diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
commit | 61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch) | |
tree | 885599a36a308f422af98616bc733a0494fe149a /src/2geom/orphan-code/arc-length.cpp | |
parent | Initial commit. (diff) | |
download | lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip |
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/2geom/orphan-code/arc-length.cpp')
-rw-r--r-- | src/2geom/orphan-code/arc-length.cpp | 292 |
1 files changed, 292 insertions, 0 deletions
diff --git a/src/2geom/orphan-code/arc-length.cpp b/src/2geom/orphan-code/arc-length.cpp new file mode 100644 index 0000000..3f72862 --- /dev/null +++ b/src/2geom/orphan-code/arc-length.cpp @@ -0,0 +1,292 @@ +/* + * arc-length.cpp + * + * Copyright 2006 Nathan Hurst <njh@mail.csse.monash.edu.au> + * Copyright 2006 Michael G. Sloan <mgsloan@gmail.com> + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + * + */ + +#include <2geom/arc-length.h> +#include <2geom/bezier-utils.h> +#include <2geom/polynomial.h> +using namespace Geom; + +/** Calculates the length of a cubic element through subdivision. + * The 'tol' parameter is the maximum error allowed. This is used to subdivide the curve where necessary. + */ +double cubic_length_subdividing(Path::Elem const & e, double tol) { + Point v[3]; + for(int i = 0; i < 3; i++) + v[i] = e[i+1] - e[0]; + Point orth = v[2]; // unit normal to path line + rot90(orth); + orth.normalize(); + double err = fabs(dot(orth, v[1])) + fabs(dot(orth, v[0])); + if(err < tol) { + return distance(e.first(), e.last()); // approximately a line + } else { + Point mid[3]; + double result; + for(int i = 0; i < 3; i++) + mid[i] = lerp(0.5, e[i], e[i+1]); + Point midmid[2]; + for(int i = 0; i < 2; i++) + midmid[i] = lerp(0.5, mid[i], mid[i+1]); + Point midmidmid = lerp(0.5, midmid[0], midmid[1]); + { + Point curve[4] = {e[0], mid[0], midmid[0], midmidmid}; + Path::Elem e0(cubicto, std::vector<Point>::const_iterator(curve), std::vector<Point>::const_iterator(curve) + 4); + result = cubic_length_subdividing(e0, tol); + } { + Point curve[4] = {midmidmid, midmid[1], mid[2], e[3]}; + Path::Elem e1(cubicto, std::vector<Point>::const_iterator(curve), std::vector<Point>::const_iterator(curve) + 4); + return result + cubic_length_subdividing(e1, tol); + } + } +} + +/** Calculates the length of a path through iteration and subsequent subdivision. + * Currently handles cubic curves and lines. + * The 'tol' parameter is the maximum error allowed. This is used to subdivide the curve where necessary. + */ +double arc_length_subdividing(Path const & p, double tol) { + double result = 0; + + for(Path::const_iterator iter(p.begin()), end(p.end()); iter != end; ++iter) { + if(dynamic_cast<LineTo *>(iter.cmd())) + result += distance((*iter).first(), (*iter).last()); + else if(dynamic_cast<CubicTo *>(iter.cmd())) + result += cubic_length_subdividing(*iter, tol); + else + ; + } + + return result; +} + + +#ifdef HAVE_GSL +#include <gsl/gsl_integration.h> +static double poly_length_integrating(double t, void* param) { + Poly* pc = (Poly*)param; + return hypot(pc[0].eval(t), pc[1].eval(t)); +} + +/** Calculates the length of a path Element through gsl integration. + \param pe the Element. + \param t the parametric input 0 to 1 which specifies the amount of the curve to use. + \param tol the maximum error allowed. + \param result variable to be incremented with the length of the path + \param abs_error variable to be incremented with the estimated error +*/ +void arc_length_integrating(Path::Elem pe, double t, double tol, double &result, double &abs_error) { + if(dynamic_cast<LineTo *>(iter.cmd())) + result += distance(pe.first(), pe.last()) * t; + else if(dynamic_cast<QuadTo *>(iter.cmd()) || + dynamic_cast<CubicTo *>(iter.cmd())) { + Poly B[2] = {get_parametric_poly(pe, X), get_parametric_poly(pe, Y)}; + for(int i = 0; i < 2; i++) + B[i] = derivative(B[i]); + + gsl_function F; + gsl_integration_workspace * w + = gsl_integration_workspace_alloc (20); + F.function = &poly_length_integrating; + F.params = (void*)B; + double quad_result, err; + /* We could probably use the non adaptive code here if we removed any cusps first. */ + int returncode = + gsl_integration_qag (&F, 0, t, 0, tol, 20, + GSL_INTEG_GAUSS21, w, &quad_result, &err); + + abs_error += err; + result += quad_result; + } else + return; +} + +/** Calculates the length of a Path through gsl integration. The parameter 'tol' is the maximum error allowed. */ +double arc_length_integrating(Path const & p, double tol) { + double result = 0, abserr = 0; + + for(Path::const_iterator iter(p.begin()), end(p.end()); iter != end; ++iter) { + arc_length_integrating(*iter, 1.0, tol, result, abserr); + } + //printf("got %g with err %g\n", result, abserr); + + return result; +} + +/** Calculates the arc length to a specific location on the path. The parameter 'tol' is the maximum error allowed. */ +double arc_length_integrating(Path const & p, Path::Location const & pl, double tol) { + double result = 0, abserr = 0; + ptrdiff_t offset = pl.it - p.begin(); + + assert(offset >= 0); + assert(offset < p.size()); + + for(Path::const_iterator iter(p.begin()), end(p.end()); + (iter != pl.it); ++iter) { + arc_length_integrating(*iter, 1.0, tol, result, abserr); + } + arc_length_integrating(*pl.it, pl.t, tol, result, abserr); + + return result; +} + +/* We use a somewhat surprising result for this that s'(t) = |p'(t)| + Thus, we can use a derivative based root finder. +*/ + +#include <stdio.h> +#include <gsl/gsl_errno.h> +#include <gsl/gsl_math.h> +#include <gsl/gsl_roots.h> + +struct arc_length_params +{ + Path::Elem pe; + double s,tol, result, abs_error; + double left, right; +}; + +double +arc_length (double t, void *params) +{ + struct arc_length_params *p + = (struct arc_length_params *) params; + + double result = 0, abs_error = 0; + if(t < 0) t = 0; + if(t > 1) t = 1; + if(!((t >= 0) && (t <= 1))) { + printf("t = %g\n", t); + } + assert((t >= 0) && (t <= 1)); + arc_length_integrating(p->pe, t, p->tol, result, abs_error); + return result - p->s ; +} + +double +arc_length_deriv (double t, void *params) +{ + struct arc_length_params *p + = (struct arc_length_params *) params; + + Point pos, tgt, acc; + p->pe.point_tangent_acc_at(t, pos, tgt, acc); + return L2(tgt); +} + +void +arc_length_fdf (double t, void *params, + double *y, double *dy) +{ + *y = arc_length(t, params); + *dy = arc_length_deriv(t, params); +} + +double polish_brent(double t, arc_length_params &alp) { + int status; + int iter = 0, max_iter = 10; + const gsl_root_fsolver_type *T; + gsl_root_fsolver *solver; + double x_lo = 0.0, x_hi = 1.0; + gsl_function F; + + F.function = &arc_length; + F.params = &alp; + + T = gsl_root_fsolver_brent; + solver = gsl_root_fsolver_alloc (T); + gsl_root_fsolver_set (solver, &F, x_lo, x_hi); + + do + { + iter++; + status = gsl_root_fsolver_iterate (solver); + t = gsl_root_fsolver_root (solver); + x_lo = gsl_root_fsolver_x_lower (solver); + x_hi = gsl_root_fsolver_x_upper (solver); + status = gsl_root_test_interval (x_lo, x_hi, + 0, alp.tol); + + //if (status == GSL_SUCCESS) + // printf ("Converged:\n"); + + } + while (status == GSL_CONTINUE && iter < max_iter); + return t; +} + +double polish (double t, arc_length_params &alp) { + int status; + int iter = 0, max_iter = 5; + const gsl_root_fdfsolver_type *T; + gsl_root_fdfsolver *solver; + double t0; + gsl_function_fdf FDF; + + FDF.f = &arc_length; + FDF.df = &arc_length_deriv; + FDF.fdf = &arc_length_fdf; + FDF.params = &alp; + + T = gsl_root_fdfsolver_newton; + solver = gsl_root_fdfsolver_alloc (T); + gsl_root_fdfsolver_set (solver, &FDF, t); + + do + { + iter++; + status = gsl_root_fdfsolver_iterate (solver); + t0 = t; + t = gsl_root_fdfsolver_root (solver); + status = gsl_root_test_delta (t, t0, 0, alp.tol); + + if (status == GSL_SUCCESS) + ;//printf ("Converged:\n"); + + printf ("%5d %10.7f %+10.7f\n", + iter, t, t - t0); + } + while (status == GSL_CONTINUE && iter < max_iter); + return t; +} + + +#endif + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |