diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
commit | 61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch) | |
tree | 885599a36a308f422af98616bc733a0494fe149a /include/2geom/point.h | |
parent | Initial commit. (diff) | |
download | lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip |
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'include/2geom/point.h')
-rw-r--r-- | include/2geom/point.h | 449 |
1 files changed, 449 insertions, 0 deletions
diff --git a/include/2geom/point.h b/include/2geom/point.h new file mode 100644 index 0000000..3a29066 --- /dev/null +++ b/include/2geom/point.h @@ -0,0 +1,449 @@ +/** @file + * @brief Cartesian point / 2D vector and related operations + *//* + * Authors: + * Michael G. Sloan <mgsloan@gmail.com> + * Nathan Hurst <njh@njhurst.com> + * Krzysztof KosiĆski <tweenk.pl@gmail.com> + * + * Copyright (C) 2006-2009 Authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#ifndef LIB2GEOM_SEEN_POINT_H +#define LIB2GEOM_SEEN_POINT_H + +#include <iostream> +#include <iterator> +#include <boost/operators.hpp> +#include <2geom/forward.h> +#include <2geom/coord.h> +#include <2geom/int-point.h> +#include <2geom/math-utils.h> +#include <2geom/utils.h> + +namespace Geom { + +class Point + : boost::additive< Point + , boost::totally_ordered< Point + , boost::multiplicative< Point, Coord + , boost::multiplicative< Point + , boost::multiplicative< Point, IntPoint + , MultipliableNoncommutative< Point, Affine + , MultipliableNoncommutative< Point, Translate + , MultipliableNoncommutative< Point, Rotate + , MultipliableNoncommutative< Point, Scale + , MultipliableNoncommutative< Point, HShear + , MultipliableNoncommutative< Point, VShear + , MultipliableNoncommutative< Point, Zoom + > > > > > > > > > > > > // base class chaining, see documentation for Boost.Operator +{ + Coord _pt[2] = { 0, 0 }; +public: + using D1Value = Coord; + using D1Reference = Coord &; + using D1ConstReference = Coord const &; + + /// @name Create points + /// @{ + /** Construct a point at the origin. */ + Point() = default; + /** Construct a point from its coordinates. */ + Point(Coord x, Coord y) + : _pt{ x, y } + {} + /** Construct from integer point. */ + Point(IntPoint const &p) + : Point(p[X], p[Y]) + {} + /** @brief Construct a point from its polar coordinates. + * The angle is specified in radians, in the mathematical convention (increasing + * counter-clockwise from +X). */ + static Point polar(Coord angle, Coord radius) { + Point ret(polar(angle)); + ret *= radius; + return ret; + } + /** @brief Construct an unit vector from its angle. + * The angle is specified in radians, in the mathematical convention (increasing + * counter-clockwise from +X). */ + static Point polar(Coord angle); + /// @} + + /// @name Access the coordinates of a point + /// @{ + Coord operator[](unsigned i) const { return _pt[i]; } + Coord &operator[](unsigned i) { return _pt[i]; } + + Coord operator[](Dim2 d) const noexcept { return _pt[d]; } + Coord &operator[](Dim2 d) noexcept { return _pt[d]; } + + Coord x() const noexcept { return _pt[X]; } + Coord &x() noexcept { return _pt[X]; } + Coord y() const noexcept { return _pt[Y]; } + Coord &y() noexcept { return _pt[Y]; } + /// @} + + /// @name Vector operations + /// @{ + /** @brief Compute the distance from origin. + * @return Length of the vector from origin to this point */ + Coord length() const { return std::hypot(_pt[0], _pt[1]); } + void normalize(); + Point normalized() const { + Point ret(*this); + ret.normalize(); + return ret; + } + + /** @brief Return a point like this point but rotated -90 degrees. + * If the y axis grows downwards and the x axis grows to the + * right, then this is 90 degrees counter-clockwise. */ + Point ccw() const { + return Point(_pt[Y], -_pt[X]); + } + + /** @brief Return a point like this point but rotated +90 degrees. + * If the y axis grows downwards and the x axis grows to the + * right, then this is 90 degrees clockwise. */ + Point cw() const { + return Point(-_pt[Y], _pt[X]); + } + /// @} + + /// @name Vector-like arithmetic operations + /// @{ + Point operator-() const { + return Point(-_pt[X], -_pt[Y]); + } + Point &operator+=(Point const &o) { + _pt[X] += o._pt[X]; + _pt[Y] += o._pt[Y]; + return *this; + } + Point &operator-=(Point const &o) { + _pt[X] -= o._pt[X]; + _pt[Y] -= o._pt[Y]; + return *this; + } + Point &operator*=(Coord s) { + for (double & i : _pt) i *= s; + return *this; + } + Point &operator*=(Point const &o) { + _pt[X] *= o._pt[X]; + _pt[Y] *= o._pt[Y]; + return *this; + } + Point &operator*=(IntPoint const &o) { + _pt[X] *= o.x(); + _pt[Y] *= o.y(); + return *this; + } + Point &operator/=(Coord s) { + //TODO: s == 0? + for (double & i : _pt) i /= s; + return *this; + } + Point &operator/=(Point const &o) { + _pt[X] /= o._pt[X]; + _pt[Y] /= o._pt[Y]; + return *this; + } + Point &operator/=(IntPoint const &o) { + _pt[X] /= o.x(); + _pt[Y] /= o.y(); + return *this; + } + /// @} + + /// @name Affine transformations + /// @{ + Point &operator*=(Affine const &m); + // implemented in transforms.cpp + Point &operator*=(Translate const &t); + Point &operator*=(Scale const &s); + Point &operator*=(Rotate const &r); + Point &operator*=(HShear const &s); + Point &operator*=(VShear const &s); + Point &operator*=(Zoom const &z); + /// @} + + /// @name Conversion to integer points + /// @{ + /** @brief Round to nearest integer coordinates. */ + IntPoint round() const { + IntPoint ret(::round(_pt[X]), ::round(_pt[Y])); + return ret; + } + /** @brief Round coordinates downwards. */ + IntPoint floor() const { + IntPoint ret(::floor(_pt[X]), ::floor(_pt[Y])); + return ret; + } + /** @brief Round coordinates upwards. */ + IntPoint ceil() const { + IntPoint ret(::ceil(_pt[X]), ::ceil(_pt[Y])); + return ret; + } + /// @} + + /// @name Various utilities + /// @{ + /** @brief Check whether both coordinates are finite. */ + bool isFinite() const { + for (double i : _pt) { + if(!std::isfinite(i)) return false; + } + return true; + } + /** @brief Check whether both coordinates are zero. */ + bool isZero() const { + return _pt[X] == 0 && _pt[Y] == 0; + } + /** @brief Check whether the length of the vector is close to 1. */ + bool isNormalized(Coord eps=EPSILON) const { + return are_near(length(), 1.0, eps); + } + /** @brief Equality operator. + * This tests for exact identity (as opposed to are_near()). Note that due to numerical + * errors, this test might return false even if the points should be identical. */ + bool operator==(const Point &in_pnt) const { + return (_pt[X] == in_pnt[X]) && (_pt[Y] == in_pnt[Y]); + } + /** @brief Lexicographical ordering for points. + * Y coordinate is regarded as more significant. When sorting according to this + * ordering, the points will be sorted according to the Y coordinate, and within + * points with the same Y coordinate according to the X coordinate. */ + bool operator<(const Point &p) const { + return _pt[Y] < p[Y] || (_pt[Y] == p[Y] && _pt[X] < p[X]); + } + /// @} + + /** @brief Lexicographical ordering functor. + * @param d The dimension with higher significance */ + template <Dim2 DIM> struct LexLess; + template <Dim2 DIM> struct LexGreater; + //template <Dim2 DIM, typename First = std::less<Coord>, typename Second = std::less<Coord> > LexOrder; + /** @brief Lexicographical ordering functor with runtime dimension. */ + struct LexLessRt { + LexLessRt(Dim2 d) : dim(d) {} + inline bool operator()(Point const &a, Point const &b) const; + private: + Dim2 dim; + }; + struct LexGreaterRt { + LexGreaterRt(Dim2 d) : dim(d) {} + inline bool operator()(Point const &a, Point const &b) const; + private: + Dim2 dim; + }; + //template <typename First = std::less<Coord>, typename Second = std::less<Coord> > LexOrder +}; + +/** @brief Output operator for points. + * Prints out the coordinates. + * @relates Point */ +std::ostream &operator<<(std::ostream &out, const Geom::Point &p); + +template<> struct Point::LexLess<X> { + typedef std::less<Coord> Primary; + typedef std::less<Coord> Secondary; + typedef std::less<Coord> XOrder; + typedef std::less<Coord> YOrder; + bool operator()(Point const &a, Point const &b) const { + return a[X] < b[X] || (a[X] == b[X] && a[Y] < b[Y]); + } +}; +template<> struct Point::LexLess<Y> { + typedef std::less<Coord> Primary; + typedef std::less<Coord> Secondary; + typedef std::less<Coord> XOrder; + typedef std::less<Coord> YOrder; + bool operator()(Point const &a, Point const &b) const { + return a[Y] < b[Y] || (a[Y] == b[Y] && a[X] < b[X]); + } +}; +template<> struct Point::LexGreater<X> { + typedef std::greater<Coord> Primary; + typedef std::greater<Coord> Secondary; + typedef std::greater<Coord> XOrder; + typedef std::greater<Coord> YOrder; + bool operator()(Point const &a, Point const &b) const { + return a[X] > b[X] || (a[X] == b[X] && a[Y] > b[Y]); + } +}; +template<> struct Point::LexGreater<Y> { + typedef std::greater<Coord> Primary; + typedef std::greater<Coord> Secondary; + typedef std::greater<Coord> XOrder; + typedef std::greater<Coord> YOrder; + bool operator()(Point const &a, Point const &b) const { + return a[Y] > b[Y] || (a[Y] == b[Y] && a[X] > b[X]); + } +}; +inline bool Point::LexLessRt::operator()(Point const &a, Point const &b) const { + return dim ? Point::LexLess<Y>()(a, b) : Point::LexLess<X>()(a, b); +} +inline bool Point::LexGreaterRt::operator()(Point const &a, Point const &b) const { + return dim ? Point::LexGreater<Y>()(a, b) : Point::LexGreater<X>()(a, b); +} + +/** @brief Compute the second (Euclidean) norm of @a p. + * This corresponds to the length of @a p. The result will not overflow even if + * \f$p_X^2 + p_Y^2\f$ is larger that the maximum value that can be stored + * in a <code>double</code>. + * @return \f$\sqrt{p_X^2 + p_Y^2}\f$ + * @relates Point */ +inline Coord L2(Point const &p) { + return p.length(); +} + +/** @brief Compute the square of the Euclidean norm of @a p. + * Warning: this can overflow where L2 won't. + * @return \f$p_X^2 + p_Y^2\f$ + * @relates Point */ +inline Coord L2sq(Point const &p) { + return p[0]*p[0] + p[1]*p[1]; +} + +/** @brief Returns p * Geom::rotate_degrees(90), but more efficient. + * + * Angle direction in 2Geom: If you use the traditional mathematics convention that y + * increases upwards, then positive angles are anticlockwise as per the mathematics convention. If + * you take the common non-mathematical convention that y increases downwards, then positive angles + * are clockwise, as is common outside of mathematics. + * + * There is no function to rotate by -90 degrees: use -rot90(p) instead. + * @relates Point */ +inline Point rot90(Point const &p) { + return Point(-p[Y], p[X]); +} + +/** @brief Linear interpolation between two points. + * @param t Time value + * @param a First point + * @param b Second point + * @return Point on a line between a and b. The ratio of its distance from a + * and the distance between a and b will be equal to t. + * @relates Point */ +inline Point lerp(Coord t, Point const &a, Point const &b) { + return (1 - t) * a + t * b; +} + +/** @brief Return a point halfway between the specified ones. + * @relates Point */ +inline Point middle_point(Point const &p1, Point const &p2) { + return lerp(0.5, p1, p2); +} + +/** @brief Compute the dot product of a and b. + * Dot product can be interpreted as a measure of how parallel the vectors are. + * For perpendicular vectors, it is zero. For parallel ones, its absolute value is highest, + * and the sign depends on whether they point in the same direction (+) or opposite ones (-). + * @return \f$a \cdot b = a_X b_X + a_Y b_Y\f$. + * @relates Point */ +inline Coord dot(Point const &a, Point const &b) { + return a[X] * b[X] + a[Y] * b[Y]; +} + +/** @brief Compute the 2D cross product. + * This is also known as "perp dot product". It will be zero for parallel vectors, + * and the absolute value will be highest for perpendicular vectors. + * @return \f$a \times b = a_X b_Y - a_Y b_X\f$. + * @relates Point*/ +inline Coord cross(Point const &a, Point const &b) +{ + // equivalent implementation: + // return dot(a, b.ccw()); + return a[X] * b[Y] - a[Y] * b[X]; +} + +/// Compute the (Euclidean) distance between points. +/// @relates Point +inline Coord distance (Point const &a, Point const &b) { + return (a - b).length(); +} + +/// Compute the square of the distance between points. +/// @relates Point +inline Coord distanceSq (Point const &a, Point const &b) { + return L2sq(a - b); +} + +//IMPL: NearConcept +/// Test whether two points are no further apart than some threshold. +/// @relates Point +inline bool are_near(Point const &a, Point const &b, double eps = EPSILON) { + // do not use an unqualified calls to distance before the empty + // specialization of iterator_traits is defined - see end of file + return are_near((a - b).length(), 0, eps); +} + +/// Test whether the relative distance between two points is less than some threshold. +inline bool are_near_rel(Point const &a, Point const &b, double eps = EPSILON) { + return (a - b).length() <= eps * (a.length() + b.length()) / 2; +} + +/// Test whether three points lie approximately on the same line. +/// @relates Point +inline bool are_collinear(Point const& p1, Point const& p2, Point const& p3, + double eps = EPSILON) +{ + return are_near( cross(p3, p2) - cross(p3, p1) + cross(p2, p1), 0, eps); +} + +Point unit_vector(Point const &a); +Coord L1(Point const &p); +Coord LInfty(Point const &p); +bool is_zero(Point const &p); +bool is_unit_vector(Point const &p, Coord eps = EPSILON); +double atan2(Point const &p); +double angle_between(Point const &a, Point const &b); +Point abs(Point const &b); +Point constrain_angle(Point const &A, Point const &B, unsigned int n = 4, Geom::Point const &dir = Geom::Point(1,0)); + +} // end namespace Geom + +// This is required to fix a bug in GCC 4.3.3 (and probably others) that causes the compiler +// to try to instantiate the iterator_traits template and fail. Probably it thinks that Point +// is an iterator and tries to use std::distance instead of Geom::distance. +namespace std { +template <> class iterator_traits<Geom::Point> {}; +} + +#endif // LIB2GEOM_SEEN_POINT_H + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |