summaryrefslogtreecommitdiffstats
path: root/include/2geom/numeric/fitting-model.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
commit61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch)
tree885599a36a308f422af98616bc733a0494fe149a /include/2geom/numeric/fitting-model.h
parentInitial commit. (diff)
downloadlib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz
lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'include/2geom/numeric/fitting-model.h')
-rw-r--r--include/2geom/numeric/fitting-model.h521
1 files changed, 521 insertions, 0 deletions
diff --git a/include/2geom/numeric/fitting-model.h b/include/2geom/numeric/fitting-model.h
new file mode 100644
index 0000000..0316f57
--- /dev/null
+++ b/include/2geom/numeric/fitting-model.h
@@ -0,0 +1,521 @@
+/*
+ * Fitting Models for Geom Types
+ *
+ * Authors:
+ * Marco Cecchetti <mrcekets at gmail.com>
+ *
+ * Copyright 2008 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+
+#ifndef _NL_FITTING_MODEL_H_
+#define _NL_FITTING_MODEL_H_
+
+
+#include <2geom/d2.h>
+#include <2geom/sbasis.h>
+#include <2geom/bezier.h>
+#include <2geom/bezier-curve.h>
+#include <2geom/polynomial.h>
+#include <2geom/ellipse.h>
+#include <2geom/circle.h>
+#include <2geom/utils.h>
+#include <2geom/conicsec.h>
+
+
+namespace Geom { namespace NL {
+
+/*
+ * A model is an abstraction for an expression dependent from a parameter where
+ * the coefficients of this expression are the unknowns of the fitting problem.
+ * For a ceratain number of parameter values we know the related values
+ * the expression evaluates to: from each parameter value we get a row of
+ * the matrix of the fitting problem, from each expression value we get
+ * the related constant term.
+ * Example: given the model a*x^2 + b*x + c = 0; from x = 1 we get
+ * the equation a + b + c = 0, in this example the constant term is always
+ * the same for each parameter value.
+ *
+ * A model is required to implement 3 methods:
+ *
+ * - size : returns the number of unknown coefficients that appear in
+ * the expression of the fitting problem;
+ * - feed : its input is a parameter value and the related expression value,
+ * it generates a matrix row and a new entry of the constant vector
+ * of the fitting problem;
+ * - instance : it has an input parameter represented by the raw vector
+ * solution of the fitting problem and an output parameter
+ * of type InstanceType that return a specific object that is
+ * generated using the fitting problem solution, in the example
+ * above the object could be a Poly type.
+ */
+
+/*
+ * completely unknown models must inherit from this template class;
+ * example: the model a*x^2 + b*x + c = 0 to be solved wrt a, b, c;
+ * example: the model A(t) = known_sample_value_at(t) to be solved wrt
+ * the coefficients of the curve A(t) expressed in S-Basis form;
+ * parameter type: the type of x and t variable in the examples above;
+ * value type: the type of the known sample values (in the first example
+ * is constant )
+ * instance type: the type of the objects produced by using
+ * the fitting raw data solution
+ */
+
+
+
+
+template< typename ParameterType, typename ValueType, typename InstanceType >
+class LinearFittingModel
+{
+ public:
+ typedef ParameterType parameter_type;
+ typedef ValueType value_type;
+ typedef InstanceType instance_type;
+
+ static const bool WITH_FIXED_TERMS = false;
+
+ /*
+ * a LinearFittingModel must implement the following methods:
+ *
+ * void feed( VectorView & vector,
+ * parameter_type const& sample_parameter ) const;
+ *
+ * size_t size() const;
+ *
+ * void instance(instance_type &, raw_type const& raw_data) const;
+ *
+ */
+};
+
+
+/*
+ * partially known models must inherit from this template class
+ * example: the model a*x^2 + 2*x + c = 0 to be solved wrt a and c
+ */
+template< typename ParameterType, typename ValueType, typename InstanceType >
+class LinearFittingModelWithFixedTerms
+{
+ public:
+ typedef ParameterType parameter_type;
+ typedef ValueType value_type;
+ typedef InstanceType instance_type;
+
+ static const bool WITH_FIXED_TERMS = true;
+
+ /*
+ * a LinearFittingModelWithFixedTerms must implement the following methods:
+ *
+ * void feed( VectorView & vector,
+ * value_type & fixed_term,
+ * parameter_type const& sample_parameter ) const;
+ *
+ * size_t size() const;
+ *
+ * void instance(instance_type &, raw_type const& raw_data) const;
+ *
+ */
+
+
+};
+
+
+// incomplete model, it can be inherited to make up different kinds of
+// instance type; the raw data is a vector of coefficients of a polynomial
+// represented in standard power basis
+template< typename InstanceType >
+class LFMPowerBasis
+ : public LinearFittingModel<double, double, InstanceType>
+{
+ public:
+ LFMPowerBasis(size_t degree)
+ : m_size(degree + 1)
+ {
+ }
+
+ void feed( VectorView & coeff, double sample_parameter ) const
+ {
+ coeff[0] = 1;
+ double x_i = 1;
+ for (size_t i = 1; i < coeff.size(); ++i)
+ {
+ x_i *= sample_parameter;
+ coeff[i] = x_i;
+ }
+ }
+
+ size_t size() const
+ {
+ return m_size;
+ }
+
+ private:
+ size_t m_size;
+};
+
+
+// this model generates Geom::Poly objects
+class LFMPoly
+ : public LFMPowerBasis<Poly>
+{
+ public:
+ LFMPoly(size_t degree)
+ : LFMPowerBasis<Poly>(degree)
+ {
+ }
+
+ void instance(Poly & poly, ConstVectorView const& raw_data) const
+ {
+ poly.clear();
+ poly.resize(size());
+ for (size_t i = 0; i < raw_data.size(); ++i)
+ {
+ poly[i] = raw_data[i];
+ }
+ }
+};
+
+
+// incomplete model, it can be inherited to make up different kinds of
+// instance type; the raw data is a vector of coefficients of a polynomial
+// represented in standard power basis with leading term coefficient equal to 1
+template< typename InstanceType >
+class LFMNormalizedPowerBasis
+ : public LinearFittingModelWithFixedTerms<double, double, InstanceType>
+{
+ public:
+ LFMNormalizedPowerBasis(size_t _degree)
+ : m_model( _degree - 1)
+ {
+ assert(_degree > 0);
+ }
+
+
+ void feed( VectorView & coeff,
+ double & known_term,
+ double sample_parameter ) const
+ {
+ m_model.feed(coeff, sample_parameter);
+ known_term = coeff[m_model.size()-1] * sample_parameter;
+ }
+
+ size_t size() const
+ {
+ return m_model.size();
+ }
+
+ private:
+ LFMPowerBasis<InstanceType> m_model;
+};
+
+
+// incomplete model, it can be inherited to make up different kinds of
+// instance type; the raw data is a vector of coefficients of the equation
+// of an ellipse curve
+//template< typename InstanceType >
+//class LFMEllipseEquation
+// : public LinearFittingModelWithFixedTerms<Point, double, InstanceType>
+//{
+// public:
+// void feed( VectorView & coeff, double & fixed_term, Point const& p ) const
+// {
+// coeff[0] = p[X] * p[Y];
+// coeff[1] = p[Y] * p[Y];
+// coeff[2] = p[X];
+// coeff[3] = p[Y];
+// coeff[4] = 1;
+// fixed_term = p[X] * p[X];
+// }
+//
+// size_t size() const
+// {
+// return 5;
+// }
+//};
+
+// incomplete model, it can be inherited to make up different kinds of
+// instance type; the raw data is a vector of coefficients of the equation
+// of a conic section
+template< typename InstanceType >
+class LFMConicEquation
+ : public LinearFittingModelWithFixedTerms<Point, double, InstanceType>
+{
+ public:
+ void feed( VectorView & coeff, double & fixed_term, Point const& p ) const
+ {
+ coeff[0] = p[X] * p[Y];
+ coeff[1] = p[Y] * p[Y];
+ coeff[2] = p[X];
+ coeff[3] = p[Y];
+ coeff[4] = 1;
+ fixed_term = p[X] * p[X];
+ }
+
+ size_t size() const
+ {
+ return 5;
+ }
+};
+
+// this model generates Ellipse curves
+class LFMConicSection
+ : public LFMConicEquation<xAx>
+{
+ public:
+ void instance(xAx & c, ConstVectorView const& coeff) const
+ {
+ c.set(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]);
+ }
+};
+
+// this model generates Ellipse curves
+class LFMEllipse
+ : public LFMConicEquation<Ellipse>
+{
+ public:
+ void instance(Ellipse & e, ConstVectorView const& coeff) const
+ {
+ e.setCoefficients(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]);
+ }
+};
+
+
+// incomplete model, it can be inherited to make up different kinds of
+// instance type; the raw data is a vector of coefficients of the equation
+// of a circle curve
+template< typename InstanceType >
+class LFMCircleEquation
+ : public LinearFittingModelWithFixedTerms<Point, double, InstanceType>
+{
+ public:
+ void feed( VectorView & coeff, double & fixed_term, Point const& p ) const
+ {
+ coeff[0] = p[X];
+ coeff[1] = p[Y];
+ coeff[2] = 1;
+ fixed_term = p[X] * p[X] + p[Y] * p[Y];
+ }
+
+ size_t size() const
+ {
+ return 3;
+ }
+};
+
+
+// this model generates Ellipse curves
+class LFMCircle
+ : public LFMCircleEquation<Circle>
+{
+ public:
+ void instance(Circle & c, ConstVectorView const& coeff) const
+ {
+ c.setCoefficients(1, coeff[0], coeff[1], coeff[2]);
+ }
+};
+
+
+// this model generates SBasis objects
+class LFMSBasis
+ : public LinearFittingModel<double, double, SBasis>
+{
+ public:
+ LFMSBasis( size_t _order )
+ : m_size( 2*(_order+1) ),
+ m_order(_order)
+ {
+ }
+
+ void feed( VectorView & coeff, double t ) const
+ {
+ double u0 = 1-t;
+ double u1 = t;
+ double s = u0 * u1;
+ coeff[0] = u0;
+ coeff[1] = u1;
+ for (size_t i = 2; i < size(); i+=2)
+ {
+ u0 *= s;
+ u1 *= s;
+ coeff[i] = u0;
+ coeff[i+1] = u1;
+ }
+ }
+
+ size_t size() const
+ {
+ return m_size;
+ }
+
+ void instance(SBasis & sb, ConstVectorView const& raw_data) const
+ {
+ sb.resize(m_order+1);
+ for (unsigned int i = 0, k = 0; i < raw_data.size(); i+=2, ++k)
+ {
+ sb[k][0] = raw_data[i];
+ sb[k][1] = raw_data[i+1];
+ }
+ }
+
+ private:
+ size_t m_size;
+ size_t m_order;
+};
+
+
+// this model generates D2<SBasis> objects
+class LFMD2SBasis
+ : public LinearFittingModel< double, Point, D2<SBasis> >
+{
+ public:
+ LFMD2SBasis( size_t _order )
+ : mosb(_order)
+ {
+ }
+
+ void feed( VectorView & coeff, double t ) const
+ {
+ mosb.feed(coeff, t);
+ }
+
+ size_t size() const
+ {
+ return mosb.size();
+ }
+
+ void instance(D2<SBasis> & d2sb, ConstMatrixView const& raw_data) const
+ {
+ mosb.instance(d2sb[X], raw_data.column_const_view(X));
+ mosb.instance(d2sb[Y], raw_data.column_const_view(Y));
+ }
+
+ private:
+ LFMSBasis mosb;
+};
+
+
+// this model generates Bezier objects
+class LFMBezier
+ : public LinearFittingModel<double, double, Bezier>
+{
+ public:
+ LFMBezier( size_t _order )
+ : m_size(_order + 1),
+ m_order(_order)
+ {
+ binomial_coefficients(m_bc, m_order);
+ }
+
+ void feed( VectorView & coeff, double t ) const
+ {
+ double s = 1;
+ for (size_t i = 0; i < size(); ++i)
+ {
+ coeff[i] = s * m_bc[i];
+ s *= t;
+ }
+ double u = 1-t;
+ s = 1;
+ for (size_t i = size()-1; i > 0; --i)
+ {
+ coeff[i] *= s;
+ s *= u;
+ }
+ coeff[0] *= s;
+ }
+
+ size_t size() const
+ {
+ return m_size;
+ }
+
+ void instance(Bezier & b, ConstVectorView const& raw_data) const
+ {
+ assert(b.size() == raw_data.size());
+ for (unsigned int i = 0; i < raw_data.size(); ++i)
+ {
+ b[i] = raw_data[i];
+ }
+ }
+
+ private:
+ size_t m_size;
+ size_t m_order;
+ std::vector<size_t> m_bc;
+};
+
+
+// this model generates Bezier curves
+template <unsigned degree>
+class LFMBezierCurveN
+ : public LinearFittingModel< double, Point, BezierCurveN<degree> >
+{
+ public:
+ LFMBezierCurveN()
+ : mob(degree+1)
+ {
+ }
+
+ void feed( VectorView & coeff, double t ) const
+ {
+ mob.feed(coeff, t);
+ }
+
+ size_t size() const
+ {
+ return mob.size();
+ }
+
+ void instance(BezierCurveN<degree> & bc, ConstMatrixView const& raw_data) const
+ {
+ Bezier bx(degree);
+ Bezier by(degree);
+ mob.instance(bx, raw_data.column_const_view(X));
+ mob.instance(by, raw_data.column_const_view(Y));
+ bc = BezierCurveN<degree>(bx, by);
+ }
+
+ private:
+ LFMBezier mob;
+};
+
+} // end namespace NL
+} // end namespace Geom
+
+
+#endif // _NL_FITTING_MODEL_H_
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :