summaryrefslogtreecommitdiffstats
path: root/src/2geom/ellipse.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
commit61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch)
tree885599a36a308f422af98616bc733a0494fe149a /src/2geom/ellipse.cpp
parentInitial commit. (diff)
downloadlib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz
lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/2geom/ellipse.cpp')
-rw-r--r--src/2geom/ellipse.cpp790
1 files changed, 790 insertions, 0 deletions
diff --git a/src/2geom/ellipse.cpp b/src/2geom/ellipse.cpp
new file mode 100644
index 0000000..42cb36d
--- /dev/null
+++ b/src/2geom/ellipse.cpp
@@ -0,0 +1,790 @@
+/** @file
+ * @brief Ellipse shape
+ *//*
+ * Authors:
+ * Marco Cecchetti <mrcekets at gmail.com>
+ * Krzysztof Kosiński <tweenk.pl@gmail.com>
+ *
+ * Copyright 2008-2014 Authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+#include <2geom/conicsec.h>
+#include <2geom/ellipse.h>
+#include <2geom/elliptical-arc.h>
+#include <2geom/numeric/fitting-tool.h>
+#include <2geom/numeric/fitting-model.h>
+
+namespace Geom {
+
+Ellipse::Ellipse(Geom::Circle const &c)
+ : _center(c.center())
+ , _rays(c.radius(), c.radius())
+ , _angle(0)
+{}
+
+void Ellipse::setCoefficients(double A, double B, double C, double D, double E, double F)
+{
+ double den = 4*A*C - B*B;
+ if (den == 0) {
+ THROW_RANGEERROR("den == 0, while computing ellipse centre");
+ }
+ _center[X] = (B*E - 2*C*D) / den;
+ _center[Y] = (B*D - 2*A*E) / den;
+
+ // evaluate the a coefficient of the ellipse equation in normal form
+ // E(x,y) = a*(x-cx)^2 + b*(x-cx)*(y-cy) + c*(y-cy)^2 = 1
+ // where b = a*B , c = a*C, (cx,cy) == centre
+ double num = A * sqr(_center[X])
+ + B * _center[X] * _center[Y]
+ + C * sqr(_center[Y])
+ - F;
+
+
+ //evaluate ellipse rotation angle
+ _angle = std::atan2( -B, -(A - C) )/2;
+
+ // evaluate the length of the ellipse rays
+ double sinrot, cosrot;
+ sincos(_angle, sinrot, cosrot);
+ double cos2 = cosrot * cosrot;
+ double sin2 = sinrot * sinrot;
+ double cossin = cosrot * sinrot;
+
+ den = A * cos2 + B * cossin + C * sin2;
+ if (den == 0) {
+ THROW_RANGEERROR("den == 0, while computing 'rx' coefficient");
+ }
+ double rx2 = num / den;
+ if (rx2 < 0) {
+ THROW_RANGEERROR("rx2 < 0, while computing 'rx' coefficient");
+ }
+ _rays[X] = std::sqrt(rx2);
+
+ den = C * cos2 - B * cossin + A * sin2;
+ if (den == 0) {
+ THROW_RANGEERROR("den == 0, while computing 'ry' coefficient");
+ }
+ double ry2 = num / den;
+ if (ry2 < 0) {
+ THROW_RANGEERROR("ry2 < 0, while computing 'rx' coefficient");
+ }
+ _rays[Y] = std::sqrt(ry2);
+
+ // the solution is not unique so we choose always the ellipse
+ // with a rotation angle between 0 and PI/2
+ makeCanonical();
+}
+
+Point Ellipse::initialPoint() const
+{
+ Coord sinrot, cosrot;
+ sincos(_angle, sinrot, cosrot);
+ Point p(ray(X) * cosrot + center(X), ray(X) * sinrot + center(Y));
+ return p;
+}
+
+
+Affine Ellipse::unitCircleTransform() const
+{
+ Affine ret = Scale(ray(X), ray(Y)) * Rotate(_angle);
+ ret.setTranslation(center());
+ return ret;
+}
+
+Affine Ellipse::inverseUnitCircleTransform() const
+{
+ if (ray(X) == 0 || ray(Y) == 0) {
+ THROW_RANGEERROR("a degenerate ellipse doesn't have an inverse unit circle transform");
+ }
+ Affine ret = Translate(-center()) * Rotate(-_angle) * Scale(1/ray(X), 1/ray(Y));
+ return ret;
+}
+
+
+LineSegment Ellipse::axis(Dim2 d) const
+{
+ Point a(0, 0), b(0, 0);
+ a[d] = -1;
+ b[d] = 1;
+ LineSegment ls(a, b);
+ ls.transform(unitCircleTransform());
+ return ls;
+}
+
+LineSegment Ellipse::semiaxis(Dim2 d, int sign) const
+{
+ Point a(0, 0), b(0, 0);
+ b[d] = sgn(sign);
+ LineSegment ls(a, b);
+ ls.transform(unitCircleTransform());
+ return ls;
+}
+
+Rect Ellipse::boundsExact() const
+{
+ auto const trans = unitCircleTransform();
+
+ auto proj_bounds = [&] (Dim2 d) {
+ // The dth coordinate function pulls back to trans[d] * x + trans[d + 2] * y + trans[d + 4]
+ // in the coordinate system where the ellipse is a unit circle. We compute its range of
+ // values on the unit circle.
+ auto const r = std::hypot(trans[d], trans[d + 2]);
+ auto const mid = trans[d + 4];
+ return Interval(mid - r, mid + r);
+ };
+
+ return { proj_bounds(X), proj_bounds(Y) };
+}
+
+Rect Ellipse::boundsFast() const
+{
+ // Every ellipse is contained in the circle with the same center and radius
+ // equal to the larger of the two rays. We return the bounding square
+ // of this circle (this is really fast but only exact for circles).
+ auto const larger_ray = (ray(X) > ray(Y) ? ray(X) : ray(Y));
+ assert(larger_ray >= 0.0);
+ auto const rr = Point(larger_ray, larger_ray);
+ return Rect(_center - rr, _center + rr);
+}
+
+std::vector<double> Ellipse::coefficients() const
+{
+ std::vector<double> c(6);
+ coefficients(c[0], c[1], c[2], c[3], c[4], c[5]);
+ return c;
+}
+
+void Ellipse::coefficients(Coord &A, Coord &B, Coord &C, Coord &D, Coord &E, Coord &F) const
+{
+ if (ray(X) == 0 || ray(Y) == 0) {
+ THROW_RANGEERROR("a degenerate ellipse doesn't have an implicit form");
+ }
+
+ double cosrot, sinrot;
+ sincos(_angle, sinrot, cosrot);
+ double cos2 = cosrot * cosrot;
+ double sin2 = sinrot * sinrot;
+ double cossin = cosrot * sinrot;
+ double invrx2 = 1 / (ray(X) * ray(X));
+ double invry2 = 1 / (ray(Y) * ray(Y));
+
+ A = invrx2 * cos2 + invry2 * sin2;
+ B = 2 * (invrx2 - invry2) * cossin;
+ C = invrx2 * sin2 + invry2 * cos2;
+ D = -2 * A * center(X) - B * center(Y);
+ E = -2 * C * center(Y) - B * center(X);
+ F = A * center(X) * center(X)
+ + B * center(X) * center(Y)
+ + C * center(Y) * center(Y)
+ - 1;
+}
+
+
+void Ellipse::fit(std::vector<Point> const &points)
+{
+ size_t sz = points.size();
+ if (sz < 5) {
+ THROW_RANGEERROR("fitting error: too few points passed");
+ }
+ NL::LFMEllipse model;
+ NL::least_squeares_fitter<NL::LFMEllipse> fitter(model, sz);
+
+ for (size_t i = 0; i < sz; ++i) {
+ fitter.append(points[i]);
+ }
+ fitter.update();
+
+ NL::Vector z(sz, 0.0);
+ model.instance(*this, fitter.result(z));
+}
+
+
+EllipticalArc *
+Ellipse::arc(Point const &ip, Point const &inner, Point const &fp)
+{
+ // This is resistant to degenerate ellipses:
+ // both flags evaluate to false in that case.
+
+ bool large_arc_flag = false;
+ bool sweep_flag = false;
+
+ // Determination of large arc flag:
+ // large_arc is false when the inner point is on the same side
+ // of the center---initial point line as the final point, AND
+ // is on the same side of the center---final point line as the
+ // initial point.
+ // Additionally, large_arc is always false when we have exactly
+ // 1/2 of an arc, i.e. the cross product of the center -> initial point
+ // and center -> final point vectors is zero.
+ // Negating the above leads to the condition for large_arc being true.
+ Point fv = fp - _center;
+ Point iv = ip - _center;
+ Point innerv = inner - _center;
+ double ifcp = cross(fv, iv);
+
+ if (ifcp != 0 && (sgn(cross(fv, innerv)) != sgn(ifcp) ||
+ sgn(cross(iv, innerv)) != sgn(-ifcp)))
+ {
+ large_arc_flag = true;
+ }
+
+ // Determination of sweep flag:
+ // For clarity, let's assume that Y grows up. Then the cross product
+ // is positive for points on the left side of a vector and negative
+ // on the right side of a vector.
+ //
+ // cross(?, v) > 0
+ // o------------------->
+ // cross(?, v) < 0
+ //
+ // If the arc is small (large_arc_flag is false) and the final point
+ // is on the right side of the vector initial point -> center,
+ // we have to go in the direction of increasing angles
+ // (counter-clockwise) and the sweep flag is true.
+ // If the arc is large, the opposite is true, since we have to reach
+ // the final point going the long way - in the other direction.
+ // We can express this observation as:
+ // cross(_center - ip, fp - _center) < 0 xor large_arc flag
+ // This is equal to:
+ // cross(-iv, fv) < 0 xor large_arc flag
+ // But cross(-iv, fv) is equal to cross(fv, iv) due to antisymmetry
+ // of the cross product, so we end up with the condition below.
+ if ((ifcp < 0) ^ large_arc_flag) {
+ sweep_flag = true;
+ }
+
+ EllipticalArc *ret_arc = new EllipticalArc(ip, ray(X), ray(Y), rotationAngle(),
+ large_arc_flag, sweep_flag, fp);
+ return ret_arc;
+}
+
+Ellipse &Ellipse::operator*=(Rotate const &r)
+{
+ _angle += r.angle();
+ _center *= r;
+ return *this;
+}
+
+Ellipse &Ellipse::operator*=(Affine const& m)
+{
+ Affine a = Scale(ray(X), ray(Y)) * Rotate(_angle);
+ Affine mwot = m.withoutTranslation();
+ Affine am = a * mwot;
+ Point new_center = _center * m;
+
+ if (are_near(am.descrim(), 0)) {
+ double angle;
+ if (am[0] != 0) {
+ angle = std::atan2(am[2], am[0]);
+ } else if (am[1] != 0) {
+ angle = std::atan2(am[3], am[1]);
+ } else {
+ angle = M_PI/2;
+ }
+ Point v = Point::polar(angle) * am;
+ _center = new_center;
+ _rays[X] = L2(v);
+ _rays[Y] = 0;
+ _angle = atan2(v);
+ return *this;
+ } else if (mwot.isScale(0) && _angle.radians() == 0) {
+ _rays[X] *= std::abs(mwot[0]);
+ _rays[Y] *= std::abs(mwot[3]);
+ _center = new_center;
+ return *this;
+ }
+
+ std::vector<double> coeff = coefficients();
+ Affine q( coeff[0], coeff[1]/2,
+ coeff[1]/2, coeff[2],
+ 0, 0 );
+
+ Affine invm = mwot.inverse();
+ q = invm * q ;
+ std::swap(invm[1], invm[2]);
+ q *= invm;
+ setCoefficients(q[0], 2*q[1], q[3], 0, 0, -1);
+ _center = new_center;
+
+ return *this;
+}
+
+Ellipse Ellipse::canonicalForm() const
+{
+ Ellipse result(*this);
+ result.makeCanonical();
+ return result;
+}
+
+void Ellipse::makeCanonical()
+{
+ if (_rays[X] == _rays[Y]) {
+ _angle = 0;
+ return;
+ }
+
+ if (_angle < 0) {
+ _angle += M_PI;
+ }
+ if (_angle >= M_PI/2) {
+ std::swap(_rays[X], _rays[Y]);
+ _angle -= M_PI/2;
+ }
+}
+
+Point Ellipse::pointAt(Coord t) const
+{
+ Point p = Point::polar(t);
+ p *= unitCircleTransform();
+ return p;
+}
+
+Coord Ellipse::valueAt(Coord t, Dim2 d) const
+{
+ Coord sinrot, cosrot, cost, sint;
+ sincos(rotationAngle(), sinrot, cosrot);
+ sincos(t, sint, cost);
+
+ if ( d == X ) {
+ return ray(X) * cosrot * cost
+ - ray(Y) * sinrot * sint
+ + center(X);
+ } else {
+ return ray(X) * sinrot * cost
+ + ray(Y) * cosrot * sint
+ + center(Y);
+ }
+}
+
+Coord Ellipse::timeAt(Point const &p) const
+{
+ // degenerate ellipse is basically a reparametrized line segment
+ if (ray(X) == 0 || ray(Y) == 0) {
+ if (ray(X) != 0) {
+ return asin(Line(axis(X)).timeAt(p));
+ } else if (ray(Y) != 0) {
+ return acos(Line(axis(Y)).timeAt(p));
+ } else {
+ return 0;
+ }
+ }
+ Affine iuct = inverseUnitCircleTransform();
+ return Angle(atan2(p * iuct)).radians0(); // return a value in [0, 2pi)
+}
+
+Point Ellipse::unitTangentAt(Coord t) const
+{
+ Point p = Point::polar(t + M_PI/2);
+ p *= unitCircleTransform().withoutTranslation();
+ p.normalize();
+ return p;
+}
+
+bool Ellipse::contains(Point const &p) const
+{
+ Point tp = p * inverseUnitCircleTransform();
+ return tp.length() <= 1;
+}
+
+/** @brief Convert curve time on the major axis to the corresponding angle
+ * parameters on a degenerate ellipse collapsed onto that axis.
+ * @param t The curve time on the major axis of an ellipse.
+ * @param vertical If true, the major axis goes from angle -π/2 to +π/2;
+ * otherwise, the major axis connects angles π and 0.
+ * @return The two angles at which the collapsed ellipse passes through the
+ * major axis point corresponding to the given time \f$t \in [0, 1]\f$.
+ */
+static std::array<Coord, 2> axis_time_to_angles(Coord t, bool vertical)
+{
+ Coord const to_unit = std::clamp(2.0 * t - 1.0, -1.0, 1.0);
+ if (vertical) {
+ double const arcsin = std::asin(to_unit);
+ return {arcsin, M_PI - arcsin};
+ } else {
+ double const arccos = std::acos(to_unit);
+ return {arccos, -arccos};
+ }
+}
+
+/** @brief For each intersection of some shape with the major axis of an ellipse, produce one or two
+ * intersections of a degenerate ellipse (collapsed onto that axis) with the same shape.
+ *
+ * @param axis_intersections The intersections of some shape with the major axis.
+ * @param vertical Whether this is the vertical major axis (in the ellipse's natural coordinates).
+ * @return A vector with doubled intersections (corresponding to the two passages of the squashed
+ * ellipse through that point) and swapped order of the intersected shapes.
+*/
+static std::vector<ShapeIntersection> double_axis_intersections(std::vector<ShapeIntersection> &&axis_intersections,
+ bool vertical)
+{
+ if (axis_intersections.empty()) {
+ return {};
+ }
+ std::vector<ShapeIntersection> result;
+ result.reserve(2 * axis_intersections.size());
+
+ for (auto const &x : axis_intersections) {
+ for (auto a : axis_time_to_angles(x.second, vertical)) {
+ result.emplace_back(a, x.first, x.point()); // Swap first <-> converted second.
+ if (x.second == 0.0 || x.second == 1.0) {
+ break; // Do not double up endpoint intersections.
+ }
+ }
+ }
+ return result;
+}
+
+std::vector<ShapeIntersection> Ellipse::intersect(Line const &line) const
+{
+ std::vector<ShapeIntersection> result;
+
+ if (line.isDegenerate()) {
+ return result;
+ }
+ if (ray(X) == 0 || ray(Y) == 0) {
+ return double_axis_intersections(line.intersect(majorAxis()), ray(X) == 0);
+ }
+
+ // Ax^2 + Bxy + Cy^2 + Dx + Ey + F
+ std::array<Coord, 6> coeffs;
+ coefficients(coeffs[0], coeffs[1], coeffs[2], coeffs[3], coeffs[4], coeffs[5]);
+ rescale_homogenous(coeffs);
+ auto [A, B, C, D, E, F] = coeffs;
+ Affine iuct = inverseUnitCircleTransform();
+
+ // generic case
+ std::array<Coord, 3> line_coeffs;
+ line.coefficients(line_coeffs[0], line_coeffs[1], line_coeffs[2]);
+ rescale_homogenous(line_coeffs);
+ auto [a, b, c] = line_coeffs;
+ Point lv = line.vector();
+
+ if (fabs(lv[X]) > fabs(lv[Y])) {
+ // y = -a/b x - c/b
+ Coord q = -a/b;
+ Coord r = -c/b;
+
+ // substitute that into the ellipse equation, making it quadratic in x
+ Coord I = A + B*q + C*q*q; // x^2 terms
+ Coord J = B*r + C*2*q*r + D + E*q; // x^1 terms
+ Coord K = C*r*r + E*r + F; // x^0 terms
+ std::vector<Coord> xs = solve_quadratic(I, J, K);
+
+ for (double x : xs) {
+ Point p(x, q*x + r);
+ result.emplace_back(atan2(p * iuct), line.timeAt(p), p);
+ }
+ } else {
+ Coord q = -b/a;
+ Coord r = -c/a;
+
+ Coord I = A*q*q + B*q + C;
+ Coord J = A*2*q*r + B*r + D*q + E;
+ Coord K = A*r*r + D*r + F;
+ std::vector<Coord> xs = solve_quadratic(I, J, K);
+
+ for (double x : xs) {
+ Point p(q*x + r, x);
+ result.emplace_back(atan2(p * iuct), line.timeAt(p), p);
+ }
+ }
+ return result;
+}
+
+std::vector<ShapeIntersection> Ellipse::intersect(LineSegment const &seg) const
+{
+ if (!boundsFast().intersects(seg.boundsFast())) {
+ return {};
+ }
+
+ // We simply reuse the procedure for lines and filter out
+ // results where the line time value is outside of the unit interval,
+ // but we apply a small tolerance to account for numerical errors.
+ double const param_prec = EPSILON / seg.length(0.0);
+ // TODO: accept a precision setting instead of always using EPSILON
+ // (requires an ABI break).
+
+ auto xings = intersect(Line(seg));
+ if (xings.empty()) {
+ return xings;
+ }
+ decltype(xings) result;
+ result.reserve(xings.size());
+
+ for (auto const &x : xings) {
+ if (x.second < -param_prec || x.second > 1.0 + param_prec) {
+ continue;
+ }
+ result.emplace_back(x.first, std::clamp(x.second, 0.0, 1.0), x.point());
+ }
+ return result;
+}
+
+std::vector<ShapeIntersection> Ellipse::intersect(Ellipse const &other) const
+{
+ // Handle degenerate cases first.
+ if (ray(X) == 0 || ray(Y) == 0) { // Degenerate ellipse, collapsed to the major axis.
+ return double_axis_intersections(other.intersect(majorAxis()), ray(X) == 0);
+ }
+ if (*this == other) { // Two identical ellipses.
+ THROW_INFINITELY_MANY_SOLUTIONS("The two ellipses are identical.");
+ }
+ if (!boundsFast().intersects(other.boundsFast())) {
+ return {};
+ }
+
+ // Find coefficients of the implicit equations of the two ellipses and rescale
+ // them (losslessly) for better numerical conditioning.
+ std::array<double, 6> coeffs;
+ coefficients(coeffs[0], coeffs[1], coeffs[2], coeffs[3], coeffs[4], coeffs[5]);
+ rescale_homogenous(coeffs);
+ auto [A, B, C, D, E, F] = coeffs;
+
+ std::array<double, 6> otheffs;
+ other.coefficients(otheffs[0], otheffs[1], otheffs[2], otheffs[3], otheffs[4], otheffs[5]);
+ rescale_homogenous(otheffs);
+ auto [a, b, c, d, e, f] = otheffs;
+
+ // Assume that Q(x, y) = 0 is the ellipse equation given by uppercase letters
+ // and R(x, y) = 0 is the equation given by lowercase ones.
+ // In other words, Q is the quadratic function describing this ellipse and
+ // R is the quadratic function for the other ellipse.
+ //
+ // A point (x, y) is common to both ellipses if and only if it solves the system
+ // { Q(x, y) = 0,
+ // { R(x, y) = 0.
+ //
+ // If µ is any real number, we can multiply the first equation by µ and add that
+ // to the first equation, obtaining the new system of equations:
+ // { Q(x, y) = 0,
+ // { µQ(x, y) + R(x, y) = 0.
+ //
+ // The first equation still says that (x, y) is a point on this ellipse, but the
+ // second equation uses the new expression (µQ + R) instead of the original R.
+ //
+ // Why do we do this? The reason is that the set of functions {µQ + R : µ real}
+ // is a "real system of conics" and there's a theorem which guarantees that such a system
+ // always contains a "degenerate conic" [proof below].
+ // In practice, the degenerate conic will describe a line or a pair of lines, and intersecting
+ // a line with an ellipse is much easier than intersecting two ellipses directly.
+ //
+ // But in order to be able to do this, we must find a value of µ for which µQ + R is degenerate.
+ // We can write the expression (µQ + R)(x, y) in the following way:
+ //
+ // | aa bb/2 dd/2 | |x|
+ // (µQ + R)(x, y) = [x y 1] | bb/2 cc ee/2 | |y|
+ // | dd/2 ee/2 ff | |1|
+ //
+ // where aa = µA + a and so on. The determinant can be explicitly written out,
+ // giving an equation which is cubic in µ and can be solved analytically.
+ // The conic µQ + R is degenerate if and only if this determinant is 0.
+ //
+ // Proof that there's always a degenerate conic: a cubic real polynomial always has a root,
+ // and if the polynomial in µ isn't cubic (coefficient of µ^3 is zero), then the starting
+ // conic is already degenerate.
+
+ Coord I, J, K, L; // Coefficients of µ in the expression for the determinant.
+ I = (-B*B*F + 4*A*C*F + D*E*B - A*E*E - C*D*D) / 4;
+ J = -((B*B - 4*A*C) * f + (2*B*F - D*E) * b + (2*A*E - D*B) * e +
+ (2*C*D - E*B) * d + (D*D - 4*A*F) * c + (E*E - 4*C*F) * a) / 4;
+ K = -((b*b - 4*a*c) * F + (2*b*f - d*e) * B + (2*a*e - d*b) * E +
+ (2*c*d - e*b) * D + (d*d - 4*a*f) * C + (e*e - 4*c*f) * A) / 4;
+ L = (-b*b*f + 4*a*c*f + d*e*b - a*e*e - c*d*d) / 4;
+
+ std::vector<Coord> mus = solve_cubic(I, J, K, L);
+ Coord mu = infinity();
+
+ // Now that we have solved for µ, we need to check whether the conic
+ // determined by µQ + R is reducible to a product of two lines. If it's not,
+ // it means that there are no intersections. If it is, the intersections of these
+ // lines with the original ellipses (if there are any) give the coordinates
+ // of intersections.
+
+ // Prefer middle root if there are three.
+ // Out of three possible pairs of lines that go through four points of intersection
+ // of two ellipses, this corresponds to cross-lines. These intersect the ellipses
+ // at less shallow angles than the other two options.
+ if (mus.size() == 3) {
+ std::swap(mus[1], mus[0]);
+ }
+ /// Discriminant within this radius of 0 will be considered zero.
+ static Coord const discriminant_precision = 1e-10;
+
+ for (Coord candidate_mu : mus) {
+ Coord const aa = std::fma(candidate_mu, A, a);
+ Coord const bb = std::fma(candidate_mu, B, b);
+ Coord const cc = std::fma(candidate_mu, C, c);
+ Coord const delta = sqr(bb) - 4*aa*cc;
+ if (delta < -discriminant_precision) {
+ continue;
+ }
+ mu = candidate_mu;
+ break;
+ }
+
+ // if no suitable mu was found, there are no intersections
+ if (mu == infinity()) {
+ return {};
+ }
+
+ // Create the degenerate conic and decompose it into lines.
+ std::array<double, 6> degen = {std::fma(mu, A, a), std::fma(mu, B, b), std::fma(mu, C, c),
+ std::fma(mu, D, d), std::fma(mu, E, e), std::fma(mu, F, f)};
+ rescale_homogenous(degen);
+ auto const lines = xAx(degen[0], degen[1], degen[2],
+ degen[3], degen[4], degen[5]).decompose_df(discriminant_precision);
+
+ // intersect with the obtained lines and report intersections
+ std::vector<ShapeIntersection> result;
+ for (auto const &line : lines) {
+ if (line.isDegenerate()) {
+ continue;
+ }
+ auto as = intersect(line);
+ // NOTE: If we only cared about the intersection points, we could simply
+ // intersect this ellipse with the lines and ignore the other ellipse.
+ // But we need the time coordinates on the other ellipse as well.
+ auto bs = other.intersect(line);
+ if (as.empty() || bs.empty()) {
+ continue;
+ }
+ // Due to numerical errors, a tangency may sometimes be found as 1 intersection
+ // on one ellipse and 2 intersections on the other. If this happens, we average
+ // the points of the two intersections.
+ auto const intersection_average = [](ShapeIntersection const &i,
+ ShapeIntersection const &j) -> ShapeIntersection
+ {
+ return ShapeIntersection(i.first, j.first, middle_point(i.point(), j.point()));
+ };
+ auto const synthesize_intersection = [&](ShapeIntersection const &i,
+ ShapeIntersection const &j) -> void
+ {
+ result.emplace_back(i.first, j.first, middle_point(i.point(), j.point()));
+ };
+ if (as.size() == 2) {
+ if (bs.size() == 2) {
+ synthesize_intersection(as[0], bs[0]);
+ synthesize_intersection(as[1], bs[1]);
+ } else if (bs.size() == 1) {
+ synthesize_intersection(intersection_average(as[0], as[1]), bs[0]);
+ }
+ } else if (as.size() == 1) {
+ if (bs.size() == 2) {
+ synthesize_intersection(as[0], intersection_average(bs[0], bs[1]));
+ } else if (bs.size() == 1) {
+ synthesize_intersection(as[0], bs[0]);
+ }
+ }
+ }
+ return result;
+}
+
+std::vector<ShapeIntersection> Ellipse::intersect(D2<Bezier> const &b) const
+{
+ Coord A, B, C, D, E, F;
+ coefficients(A, B, C, D, E, F);
+
+ // We plug the X and Y curves into the implicit equation and solve for t.
+ Bezier x = A*b[X]*b[X] + B*b[X]*b[Y] + C*b[Y]*b[Y] + D*b[X] + E*b[Y] + F;
+ std::vector<Coord> r = x.roots();
+
+ std::vector<ShapeIntersection> result;
+ for (double & i : r) {
+ Point p = b.valueAt(i);
+ result.emplace_back(timeAt(p), i, p);
+ }
+ return result;
+}
+
+bool Ellipse::operator==(Ellipse const &other) const
+{
+ if (_center != other._center) return false;
+
+ Ellipse a = this->canonicalForm();
+ Ellipse b = other.canonicalForm();
+
+ if (a._rays != b._rays) return false;
+ if (a._angle != b._angle) return false;
+
+ return true;
+}
+
+
+bool are_near(Ellipse const &a, Ellipse const &b, Coord precision)
+{
+ // We want to know whether no point on ellipse a is further than precision
+ // from the corresponding point on ellipse b. To check this, we compute
+ // the four extreme points at the end of each ray for each ellipse
+ // and check whether they are sufficiently close.
+
+ // First, we need to correct the angles on the ellipses, so that they are
+ // no further than M_PI/4 apart. This can always be done by rotating
+ // and exchanging axes.
+ Ellipse ac = a, bc = b;
+ if (distance(ac.rotationAngle(), bc.rotationAngle()).radians0() >= M_PI/2) {
+ ac.setRotationAngle(ac.rotationAngle() + M_PI);
+ }
+ if (distance(ac.rotationAngle(), bc.rotationAngle()) >= M_PI/4) {
+ Angle d1 = distance(ac.rotationAngle() + M_PI/2, bc.rotationAngle());
+ Angle d2 = distance(ac.rotationAngle() - M_PI/2, bc.rotationAngle());
+ Coord adj = d1.radians0() < d2.radians0() ? M_PI/2 : -M_PI/2;
+ ac.setRotationAngle(ac.rotationAngle() + adj);
+ ac.setRays(ac.ray(Y), ac.ray(X));
+ }
+
+ // Do the actual comparison by computing four points on each ellipse.
+ Point tps[] = {Point(1,0), Point(0,1), Point(-1,0), Point(0,-1)};
+ for (auto & tp : tps) {
+ if (!are_near(tp * ac.unitCircleTransform(),
+ tp * bc.unitCircleTransform(),
+ precision))
+ return false;
+ }
+ return true;
+}
+
+std::ostream &operator<<(std::ostream &out, Ellipse const &e)
+{
+ out << "Ellipse(" << e.center() << ", " << e.rays()
+ << ", " << format_coord_nice(e.rotationAngle()) << ")";
+ return out;
+}
+
+} // end namespace Geom
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
+
+