diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
commit | 61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch) | |
tree | 885599a36a308f422af98616bc733a0494fe149a /src/2geom/affine.cpp | |
parent | Initial commit. (diff) | |
download | lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip |
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | src/2geom/affine.cpp | 522 |
1 files changed, 522 insertions, 0 deletions
diff --git a/src/2geom/affine.cpp b/src/2geom/affine.cpp new file mode 100644 index 0000000..48179e8 --- /dev/null +++ b/src/2geom/affine.cpp @@ -0,0 +1,522 @@ +/* + * Authors: + * Lauris Kaplinski <lauris@kaplinski.com> + * Michael G. Sloan <mgsloan@gmail.com> + * + * This code is in public domain + */ + +#include <2geom/affine.h> +#include <2geom/point.h> +#include <2geom/polynomial.h> +#include <2geom/utils.h> + +namespace Geom { + +/** Creates a Affine given an axis and origin point. + * The axis is represented as two vectors, which represent skew, rotation, and scaling in two dimensions. + * from_basis(Point(1, 0), Point(0, 1), Point(0, 0)) would return the identity matrix. + + \param x_basis the vector for the x-axis. + \param y_basis the vector for the y-axis. + \param offset the translation applied by the matrix. + \return The new Affine. + */ +//NOTE: Inkscape's version is broken, so when including this version, you'll have to search for code with this func +Affine from_basis(Point const &x_basis, Point const &y_basis, Point const &offset) { + return Affine(x_basis[X], x_basis[Y], + y_basis[X], y_basis[Y], + offset [X], offset [Y]); +} + +Point Affine::xAxis() const { + return Point(_c[0], _c[1]); +} + +Point Affine::yAxis() const { + return Point(_c[2], _c[3]); +} + +/// Gets the translation imparted by the Affine. +Point Affine::translation() const { + return Point(_c[4], _c[5]); +} + +void Affine::setXAxis(Point const &vec) { + for(int i = 0; i < 2; i++) + _c[i] = vec[i]; +} + +void Affine::setYAxis(Point const &vec) { + for(int i = 0; i < 2; i++) + _c[i + 2] = vec[i]; +} + +/// Sets the translation imparted by the Affine. +void Affine::setTranslation(Point const &loc) { + for(int i = 0; i < 2; i++) + _c[i + 4] = loc[i]; +} + +/** Calculates the amount of x-scaling imparted by the Affine. This is the scaling applied to + * the original x-axis region. It is \emph{not} the overall x-scaling of the transformation. + * Equivalent to L2(m.xAxis()). */ +double Affine::expansionX() const { + return sqrt(_c[0] * _c[0] + _c[1] * _c[1]); +} + +/** Calculates the amount of y-scaling imparted by the Affine. This is the scaling applied before + * the other transformations. It is \emph{not} the overall y-scaling of the transformation. + * Equivalent to L2(m.yAxis()). */ +double Affine::expansionY() const { + return sqrt(_c[2] * _c[2] + _c[3] * _c[3]); +} + +void Affine::setExpansionX(double val) { + double exp_x = expansionX(); + if (exp_x != 0.0) { //TODO: best way to deal with it is to skip op? + double coef = val / expansionX(); + for (unsigned i = 0; i < 2; ++i) { + _c[i] *= coef; + } + } +} + +void Affine::setExpansionY(double val) { + double exp_y = expansionY(); + if (exp_y != 0.0) { //TODO: best way to deal with it is to skip op? + double coef = val / expansionY(); + for (unsigned i = 2; i < 4; ++i) { + _c[i] *= coef; + } + } +} + +/** Sets this matrix to be the Identity Affine. */ +void Affine::setIdentity() { + _c[0] = 1.0; _c[1] = 0.0; + _c[2] = 0.0; _c[3] = 1.0; + _c[4] = 0.0; _c[5] = 0.0; +} + +/** @brief Check whether this matrix is an identity matrix. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + 1 & 0 & 0 \\ + 0 & 1 & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$ */ +bool Affine::isIdentity(Coord eps) const { + return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) && + are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) && + are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); +} + +/** @brief Check whether this matrix represents a pure translation. + * Will return true for the identity matrix, which represents a zero translation. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + 1 & 0 & 0 \\ + 0 & 1 & 0 \\ + a & b & 1 \end{array}\right]\f$ */ +bool Affine::isTranslation(Coord eps) const { + return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) && + are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps); +} +/** @brief Check whether this matrix represents a pure nonzero translation. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + 1 & 0 & 0 \\ + 0 & 1 & 0 \\ + a & b & 1 \end{array}\right]\f$ and \f$a, b \neq 0\f$ */ +bool Affine::isNonzeroTranslation(Coord eps) const { + return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) && + are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) && + (!are_near(_c[4], 0.0, eps) || !are_near(_c[5], 0.0, eps)); +} + +/** @brief Check whether this matrix represents pure scaling. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + a & 0 & 0 \\ + 0 & b & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$. */ +bool Affine::isScale(Coord eps) const { + if (isSingular(eps)) return false; + return are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && + are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); +} + +/** @brief Check whether this matrix represents pure, nonzero scaling. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + a & 0 & 0 \\ + 0 & b & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$ and \f$a, b \neq 1\f$. */ +bool Affine::isNonzeroScale(Coord eps) const { + if (isSingular(eps)) return false; + return (!are_near(_c[0], 1.0, eps) || !are_near(_c[3], 1.0, eps)) && //NOTE: these are the diags, and the next line opposite diags + are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && + are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); +} + +/** @brief Check whether this matrix represents pure uniform scaling. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + a_1 & 0 & 0 \\ + 0 & a_2 & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$ where \f$|a_1| = |a_2|\f$. */ +bool Affine::isUniformScale(Coord eps) const { + if (isSingular(eps)) return false; + return are_near(fabs(_c[0]), fabs(_c[3]), eps) && + are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && + are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); +} + +/** @brief Check whether this matrix represents pure, nonzero uniform scaling. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + a_1 & 0 & 0 \\ + 0 & a_2 & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$ where \f$|a_1| = |a_2|\f$ + * and \f$a_1, a_2 \neq 1\f$. */ +bool Affine::isNonzeroUniformScale(Coord eps) const { + if (isSingular(eps)) return false; + // we need to test both c0 and c3 to handle the case of flips, + // which should be treated as nonzero uniform scales + return !(are_near(_c[0], 1.0, eps) && are_near(_c[3], 1.0, eps)) && + are_near(fabs(_c[0]), fabs(_c[3]), eps) && + are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && + are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); +} + +/** @brief Check whether this matrix represents a pure rotation. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + a & b & 0 \\ + -b & a & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$ and \f$a^2 + b^2 = 1\f$. */ +bool Affine::isRotation(Coord eps) const { + return are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) && + are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps) && + are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps); +} + +/** @brief Check whether this matrix represents a pure, nonzero rotation. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + a & b & 0 \\ + -b & a & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$, \f$a^2 + b^2 = 1\f$ and \f$a \neq 1\f$. */ +bool Affine::isNonzeroRotation(Coord eps) const { + return !are_near(_c[0], 1.0, eps) && + are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) && + are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps) && + are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps); +} + +/** @brief Check whether this matrix represents a non-zero rotation about any point. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + a & b & 0 \\ + -b & a & 0 \\ + c & d & 1 \end{array}\right]\f$, \f$a^2 + b^2 = 1\f$ and \f$a \neq 1\f$. */ +bool Affine::isNonzeroNonpureRotation(Coord eps) const { + return !are_near(_c[0], 1.0, eps) && + are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) && + are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps); +} + +/** @brief For a (possibly non-pure) non-zero-rotation matrix, calculate the rotation center. + * @pre The matrix must be a non-zero-rotation matrix to prevent division by zero, see isNonzeroNonpureRotation(). + * @return The rotation center x, the solution to the equation + * \f$A x = x\f$. */ +Point Affine::rotationCenter() const { + Coord x = (_c[2]*_c[5]+_c[4]-_c[4]*_c[3]) / (1-_c[3]-_c[0]+_c[0]*_c[3]-_c[2]*_c[1]); + Coord y = (_c[1]*x + _c[5]) / (1 - _c[3]); + return Point(x,y); +}; + +/** @brief Check whether this matrix represents pure horizontal shearing. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + 1 & 0 & 0 \\ + k & 1 & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$. */ +bool Affine::isHShear(Coord eps) const { + return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) && + are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) && + are_near(_c[5], 0.0, eps); +} +/** @brief Check whether this matrix represents pure, nonzero horizontal shearing. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + 1 & 0 & 0 \\ + k & 1 & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$ and \f$k \neq 0\f$. */ +bool Affine::isNonzeroHShear(Coord eps) const { + return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) && + !are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) && + are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); +} + +/** @brief Check whether this matrix represents pure vertical shearing. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + 1 & k & 0 \\ + 0 & 1 & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$. */ +bool Affine::isVShear(Coord eps) const { + return are_near(_c[0], 1.0, eps) && are_near(_c[2], 0.0, eps) && + are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) && + are_near(_c[5], 0.0, eps); +} + +/** @brief Check whether this matrix represents pure, nonzero vertical shearing. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + 1 & k & 0 \\ + 0 & 1 & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$ and \f$k \neq 0\f$. */ +bool Affine::isNonzeroVShear(Coord eps) const { + return are_near(_c[0], 1.0, eps) && !are_near(_c[1], 0.0, eps) && + are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) && + are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); +} + +/** @brief Check whether this matrix represents zooming. + * Zooming is any combination of translation and uniform non-flipping scaling. + * It preserves angles, ratios of distances between arbitrary points + * and unit vectors of line segments. + * @param eps Numerical tolerance + * @return True iff the matrix is invertible and of the form + * \f$\left[\begin{array}{ccc} + a & 0 & 0 \\ + 0 & a & 0 \\ + b & c & 1 \end{array}\right]\f$. */ +bool Affine::isZoom(Coord eps) const { + if (isSingular(eps)) return false; + return are_near(_c[0], _c[3], eps) && are_near(_c[1], 0, eps) && are_near(_c[2], 0, eps); +} + +/** @brief Check whether the transformation preserves areas of polygons. + * This means that the transformation can be any combination of translation, rotation, + * shearing and squeezing (non-uniform scaling such that the absolute value of the product + * of Y-scale and X-scale is 1). + * @param eps Numerical tolerance + * @return True iff \f$|\det A| = 1\f$. */ +bool Affine::preservesArea(Coord eps) const +{ + return are_near(descrim2(), 1.0, eps); +} + +/** @brief Check whether the transformation preserves angles between lines. + * This means that the transformation can be any combination of translation, uniform scaling, + * rotation and flipping. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + a & b & 0 \\ + -b & a & 0 \\ + c & d & 1 \end{array}\right]\f$ or + \f$\left[\begin{array}{ccc} + -a & b & 0 \\ + b & a & 0 \\ + c & d & 1 \end{array}\right]\f$. */ +bool Affine::preservesAngles(Coord eps) const +{ + if (isSingular(eps)) return false; + return (are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps)) || + (are_near(_c[0], -_c[3], eps) && are_near(_c[1], _c[2], eps)); +} + +/** @brief Check whether the transformation preserves distances between points. + * This means that the transformation can be any combination of translation, + * rotation and flipping. + * @param eps Numerical tolerance + * @return True iff the matrix is of the form + * \f$\left[\begin{array}{ccc} + a & b & 0 \\ + -b & a & 0 \\ + c & d & 1 \end{array}\right]\f$ or + \f$\left[\begin{array}{ccc} + -a & b & 0 \\ + b & a & 0 \\ + c & d & 1 \end{array}\right]\f$ and \f$a^2 + b^2 = 1\f$. */ +bool Affine::preservesDistances(Coord eps) const +{ + return ((are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps)) || + (are_near(_c[0], -_c[3], eps) && are_near(_c[1], _c[2], eps))) && + are_near(_c[0] * _c[0] + _c[1] * _c[1], 1.0, eps); +} + +/** @brief Check whether this transformation flips objects. + * A transformation flips objects if it has a negative scaling component. */ +bool Affine::flips() const { + return det() < 0; +} + +/** @brief Check whether this matrix is singular. + * Singular matrices have no inverse, which means that applying them to a set of points + * results in a loss of information. + * @param eps Numerical tolerance + * @return True iff the determinant is near zero. */ +bool Affine::isSingular(Coord eps) const { + return are_near(det(), 0.0, eps); +} + +/** @brief Compute the inverse matrix. + * Inverse is a matrix (denoted \f$A^{-1}\f$) such that \f$AA^{-1} = A^{-1}A = I\f$. + * Singular matrices have no inverse (for example a matrix that has two of its columns equal). + * For such matrices, the identity matrix will be returned instead. + * @param eps Numerical tolerance + * @return Inverse of the matrix, or the identity matrix if the inverse is undefined. + * @post (m * m.inverse()).isIdentity() == true */ +Affine Affine::inverse() const { + Affine d; + + double mx = std::max(fabs(_c[0]) + fabs(_c[1]), + fabs(_c[2]) + fabs(_c[3])); // a random matrix norm (either l1 or linfty + if(mx > 0) { + Geom::Coord const determ = det(); + if (!rel_error_bound(std::sqrt(fabs(determ)), mx)) { + Geom::Coord const ideterm = 1.0 / (determ); + + d._c[0] = _c[3] * ideterm; + d._c[1] = -_c[1] * ideterm; + d._c[2] = -_c[2] * ideterm; + d._c[3] = _c[0] * ideterm; + d._c[4] = (-_c[4] * d._c[0] - _c[5] * d._c[2]); + d._c[5] = (-_c[4] * d._c[1] - _c[5] * d._c[3]); + } else { + d.setIdentity(); + } + } else { + d.setIdentity(); + } + + return d; +} + +/** @brief Calculate the determinant. + * @return \f$\det A\f$. */ +Coord Affine::det() const { + // TODO this can overflow + return _c[0] * _c[3] - _c[1] * _c[2]; +} + +/** @brief Calculate the square of the descriminant. + * This is simply the absolute value of the determinant. + * @return \f$|\det A|\f$. */ +Coord Affine::descrim2() const { + return fabs(det()); +} + +/** @brief Calculate the descriminant. + * If the matrix doesn't contain a shearing or non-uniform scaling component, this value says + * how will the length of any line segment change after applying this transformation + * to arbitrary objects on a plane. The new length will be + * @code line_seg.length() * m.descrim()) @endcode + * @return \f$\sqrt{|\det A|}\f$. */ +Coord Affine::descrim() const { + return sqrt(descrim2()); +} + +/** @brief Combine this transformation with another one. + * After this operation, the matrix will correspond to the transformation + * obtained by first applying the original version of this matrix, and then + * applying @a m. */ +Affine &Affine::operator*=(Affine const &o) { + Coord nc[6]; + for(int a = 0; a < 5; a += 2) { + for(int b = 0; b < 2; b++) { + nc[a + b] = _c[a] * o._c[b] + _c[a + 1] * o._c[b + 2]; + } + } + for(int a = 0; a < 6; ++a) { + _c[a] = nc[a]; + } + _c[4] += o._c[4]; + _c[5] += o._c[5]; + return *this; +} + +//TODO: What's this!?! +/** Given a matrix m such that unit_circle = m*x, this returns the + * quadratic form x*A*x = 1. + * @relates Affine */ +Affine elliptic_quadratic_form(Affine const &m) { + double od = m[0] * m[1] + m[2] * m[3]; + Affine ret (m[0]*m[0] + m[1]*m[1], od, + od, m[2]*m[2] + m[3]*m[3], + 0, 0); + return ret; // allow NRVO +} + +Eigen::Eigen(Affine const &m) { + double const B = -m[0] - m[3]; + double const C = m[0]*m[3] - m[1]*m[2]; + + std::vector<double> v = solve_quadratic(1, B, C); + + for (unsigned i = 0; i < v.size(); ++i) { + values[i] = v[i]; + vectors[i] = unit_vector(rot90(Point(m[0] - values[i], m[1]))); + } + for (unsigned i = v.size(); i < 2; ++i) { + values[i] = 0; + vectors[i] = Point(0,0); + } +} + +Eigen::Eigen(double m[2][2]) { + double const B = -m[0][0] - m[1][1]; + double const C = m[0][0]*m[1][1] - m[1][0]*m[0][1]; + + std::vector<double> v = solve_quadratic(1, B, C); + + for (unsigned i = 0; i < v.size(); ++i) { + values[i] = v[i]; + vectors[i] = unit_vector(rot90(Point(m[0][0] - values[i], m[0][1]))); + } + for (unsigned i = v.size(); i < 2; ++i) { + values[i] = 0; + vectors[i] = Point(0,0); + } +} + +/** @brief Nearness predicate for affine transforms. + * @returns True if all entries of matrices are within eps of each other. + * @relates Affine */ +bool are_near(Affine const &a, Affine const &b, Coord eps) +{ + return are_near(a[0], b[0], eps) && are_near(a[1], b[1], eps) && + are_near(a[2], b[2], eps) && are_near(a[3], b[3], eps) && + are_near(a[4], b[4], eps) && are_near(a[5], b[5], eps); +} + +} //namespace Geom + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |