diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
commit | 61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch) | |
tree | 885599a36a308f422af98616bc733a0494fe149a /include/2geom/numeric/fitting-model.h | |
parent | Initial commit. (diff) | |
download | lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip |
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'include/2geom/numeric/fitting-model.h')
-rw-r--r-- | include/2geom/numeric/fitting-model.h | 521 |
1 files changed, 521 insertions, 0 deletions
diff --git a/include/2geom/numeric/fitting-model.h b/include/2geom/numeric/fitting-model.h new file mode 100644 index 0000000..0316f57 --- /dev/null +++ b/include/2geom/numeric/fitting-model.h @@ -0,0 +1,521 @@ +/* + * Fitting Models for Geom Types + * + * Authors: + * Marco Cecchetti <mrcekets at gmail.com> + * + * Copyright 2008 authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + + +#ifndef _NL_FITTING_MODEL_H_ +#define _NL_FITTING_MODEL_H_ + + +#include <2geom/d2.h> +#include <2geom/sbasis.h> +#include <2geom/bezier.h> +#include <2geom/bezier-curve.h> +#include <2geom/polynomial.h> +#include <2geom/ellipse.h> +#include <2geom/circle.h> +#include <2geom/utils.h> +#include <2geom/conicsec.h> + + +namespace Geom { namespace NL { + +/* + * A model is an abstraction for an expression dependent from a parameter where + * the coefficients of this expression are the unknowns of the fitting problem. + * For a ceratain number of parameter values we know the related values + * the expression evaluates to: from each parameter value we get a row of + * the matrix of the fitting problem, from each expression value we get + * the related constant term. + * Example: given the model a*x^2 + b*x + c = 0; from x = 1 we get + * the equation a + b + c = 0, in this example the constant term is always + * the same for each parameter value. + * + * A model is required to implement 3 methods: + * + * - size : returns the number of unknown coefficients that appear in + * the expression of the fitting problem; + * - feed : its input is a parameter value and the related expression value, + * it generates a matrix row and a new entry of the constant vector + * of the fitting problem; + * - instance : it has an input parameter represented by the raw vector + * solution of the fitting problem and an output parameter + * of type InstanceType that return a specific object that is + * generated using the fitting problem solution, in the example + * above the object could be a Poly type. + */ + +/* + * completely unknown models must inherit from this template class; + * example: the model a*x^2 + b*x + c = 0 to be solved wrt a, b, c; + * example: the model A(t) = known_sample_value_at(t) to be solved wrt + * the coefficients of the curve A(t) expressed in S-Basis form; + * parameter type: the type of x and t variable in the examples above; + * value type: the type of the known sample values (in the first example + * is constant ) + * instance type: the type of the objects produced by using + * the fitting raw data solution + */ + + + + +template< typename ParameterType, typename ValueType, typename InstanceType > +class LinearFittingModel +{ + public: + typedef ParameterType parameter_type; + typedef ValueType value_type; + typedef InstanceType instance_type; + + static const bool WITH_FIXED_TERMS = false; + + /* + * a LinearFittingModel must implement the following methods: + * + * void feed( VectorView & vector, + * parameter_type const& sample_parameter ) const; + * + * size_t size() const; + * + * void instance(instance_type &, raw_type const& raw_data) const; + * + */ +}; + + +/* + * partially known models must inherit from this template class + * example: the model a*x^2 + 2*x + c = 0 to be solved wrt a and c + */ +template< typename ParameterType, typename ValueType, typename InstanceType > +class LinearFittingModelWithFixedTerms +{ + public: + typedef ParameterType parameter_type; + typedef ValueType value_type; + typedef InstanceType instance_type; + + static const bool WITH_FIXED_TERMS = true; + + /* + * a LinearFittingModelWithFixedTerms must implement the following methods: + * + * void feed( VectorView & vector, + * value_type & fixed_term, + * parameter_type const& sample_parameter ) const; + * + * size_t size() const; + * + * void instance(instance_type &, raw_type const& raw_data) const; + * + */ + + +}; + + +// incomplete model, it can be inherited to make up different kinds of +// instance type; the raw data is a vector of coefficients of a polynomial +// represented in standard power basis +template< typename InstanceType > +class LFMPowerBasis + : public LinearFittingModel<double, double, InstanceType> +{ + public: + LFMPowerBasis(size_t degree) + : m_size(degree + 1) + { + } + + void feed( VectorView & coeff, double sample_parameter ) const + { + coeff[0] = 1; + double x_i = 1; + for (size_t i = 1; i < coeff.size(); ++i) + { + x_i *= sample_parameter; + coeff[i] = x_i; + } + } + + size_t size() const + { + return m_size; + } + + private: + size_t m_size; +}; + + +// this model generates Geom::Poly objects +class LFMPoly + : public LFMPowerBasis<Poly> +{ + public: + LFMPoly(size_t degree) + : LFMPowerBasis<Poly>(degree) + { + } + + void instance(Poly & poly, ConstVectorView const& raw_data) const + { + poly.clear(); + poly.resize(size()); + for (size_t i = 0; i < raw_data.size(); ++i) + { + poly[i] = raw_data[i]; + } + } +}; + + +// incomplete model, it can be inherited to make up different kinds of +// instance type; the raw data is a vector of coefficients of a polynomial +// represented in standard power basis with leading term coefficient equal to 1 +template< typename InstanceType > +class LFMNormalizedPowerBasis + : public LinearFittingModelWithFixedTerms<double, double, InstanceType> +{ + public: + LFMNormalizedPowerBasis(size_t _degree) + : m_model( _degree - 1) + { + assert(_degree > 0); + } + + + void feed( VectorView & coeff, + double & known_term, + double sample_parameter ) const + { + m_model.feed(coeff, sample_parameter); + known_term = coeff[m_model.size()-1] * sample_parameter; + } + + size_t size() const + { + return m_model.size(); + } + + private: + LFMPowerBasis<InstanceType> m_model; +}; + + +// incomplete model, it can be inherited to make up different kinds of +// instance type; the raw data is a vector of coefficients of the equation +// of an ellipse curve +//template< typename InstanceType > +//class LFMEllipseEquation +// : public LinearFittingModelWithFixedTerms<Point, double, InstanceType> +//{ +// public: +// void feed( VectorView & coeff, double & fixed_term, Point const& p ) const +// { +// coeff[0] = p[X] * p[Y]; +// coeff[1] = p[Y] * p[Y]; +// coeff[2] = p[X]; +// coeff[3] = p[Y]; +// coeff[4] = 1; +// fixed_term = p[X] * p[X]; +// } +// +// size_t size() const +// { +// return 5; +// } +//}; + +// incomplete model, it can be inherited to make up different kinds of +// instance type; the raw data is a vector of coefficients of the equation +// of a conic section +template< typename InstanceType > +class LFMConicEquation + : public LinearFittingModelWithFixedTerms<Point, double, InstanceType> +{ + public: + void feed( VectorView & coeff, double & fixed_term, Point const& p ) const + { + coeff[0] = p[X] * p[Y]; + coeff[1] = p[Y] * p[Y]; + coeff[2] = p[X]; + coeff[3] = p[Y]; + coeff[4] = 1; + fixed_term = p[X] * p[X]; + } + + size_t size() const + { + return 5; + } +}; + +// this model generates Ellipse curves +class LFMConicSection + : public LFMConicEquation<xAx> +{ + public: + void instance(xAx & c, ConstVectorView const& coeff) const + { + c.set(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]); + } +}; + +// this model generates Ellipse curves +class LFMEllipse + : public LFMConicEquation<Ellipse> +{ + public: + void instance(Ellipse & e, ConstVectorView const& coeff) const + { + e.setCoefficients(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]); + } +}; + + +// incomplete model, it can be inherited to make up different kinds of +// instance type; the raw data is a vector of coefficients of the equation +// of a circle curve +template< typename InstanceType > +class LFMCircleEquation + : public LinearFittingModelWithFixedTerms<Point, double, InstanceType> +{ + public: + void feed( VectorView & coeff, double & fixed_term, Point const& p ) const + { + coeff[0] = p[X]; + coeff[1] = p[Y]; + coeff[2] = 1; + fixed_term = p[X] * p[X] + p[Y] * p[Y]; + } + + size_t size() const + { + return 3; + } +}; + + +// this model generates Ellipse curves +class LFMCircle + : public LFMCircleEquation<Circle> +{ + public: + void instance(Circle & c, ConstVectorView const& coeff) const + { + c.setCoefficients(1, coeff[0], coeff[1], coeff[2]); + } +}; + + +// this model generates SBasis objects +class LFMSBasis + : public LinearFittingModel<double, double, SBasis> +{ + public: + LFMSBasis( size_t _order ) + : m_size( 2*(_order+1) ), + m_order(_order) + { + } + + void feed( VectorView & coeff, double t ) const + { + double u0 = 1-t; + double u1 = t; + double s = u0 * u1; + coeff[0] = u0; + coeff[1] = u1; + for (size_t i = 2; i < size(); i+=2) + { + u0 *= s; + u1 *= s; + coeff[i] = u0; + coeff[i+1] = u1; + } + } + + size_t size() const + { + return m_size; + } + + void instance(SBasis & sb, ConstVectorView const& raw_data) const + { + sb.resize(m_order+1); + for (unsigned int i = 0, k = 0; i < raw_data.size(); i+=2, ++k) + { + sb[k][0] = raw_data[i]; + sb[k][1] = raw_data[i+1]; + } + } + + private: + size_t m_size; + size_t m_order; +}; + + +// this model generates D2<SBasis> objects +class LFMD2SBasis + : public LinearFittingModel< double, Point, D2<SBasis> > +{ + public: + LFMD2SBasis( size_t _order ) + : mosb(_order) + { + } + + void feed( VectorView & coeff, double t ) const + { + mosb.feed(coeff, t); + } + + size_t size() const + { + return mosb.size(); + } + + void instance(D2<SBasis> & d2sb, ConstMatrixView const& raw_data) const + { + mosb.instance(d2sb[X], raw_data.column_const_view(X)); + mosb.instance(d2sb[Y], raw_data.column_const_view(Y)); + } + + private: + LFMSBasis mosb; +}; + + +// this model generates Bezier objects +class LFMBezier + : public LinearFittingModel<double, double, Bezier> +{ + public: + LFMBezier( size_t _order ) + : m_size(_order + 1), + m_order(_order) + { + binomial_coefficients(m_bc, m_order); + } + + void feed( VectorView & coeff, double t ) const + { + double s = 1; + for (size_t i = 0; i < size(); ++i) + { + coeff[i] = s * m_bc[i]; + s *= t; + } + double u = 1-t; + s = 1; + for (size_t i = size()-1; i > 0; --i) + { + coeff[i] *= s; + s *= u; + } + coeff[0] *= s; + } + + size_t size() const + { + return m_size; + } + + void instance(Bezier & b, ConstVectorView const& raw_data) const + { + assert(b.size() == raw_data.size()); + for (unsigned int i = 0; i < raw_data.size(); ++i) + { + b[i] = raw_data[i]; + } + } + + private: + size_t m_size; + size_t m_order; + std::vector<size_t> m_bc; +}; + + +// this model generates Bezier curves +template <unsigned degree> +class LFMBezierCurveN + : public LinearFittingModel< double, Point, BezierCurveN<degree> > +{ + public: + LFMBezierCurveN() + : mob(degree+1) + { + } + + void feed( VectorView & coeff, double t ) const + { + mob.feed(coeff, t); + } + + size_t size() const + { + return mob.size(); + } + + void instance(BezierCurveN<degree> & bc, ConstMatrixView const& raw_data) const + { + Bezier bx(degree); + Bezier by(degree); + mob.instance(bx, raw_data.column_const_view(X)); + mob.instance(by, raw_data.column_const_view(Y)); + bc = BezierCurveN<degree>(bx, by); + } + + private: + LFMBezier mob; +}; + +} // end namespace NL +} // end namespace Geom + + +#endif // _NL_FITTING_MODEL_H_ + + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |