summaryrefslogtreecommitdiffstats
path: root/src/2geom/polynomial.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 11:57:42 +0000
commit61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch)
tree885599a36a308f422af98616bc733a0494fe149a /src/2geom/polynomial.cpp
parentInitial commit. (diff)
downloadlib2geom-upstream.tar.xz
lib2geom-upstream.zip
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--src/2geom/polynomial.cpp337
1 files changed, 337 insertions, 0 deletions
diff --git a/src/2geom/polynomial.cpp b/src/2geom/polynomial.cpp
new file mode 100644
index 0000000..9737bd0
--- /dev/null
+++ b/src/2geom/polynomial.cpp
@@ -0,0 +1,337 @@
+/**
+ * \file
+ * \brief Polynomial in canonical (monomial) basis
+ *//*
+ * Authors:
+ * MenTaLguY <mental@rydia.net>
+ * Krzysztof KosiƄski <tweenk.pl@gmail.com>
+ *
+ * Copyright 2007-2015 Authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+#include <algorithm>
+#include <2geom/polynomial.h>
+#include <2geom/math-utils.h>
+#include <math.h>
+
+#ifdef HAVE_GSL
+#include <gsl/gsl_poly.h>
+#endif
+
+namespace Geom {
+
+#ifndef M_PI
+# define M_PI 3.14159265358979323846
+#endif
+
+Poly Poly::operator*(const Poly& p) const {
+ Poly result;
+ result.resize(degree() + p.degree()+1);
+
+ for(unsigned i = 0; i < size(); i++) {
+ for(unsigned j = 0; j < p.size(); j++) {
+ result[i+j] += (*this)[i] * p[j];
+ }
+ }
+ return result;
+}
+
+/*double Poly::eval(double x) const {
+ return gsl_poly_eval(&coeff[0], size(), x);
+ }*/
+
+void Poly::normalize() {
+ while(back() == 0)
+ pop_back();
+}
+
+void Poly::monicify() {
+ normalize();
+
+ double scale = 1./back(); // unitize
+
+ for(unsigned i = 0; i < size(); i++) {
+ (*this)[i] *= scale;
+ }
+}
+
+
+#ifdef HAVE_GSL
+std::vector<std::complex<double> > solve(Poly const & pp) {
+ Poly p(pp);
+ p.normalize();
+ gsl_poly_complex_workspace * w
+ = gsl_poly_complex_workspace_alloc (p.size());
+
+ gsl_complex_packed_ptr z = new double[p.degree()*2];
+ double* a = new double[p.size()];
+ for(unsigned int i = 0; i < p.size(); i++)
+ a[i] = p[i];
+ std::vector<std::complex<double> > roots;
+ //roots.resize(p.degree());
+
+ gsl_poly_complex_solve (a, p.size(), w, z);
+ delete[]a;
+
+ gsl_poly_complex_workspace_free (w);
+
+ for (unsigned int i = 0; i < p.degree(); i++) {
+ roots.emplace_back(z[2*i] ,z[2*i+1]);
+ //printf ("z%d = %+.18f %+.18f\n", i, z[2*i], z[2*i+1]);
+ }
+ delete[] z;
+ return roots;
+}
+
+std::vector<double > solve_reals(Poly const & p) {
+ std::vector<std::complex<double> > roots = solve(p);
+ std::vector<double> real_roots;
+
+ for(auto & root : roots) {
+ if(root.imag() == 0) // should be more lenient perhaps
+ real_roots.push_back(root.real());
+ }
+ return real_roots;
+}
+#endif
+
+double polish_root(Poly const & p, double guess, double tol) {
+ Poly dp = derivative(p);
+
+ double fn = p(guess);
+ while(fabs(fn) > tol) {
+ guess -= fn/dp(guess);
+ fn = p(guess);
+ }
+ return guess;
+}
+
+Poly integral(Poly const & p) {
+ Poly result;
+
+ result.reserve(p.size()+1);
+ result.push_back(0); // arbitrary const
+ for(unsigned i = 0; i < p.size(); i++) {
+ result.push_back(p[i]/(i+1));
+ }
+ return result;
+
+}
+
+Poly derivative(Poly const & p) {
+ Poly result;
+
+ if(p.size() <= 1)
+ return Poly(0);
+ result.reserve(p.size()-1);
+ for(unsigned i = 1; i < p.size(); i++) {
+ result.push_back(i*p[i]);
+ }
+ return result;
+}
+
+Poly compose(Poly const & a, Poly const & b) {
+ Poly result;
+
+ for(unsigned i = a.size(); i > 0; i--) {
+ result = Poly(a[i-1]) + result * b;
+ }
+ return result;
+
+}
+
+/* This version is backwards - dividing taylor terms
+Poly divide(Poly const &a, Poly const &b, Poly &r) {
+ Poly c;
+ r = a; // remainder
+
+ const unsigned k = a.size();
+ r.resize(k, 0);
+ c.resize(k, 0);
+
+ for(unsigned i = 0; i < k; i++) {
+ double ci = r[i]/b[0];
+ c[i] += ci;
+ Poly bb = ci*b;
+ std::cout << ci <<"*" << b << ", r= " << r << std::endl;
+ r -= bb.shifted(i);
+ }
+
+ return c;
+}
+*/
+
+Poly divide(Poly const &a, Poly const &b, Poly &r) {
+ Poly c;
+ r = a; // remainder
+ assert(b.size() > 0);
+
+ const unsigned k = a.degree();
+ const unsigned l = b.degree();
+ c.resize(k, 0.);
+
+ for(unsigned i = k; i >= l; i--) {
+ //assert(i >= 0);
+ double ci = r.back()/b.back();
+ c[i-l] += ci;
+ Poly bb = ci*b;
+ //std::cout << ci <<"*(" << b.shifted(i-l) << ") = "
+ // << bb.shifted(i-l) << " r= " << r << std::endl;
+ r -= bb.shifted(i-l);
+ r.pop_back();
+ }
+ //std::cout << "r= " << r << std::endl;
+ r.normalize();
+ c.normalize();
+
+ return c;
+}
+
+Poly gcd(Poly const &a, Poly const &b, const double /*tol*/) {
+ if(a.size() < b.size())
+ return gcd(b, a);
+ if(b.size() <= 0)
+ return a;
+ if(b.size() == 1)
+ return a;
+ Poly r;
+ divide(a, b, r);
+ return gcd(b, r);
+}
+
+
+
+
+std::vector<Coord> solve_quadratic(Coord a, Coord b, Coord c)
+{
+ std::vector<Coord> result;
+
+ if (a == 0) {
+ // linear equation
+ if (b == 0) return result;
+ result.push_back(-c/b);
+ return result;
+ }
+
+ Coord delta = b*b - 4*a*c;
+
+ if (delta == 0) {
+ // one root
+ result.push_back(-b / (2*a));
+ } else if (delta > 0) {
+ // two roots
+ Coord delta_sqrt = sqrt(delta);
+
+ // Use different formulas depending on sign of b to preserve
+ // numerical stability. See e.g.:
+ // http://people.csail.mit.edu/bkph/articles/Quadratics.pdf
+ int sign = b >= 0 ? 1 : -1;
+ Coord t = -0.5 * (b + sign * delta_sqrt);
+ result.push_back(t / a);
+ result.push_back(c / t);
+ }
+ // no roots otherwise
+
+ std::sort(result.begin(), result.end());
+ return result;
+}
+
+
+std::vector<Coord> solve_cubic(Coord a, Coord b, Coord c, Coord d)
+{
+ // based on:
+ // http://mathworld.wolfram.com/CubicFormula.html
+
+ if (a == 0) {
+ return solve_quadratic(b, c, d);
+ }
+ if (d == 0) {
+ // divide by x
+ std::vector<Coord> result = solve_quadratic(a, b, c);
+ result.push_back(0);
+ std::sort(result.begin(), result.end());
+ return result;
+ }
+
+ std::vector<Coord> result;
+
+ // 1. divide everything by a to bring to canonical form
+ b /= a;
+ c /= a;
+ d /= a;
+
+ // 2. eliminate x^2 term: x^3 + 3Qx - 2R = 0
+ Coord Q = (3*c - b*b) / 9;
+ Coord R = (-27 * d + b * (9*c - 2*b*b)) / 54;
+
+ // 3. compute polynomial discriminant
+ Coord D = Q*Q*Q + R*R;
+ Coord term1 = b/3;
+
+ if (D > 0) {
+ // only one real root
+ Coord S = cbrt(R + sqrt(D));
+ Coord T = cbrt(R - sqrt(D));
+ result.push_back(-b/3 + S + T);
+ } else if (D == 0) {
+ // 3 real roots, 2 of which are equal
+ Coord rroot = cbrt(R);
+ result.reserve(3);
+ result.push_back(-term1 + 2*rroot);
+ result.push_back(-term1 - rroot);
+ result.push_back(-term1 - rroot);
+ } else {
+ // 3 distinct real roots
+ assert(Q < 0);
+ Coord theta = acos(R / sqrt(-Q*Q*Q));
+ Coord rroot = 2 * sqrt(-Q);
+ result.reserve(3);
+ result.push_back(-term1 + rroot * cos(theta / 3));
+ result.push_back(-term1 + rroot * cos((theta + 2*M_PI) / 3));
+ result.push_back(-term1 + rroot * cos((theta + 4*M_PI) / 3));
+ }
+
+ std::sort(result.begin(), result.end());
+ return result;
+}
+
+
+/*Poly divide_out_root(Poly const & p, double x) {
+ assert(1);
+ }*/
+
+} //namespace Geom
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :