summaryrefslogtreecommitdiffstats
path: root/src/2geom/orphan-code/arc-length.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
commit61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch)
tree885599a36a308f422af98616bc733a0494fe149a /src/2geom/orphan-code/arc-length.cpp
parentInitial commit. (diff)
downloadlib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz
lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/2geom/orphan-code/arc-length.cpp')
-rw-r--r--src/2geom/orphan-code/arc-length.cpp292
1 files changed, 292 insertions, 0 deletions
diff --git a/src/2geom/orphan-code/arc-length.cpp b/src/2geom/orphan-code/arc-length.cpp
new file mode 100644
index 0000000..3f72862
--- /dev/null
+++ b/src/2geom/orphan-code/arc-length.cpp
@@ -0,0 +1,292 @@
+/*
+ * arc-length.cpp
+ *
+ * Copyright 2006 Nathan Hurst <njh@mail.csse.monash.edu.au>
+ * Copyright 2006 Michael G. Sloan <mgsloan@gmail.com>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ *
+ */
+
+#include <2geom/arc-length.h>
+#include <2geom/bezier-utils.h>
+#include <2geom/polynomial.h>
+using namespace Geom;
+
+/** Calculates the length of a cubic element through subdivision.
+ * The 'tol' parameter is the maximum error allowed. This is used to subdivide the curve where necessary.
+ */
+double cubic_length_subdividing(Path::Elem const & e, double tol) {
+ Point v[3];
+ for(int i = 0; i < 3; i++)
+ v[i] = e[i+1] - e[0];
+ Point orth = v[2]; // unit normal to path line
+ rot90(orth);
+ orth.normalize();
+ double err = fabs(dot(orth, v[1])) + fabs(dot(orth, v[0]));
+ if(err < tol) {
+ return distance(e.first(), e.last()); // approximately a line
+ } else {
+ Point mid[3];
+ double result;
+ for(int i = 0; i < 3; i++)
+ mid[i] = lerp(0.5, e[i], e[i+1]);
+ Point midmid[2];
+ for(int i = 0; i < 2; i++)
+ midmid[i] = lerp(0.5, mid[i], mid[i+1]);
+ Point midmidmid = lerp(0.5, midmid[0], midmid[1]);
+ {
+ Point curve[4] = {e[0], mid[0], midmid[0], midmidmid};
+ Path::Elem e0(cubicto, std::vector<Point>::const_iterator(curve), std::vector<Point>::const_iterator(curve) + 4);
+ result = cubic_length_subdividing(e0, tol);
+ } {
+ Point curve[4] = {midmidmid, midmid[1], mid[2], e[3]};
+ Path::Elem e1(cubicto, std::vector<Point>::const_iterator(curve), std::vector<Point>::const_iterator(curve) + 4);
+ return result + cubic_length_subdividing(e1, tol);
+ }
+ }
+}
+
+/** Calculates the length of a path through iteration and subsequent subdivision.
+ * Currently handles cubic curves and lines.
+ * The 'tol' parameter is the maximum error allowed. This is used to subdivide the curve where necessary.
+ */
+double arc_length_subdividing(Path const & p, double tol) {
+ double result = 0;
+
+ for(Path::const_iterator iter(p.begin()), end(p.end()); iter != end; ++iter) {
+ if(dynamic_cast<LineTo *>(iter.cmd()))
+ result += distance((*iter).first(), (*iter).last());
+ else if(dynamic_cast<CubicTo *>(iter.cmd()))
+ result += cubic_length_subdividing(*iter, tol);
+ else
+ ;
+ }
+
+ return result;
+}
+
+
+#ifdef HAVE_GSL
+#include <gsl/gsl_integration.h>
+static double poly_length_integrating(double t, void* param) {
+ Poly* pc = (Poly*)param;
+ return hypot(pc[0].eval(t), pc[1].eval(t));
+}
+
+/** Calculates the length of a path Element through gsl integration.
+ \param pe the Element.
+ \param t the parametric input 0 to 1 which specifies the amount of the curve to use.
+ \param tol the maximum error allowed.
+ \param result variable to be incremented with the length of the path
+ \param abs_error variable to be incremented with the estimated error
+*/
+void arc_length_integrating(Path::Elem pe, double t, double tol, double &result, double &abs_error) {
+ if(dynamic_cast<LineTo *>(iter.cmd()))
+ result += distance(pe.first(), pe.last()) * t;
+ else if(dynamic_cast<QuadTo *>(iter.cmd()) ||
+ dynamic_cast<CubicTo *>(iter.cmd())) {
+ Poly B[2] = {get_parametric_poly(pe, X), get_parametric_poly(pe, Y)};
+ for(int i = 0; i < 2; i++)
+ B[i] = derivative(B[i]);
+
+ gsl_function F;
+ gsl_integration_workspace * w
+ = gsl_integration_workspace_alloc (20);
+ F.function = &poly_length_integrating;
+ F.params = (void*)B;
+ double quad_result, err;
+ /* We could probably use the non adaptive code here if we removed any cusps first. */
+ int returncode =
+ gsl_integration_qag (&F, 0, t, 0, tol, 20,
+ GSL_INTEG_GAUSS21, w, &quad_result, &err);
+
+ abs_error += err;
+ result += quad_result;
+ } else
+ return;
+}
+
+/** Calculates the length of a Path through gsl integration. The parameter 'tol' is the maximum error allowed. */
+double arc_length_integrating(Path const & p, double tol) {
+ double result = 0, abserr = 0;
+
+ for(Path::const_iterator iter(p.begin()), end(p.end()); iter != end; ++iter) {
+ arc_length_integrating(*iter, 1.0, tol, result, abserr);
+ }
+ //printf("got %g with err %g\n", result, abserr);
+
+ return result;
+}
+
+/** Calculates the arc length to a specific location on the path. The parameter 'tol' is the maximum error allowed. */
+double arc_length_integrating(Path const & p, Path::Location const & pl, double tol) {
+ double result = 0, abserr = 0;
+ ptrdiff_t offset = pl.it - p.begin();
+
+ assert(offset >= 0);
+ assert(offset < p.size());
+
+ for(Path::const_iterator iter(p.begin()), end(p.end());
+ (iter != pl.it); ++iter) {
+ arc_length_integrating(*iter, 1.0, tol, result, abserr);
+ }
+ arc_length_integrating(*pl.it, pl.t, tol, result, abserr);
+
+ return result;
+}
+
+/* We use a somewhat surprising result for this that s'(t) = |p'(t)|
+ Thus, we can use a derivative based root finder.
+*/
+
+#include <stdio.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_roots.h>
+
+struct arc_length_params
+{
+ Path::Elem pe;
+ double s,tol, result, abs_error;
+ double left, right;
+};
+
+double
+arc_length (double t, void *params)
+{
+ struct arc_length_params *p
+ = (struct arc_length_params *) params;
+
+ double result = 0, abs_error = 0;
+ if(t < 0) t = 0;
+ if(t > 1) t = 1;
+ if(!((t >= 0) && (t <= 1))) {
+ printf("t = %g\n", t);
+ }
+ assert((t >= 0) && (t <= 1));
+ arc_length_integrating(p->pe, t, p->tol, result, abs_error);
+ return result - p->s ;
+}
+
+double
+arc_length_deriv (double t, void *params)
+{
+ struct arc_length_params *p
+ = (struct arc_length_params *) params;
+
+ Point pos, tgt, acc;
+ p->pe.point_tangent_acc_at(t, pos, tgt, acc);
+ return L2(tgt);
+}
+
+void
+arc_length_fdf (double t, void *params,
+ double *y, double *dy)
+{
+ *y = arc_length(t, params);
+ *dy = arc_length_deriv(t, params);
+}
+
+double polish_brent(double t, arc_length_params &alp) {
+ int status;
+ int iter = 0, max_iter = 10;
+ const gsl_root_fsolver_type *T;
+ gsl_root_fsolver *solver;
+ double x_lo = 0.0, x_hi = 1.0;
+ gsl_function F;
+
+ F.function = &arc_length;
+ F.params = &alp;
+
+ T = gsl_root_fsolver_brent;
+ solver = gsl_root_fsolver_alloc (T);
+ gsl_root_fsolver_set (solver, &F, x_lo, x_hi);
+
+ do
+ {
+ iter++;
+ status = gsl_root_fsolver_iterate (solver);
+ t = gsl_root_fsolver_root (solver);
+ x_lo = gsl_root_fsolver_x_lower (solver);
+ x_hi = gsl_root_fsolver_x_upper (solver);
+ status = gsl_root_test_interval (x_lo, x_hi,
+ 0, alp.tol);
+
+ //if (status == GSL_SUCCESS)
+ // printf ("Converged:\n");
+
+ }
+ while (status == GSL_CONTINUE && iter < max_iter);
+ return t;
+}
+
+double polish (double t, arc_length_params &alp) {
+ int status;
+ int iter = 0, max_iter = 5;
+ const gsl_root_fdfsolver_type *T;
+ gsl_root_fdfsolver *solver;
+ double t0;
+ gsl_function_fdf FDF;
+
+ FDF.f = &arc_length;
+ FDF.df = &arc_length_deriv;
+ FDF.fdf = &arc_length_fdf;
+ FDF.params = &alp;
+
+ T = gsl_root_fdfsolver_newton;
+ solver = gsl_root_fdfsolver_alloc (T);
+ gsl_root_fdfsolver_set (solver, &FDF, t);
+
+ do
+ {
+ iter++;
+ status = gsl_root_fdfsolver_iterate (solver);
+ t0 = t;
+ t = gsl_root_fdfsolver_root (solver);
+ status = gsl_root_test_delta (t, t0, 0, alp.tol);
+
+ if (status == GSL_SUCCESS)
+ ;//printf ("Converged:\n");
+
+ printf ("%5d %10.7f %+10.7f\n",
+ iter, t, t - t0);
+ }
+ while (status == GSL_CONTINUE && iter < max_iter);
+ return t;
+}
+
+
+#endif
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :