l1, 1); +} + +inline +OptCrossing intersection(LineSegment const& ls1, Ray const& r2) +{ + return detail::intersection_impl(ls1, r2, 0); + +} + +inline +OptCrossing intersection(Ray const& r1, LineSegment const& ls2) +{ + return detail::intersection_impl(ls2, r1, 1); +} + + +OptCrossing intersection(Line const& l1, Line const& l2); + +OptCrossing intersection(Ray const& r1, Ray const& r2); + +OptCrossing intersection(LineSegment const& ls1, LineSegment const& ls2); + + +} // end namespace Geom + + +#endif // LIB2GEOM_SEEN_LINE_H + + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |