summaryrefslogtreecommitdiffstats
path: root/src/2geom/orphan-code/nearestpoint.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
commit61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch)
tree885599a36a308f422af98616bc733a0494fe149a /src/2geom/orphan-code/nearestpoint.cpp
parentInitial commit. (diff)
downloadlib2geom-upstream.tar.xz
lib2geom-upstream.zip
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--src/2geom/orphan-code/nearestpoint.cpp405
1 files changed, 405 insertions, 0 deletions
diff --git a/src/2geom/orphan-code/nearestpoint.cpp b/src/2geom/orphan-code/nearestpoint.cpp
new file mode 100644
index 0000000..870ed09
--- /dev/null
+++ b/src/2geom/orphan-code/nearestpoint.cpp
@@ -0,0 +1,405 @@
+/*
+** vim: ts=4 sw=4 et tw=0 wm=0
+**
+** RCS Information:
+** $Author: mjw $
+** $Revision: 1 $
+** $Date: 2006-03-28 15:59:38 +1100 (Tue, 28 Mar 2006) $
+**
+** Solving the Nearest Point-on-Curve Problem and
+** A Bezier Curve-Based Root-Finder
+** by Philip J. Schneider
+** from "Graphics Gems", Academic Press, 1990
+** modified by mwybrow, njh
+*/
+
+/* point_on_curve.c */
+
+static double SquaredLength(const Geom::Point a)
+{
+ return dot(a, a);
+}
+
+
+/*
+ * Forward declarations
+ */
+static int FindRoots(Geom::Point *w, int degree, double *t, int depth);
+static Geom::Point *ConvertToBezierForm( Geom::Point P, Geom::Point *V);
+static double ComputeXIntercept( Geom::Point *V, int degree);
+static int ControlPolygonFlatEnough( Geom::Point *V, int degree);
+static int CrossingCount(Geom::Point *V, int degree);
+static Geom::Point Bez(Geom::Point *V, int degree, double t, Geom::Point *Left,
+ Geom::Point *Right);
+
+int MAXDEPTH = 64; /* Maximum depth for recursion */
+
+#define EPSILON (ldexp(1.0,-MAXDEPTH-1)) /*Flatness control value */
+#define DEGREE 3 /* Cubic Bezier curve */
+#define W_DEGREE 5 /* Degree of eqn to find roots of */
+
+
+/*
+ * NearestPointOnCurve :
+ * Compute the parameter value of the point on a Bezier
+ * curve segment closest to some arbtitrary, user-input point.
+ * Return the point on the curve at that parameter value.
+ *
+ Geom::Point P; The user-supplied point
+ Geom::Point *V; Control points of cubic Bezier
+*/
+double NearestPointOnCurve(Geom::Point P, Geom::Point *V)
+{
+ double t_candidate[W_DEGREE]; /* Possible roots */
+
+ /* Convert problem to 5th-degree Bezier form */
+ Geom::Point *w = ConvertToBezierForm(P, V);
+
+ /* Find all possible roots of 5th-degree equation */
+ int n_solutions = FindRoots(w, W_DEGREE, t_candidate, 0);
+ std::free((char *)w);
+
+ /* Check distance to end of the curve, where t = 1 */
+ double dist = SquaredLength(P - V[DEGREE]);
+ double t = 1.0;
+
+ /* Find distances for candidate points */
+ for (int i = 0; i < n_solutions; i++) {
+ Geom::Point p = Bez(V, DEGREE, t_candidate[i], NULL, NULL);
+ double new_dist = SquaredLength(P - p);
+ if (new_dist < dist) {
+ dist = new_dist;
+ t = t_candidate[i];
+ }
+ }
+
+ /* Return the parameter value t */
+ return t;
+}
+
+
+/*
+ * ConvertToBezierForm :
+ * Given a point and a Bezier curve, generate a 5th-degree
+ * Bezier-format equation whose solution finds the point on the
+ * curve nearest the user-defined point.
+ */
+static Geom::Point *ConvertToBezierForm(
+ Geom::Point P, /* The point to find t for */
+ Geom::Point *V) /* The control points */
+{
+ Geom::Point c[DEGREE+1]; /* V(i)'s - P */
+ Geom::Point d[DEGREE]; /* V(i+1) - V(i) */
+ Geom::Point *w; /* Ctl pts of 5th-degree curve */
+ double cdTable[3][4]; /* Dot product of c, d */
+ static double z[3][4] = { /* Precomputed "z" for cubics */
+ {1.0, 0.6, 0.3, 0.1},
+ {0.4, 0.6, 0.6, 0.4},
+ {0.1, 0.3, 0.6, 1.0},
+ };
+
+
+ /*Determine the c's -- these are vectors created by subtracting*/
+ /* point P from each of the control points */
+ for (int i = 0; i <= DEGREE; i++) {
+ c[i] = V[i] - P;
+ }
+ /* Determine the d's -- these are vectors created by subtracting*/
+ /* each control point from the next */
+ for (int i = 0; i <= DEGREE - 1; i++) {
+ d[i] = 3.0*(V[i+1] - V[i]);
+ }
+
+ /* Create the c,d table -- this is a table of dot products of the */
+ /* c's and d's */
+ for (int row = 0; row <= DEGREE - 1; row++) {
+ for (int column = 0; column <= DEGREE; column++) {
+ cdTable[row][column] = dot(d[row], c[column]);
+ }
+ }
+
+ /* Now, apply the z's to the dot products, on the skew diagonal*/
+ /* Also, set up the x-values, making these "points" */
+ w = (Geom::Point *)malloc((unsigned)(W_DEGREE+1) * sizeof(Geom::Point));
+ for (int i = 0; i <= W_DEGREE; i++) {
+ w[i][Geom::Y] = 0.0;
+ w[i][Geom::X] = (double)(i) / W_DEGREE;
+ }
+
+ const int n = DEGREE;
+ const int m = DEGREE-1;
+ for (int k = 0; k <= n + m; k++) {
+ const int lb = std::max(0, k - m);
+ const int ub = std::min(k, n);
+ for (int i = lb; i <= ub; i++) {
+ int j = k - i;
+ w[i+j][Geom::Y] += cdTable[j][i] * z[j][i];
+ }
+ }
+
+ return w;
+}
+
+
+/*
+ * FindRoots :
+ * Given a 5th-degree equation in Bernstein-Bezier form, find
+ * all of the roots in the interval [0, 1]. Return the number
+ * of roots found.
+ */
+static int FindRoots(
+ Geom::Point *w, /* The control points */
+ int degree, /* The degree of the polynomial */
+ double *t, /* RETURN candidate t-values */
+ int depth) /* The depth of the recursion */
+{
+ int i;
+ Geom::Point Left[W_DEGREE+1], /* New left and right */
+ Right[W_DEGREE+1]; /* control polygons */
+ int left_count, /* Solution count from */
+ right_count; /* children */
+ double left_t[W_DEGREE+1], /* Solutions from kids */
+ right_t[W_DEGREE+1];
+
+ switch (CrossingCount(w, degree)) {
+ case 0 : { /* No solutions here */
+ return 0;
+ break;
+ }
+ case 1 : { /* Unique solution */
+ /* Stop recursion when the tree is deep enough */
+ /* if deep enough, return 1 solution at midpoint */
+ if (depth >= MAXDEPTH) {
+ t[0] = (w[0][Geom::X] + w[W_DEGREE][Geom::X]) / 2.0;
+ return 1;
+ }
+ if (ControlPolygonFlatEnough(w, degree)) {
+ t[0] = ComputeXIntercept(w, degree);
+ return 1;
+ }
+ break;
+ }
+ }
+
+ /* Otherwise, solve recursively after */
+ /* subdividing control polygon */
+ Bez(w, degree, 0.5, Left, Right);
+ left_count = FindRoots(Left, degree, left_t, depth+1);
+ right_count = FindRoots(Right, degree, right_t, depth+1);
+
+
+ /* Gather solutions together */
+ for (i = 0; i < left_count; i++) {
+ t[i] = left_t[i];
+ }
+ for (i = 0; i < right_count; i++) {
+ t[i+left_count] = right_t[i];
+ }
+
+ /* Send back total number of solutions */
+ return (left_count+right_count);
+}
+
+
+/*
+ * CrossingCount :
+ * Count the number of times a Bezier control polygon
+ * crosses the 0-axis. This number is >= the number of roots.
+ *
+ */
+static int CrossingCount(
+ Geom::Point *V, /* Control pts of Bezier curve */
+ int degree) /* Degree of Bezier curve */
+{
+ int n_crossings = 0; /* Number of zero-crossings */
+ int old_sign; /* Sign of coefficients */
+
+ old_sign = Geom::sgn(V[0][Geom::Y]);
+ for (int i = 1; i <= degree; i++) {
+ int sign = Geom::sgn(V[i][Geom::Y]);
+ if (sign != old_sign)
+ n_crossings++;
+ old_sign = sign;
+ }
+ return n_crossings;
+}
+
+
+
+/*
+ * ControlPolygonFlatEnough :
+ * Check if the control polygon of a Bezier curve is flat enough
+ * for recursive subdivision to bottom out.
+ *
+ */
+static int ControlPolygonFlatEnough(
+ Geom::Point *V, /* Control points */
+ int degree) /* Degree of polynomial */
+{
+ int i; /* Index variable */
+ double *distance; /* Distances from pts to line */
+ double max_distance_above; /* maximum of these */
+ double max_distance_below;
+ double error; /* Precision of root */
+ //Geom::Point t; /* Vector from V[0] to V[degree]*/
+ double intercept_1,
+ intercept_2,
+ left_intercept,
+ right_intercept;
+ double a, b, c; /* Coefficients of implicit */
+ /* eqn for line from V[0]-V[deg]*/
+
+ /* Find the perpendicular distance */
+ /* from each interior control point to */
+ /* line connecting V[0] and V[degree] */
+ distance = (double *)malloc((unsigned)(degree + 1) * sizeof(double));
+ {
+ double abSquared;
+
+ /* Derive the implicit equation for line connecting first */
+ /* and last control points */
+ a = V[0][Geom::Y] - V[degree][Geom::Y];
+ b = V[degree][Geom::X] - V[0][Geom::X];
+ c = V[0][Geom::X] * V[degree][Geom::Y] - V[degree][Geom::X] * V[0][Geom::Y];
+
+ abSquared = (a * a) + (b * b);
+
+ for (i = 1; i < degree; i++) {
+ /* Compute distance from each of the points to that line */
+ distance[i] = a * V[i][Geom::X] + b * V[i][Geom::Y] + c;
+ if (distance[i] > 0.0) {
+ distance[i] = (distance[i] * distance[i]) / abSquared;
+ }
+ if (distance[i] < 0.0) {
+ distance[i] = -((distance[i] * distance[i]) / abSquared);
+ }
+ }
+ }
+
+
+ /* Find the largest distance */
+ max_distance_above = 0.0;
+ max_distance_below = 0.0;
+ for (i = 1; i < degree; i++) {
+ if (distance[i] < 0.0) {
+ max_distance_below = std::min(max_distance_below, distance[i]);
+ };
+ if (distance[i] > 0.0) {
+ max_distance_above = std::max(max_distance_above, distance[i]);
+ }
+ }
+ free((char *)distance);
+
+ {
+ double det;
+ double a1, b1, c1, a2, b2, c2;
+
+ /* Implicit equation for zero line */
+ a1 = 0.0;
+ b1 = 1.0;
+ c1 = 0.0;
+
+ /* Implicit equation for "above" line */
+ a2 = a;
+ b2 = b;
+ c2 = c + max_distance_above;
+
+ det = a1 * b2 - a2 * b1;
+
+ intercept_1 = (b1 * c2 - b2 * c1) / det;
+
+ /* Implicit equation for "below" line */
+ a2 = a;
+ b2 = b;
+ c2 = c + max_distance_below;
+
+ det = a1 * b2 - a2 * b1;
+
+ intercept_2 = (b1 * c2 - b2 * c1) / det;
+ }
+
+ /* Compute intercepts of bounding box */
+ left_intercept = std::min(intercept_1, intercept_2);
+ right_intercept = std::max(intercept_1, intercept_2);
+
+ error = 0.5 * (right_intercept-left_intercept);
+ if (error < EPSILON) {
+ return 1;
+ }
+ else {
+ return 0;
+ }
+}
+
+
+
+/*
+ * ComputeXIntercept :
+ * Compute intersection of chord from first control point to last
+ * with 0-axis.
+ *
+ */
+static double ComputeXIntercept(
+ Geom::Point *V, /* Control points */
+ int degree) /* Degree of curve */
+{
+ const Geom::Point A = V[degree] - V[0];
+
+ return (A[Geom::X]*V[0][Geom::Y] - A[Geom::Y]*V[0][Geom::X]) / -A[Geom::Y];
+}
+
+
+/*
+ * Bez :
+ * Evaluate a Bezier curve at a particular parameter value
+ * Fill in control points for resulting sub-curves if "Left" and
+ * "Right" are non-null.
+ *
+ */
+static Geom::Point Bez(
+ Geom::Point *V, /* Control pts */
+ int degree, /* Degree of bezier curve */
+ double t, /* Parameter value */
+ Geom::Point *Left, /* RETURN left half ctl pts */
+ Geom::Point *Right) /* RETURN right half ctl pts */
+{
+ Geom::Point Vtemp[W_DEGREE+1][W_DEGREE+1];
+
+
+ /* Copy control points */
+ for (int j =0; j <= degree; j++) {
+ Vtemp[0][j] = V[j];
+ }
+
+ /* Triangle computation */
+ for (int i = 1; i <= degree; i++) {
+ for (int j =0 ; j <= degree - i; j++) {
+ Vtemp[i][j] =
+ (1.0 - t) * Vtemp[i-1][j] + t * Vtemp[i-1][j+1];
+ }
+ }
+
+ if (Left != NULL) {
+ for (int j = 0; j <= degree; j++) {
+ Left[j] = Vtemp[j][0];
+ }
+ }
+ if (Right != NULL) {
+ for (int j = 0; j <= degree; j++) {
+ Right[j] = Vtemp[degree-j][j];
+ }
+ }
+
+ return (Vtemp[degree][0]);
+}
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :