diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
commit | 61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch) | |
tree | 885599a36a308f422af98616bc733a0494fe149a /src/2geom/sbasis-math.cpp | |
parent | Initial commit. (diff) | |
download | lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip |
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/2geom/sbasis-math.cpp')
-rw-r--r-- | src/2geom/sbasis-math.cpp | 379 |
1 files changed, 379 insertions, 0 deletions
diff --git a/src/2geom/sbasis-math.cpp b/src/2geom/sbasis-math.cpp new file mode 100644 index 0000000..547f9af --- /dev/null +++ b/src/2geom/sbasis-math.cpp @@ -0,0 +1,379 @@ +/* + * sbasis-math.cpp - some std functions to work with (pw)s-basis + * + * Authors: + * Jean-Francois Barraud + * + * Copyright (C) 2006-2007 authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +//this a first try to define sqrt, cos, sin, etc... +//TODO: define a truncated compose(sb,sb, order) and extend it to pw<sb>. +//TODO: in all these functions, compute 'order' according to 'tol'. + +#include <2geom/d2.h> +#include <2geom/sbasis-math.h> +#include <stdio.h> +#include <math.h> +//#define ZERO 1e-3 + + +namespace Geom { + + +//-|x|----------------------------------------------------------------------- +/** Return the absolute value of a function pointwise. + \param f function +*/ +Piecewise<SBasis> abs(SBasis const &f){ + return abs(Piecewise<SBasis>(f)); +} +/** Return the absolute value of a function pointwise. + \param f function +*/ +Piecewise<SBasis> abs(Piecewise<SBasis> const &f){ + Piecewise<SBasis> absf=partition(f,roots(f)); + for (unsigned i=0; i<absf.size(); i++){ + if (absf.segs[i](.5)<0) absf.segs[i]*=-1; + } + return absf; +} + +//-max(x,y), min(x,y)-------------------------------------------------------- +/** Return the greater of the two functions pointwise. + \param f, g two functions +*/ +Piecewise<SBasis> max( SBasis const &f, SBasis const &g){ + return max(Piecewise<SBasis>(f),Piecewise<SBasis>(g)); +} +/** Return the greater of the two functions pointwise. + \param f, g two functions +*/ +Piecewise<SBasis> max(Piecewise<SBasis> const &f, SBasis const &g){ + return max(f,Piecewise<SBasis>(g)); +} +/** Return the greater of the two functions pointwise. + \param f, g two functions +*/ +Piecewise<SBasis> max( SBasis const &f, Piecewise<SBasis> const &g){ + return max(Piecewise<SBasis>(f),g); +} +/** Return the greater of the two functions pointwise. + \param f, g two functions +*/ +Piecewise<SBasis> max(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g){ + Piecewise<SBasis> max=partition(f,roots(f-g)); + Piecewise<SBasis> gg =partition(g,max.cuts); + max = partition(max,gg.cuts); + for (unsigned i=0; i<max.size(); i++){ + if (max.segs[i](.5)<gg.segs[i](.5)) max.segs[i]=gg.segs[i]; + } + return max; +} + +/** Return the more negative of the two functions pointwise. + \param f, g two functions +*/ +Piecewise<SBasis> +min( SBasis const &f, SBasis const &g){ return -max(-f,-g); } +/** Return the more negative of the two functions pointwise. + \param f, g two functions +*/ +Piecewise<SBasis> +min(Piecewise<SBasis> const &f, SBasis const &g){ return -max(-f,-g); } +/** Return the more negative of the two functions pointwise. + \param f, g two functions +*/ +Piecewise<SBasis> +min( SBasis const &f, Piecewise<SBasis> const &g){ return -max(-f,-g); } +/** Return the more negative of the two functions pointwise. + \param f, g two functions +*/ +Piecewise<SBasis> +min(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g){ return -max(-f,-g); } + + +//-sign(x)--------------------------------------------------------------- +/** Return the sign of the two functions pointwise. + \param f function +*/ +Piecewise<SBasis> signSb(SBasis const &f){ + return signSb(Piecewise<SBasis>(f)); +} +/** Return the sign of the two functions pointwise. + \param f function +*/ +Piecewise<SBasis> signSb(Piecewise<SBasis> const &f){ + Piecewise<SBasis> sign=partition(f,roots(f)); + for (unsigned i=0; i<sign.size(); i++){ + sign.segs[i] = (sign.segs[i](.5)<0)? Linear(-1.):Linear(1.); + } + return sign; +} + +//-Sqrt---------------------------------------------------------- +static Piecewise<SBasis> sqrt_internal(SBasis const &f, + double tol, + int order){ + SBasis sqrtf; + if(f.isZero() || order == 0){ + return Piecewise<SBasis>(sqrtf); + } + if (f.at0()<-tol*tol && f.at1()<-tol*tol){ + return sqrt_internal(-f,tol,order); + }else if (f.at0()>tol*tol && f.at1()>tol*tol){ + sqrtf.resize(order+1, Linear(0,0)); + sqrtf[0] = Linear(std::sqrt(f[0][0]), std::sqrt(f[0][1])); + SBasis r = f - multiply(sqrtf, sqrtf); // remainder + for(unsigned i = 1; int(i) <= order && i<r.size(); i++) { + Linear ci(r[i][0]/(2*sqrtf[0][0]), r[i][1]/(2*sqrtf[0][1])); + SBasis cisi = shift(ci, i); + r -= multiply(shift((sqrtf*2 + cisi), i), SBasis(ci)); + r.truncate(order+1); + sqrtf[i] = ci; + if(r.tailError(i) == 0) // if exact + break; + } + }else{ + sqrtf = Linear(std::sqrt(fabs(f.at0())), std::sqrt(fabs(f.at1()))); + } + + double err = (f - multiply(sqrtf, sqrtf)).tailError(0); + if (err<tol){ + return Piecewise<SBasis>(sqrtf); + } + + Piecewise<SBasis> sqrtf0,sqrtf1; + sqrtf0 = sqrt_internal(compose(f,Linear(0.,.5)),tol,order); + sqrtf1 = sqrt_internal(compose(f,Linear(.5,1.)),tol,order); + sqrtf0.setDomain(Interval(0.,.5)); + sqrtf1.setDomain(Interval(.5,1.)); + sqrtf0.concat(sqrtf1); + return sqrtf0; +} + +/** Compute the sqrt of a function. + \param f function +*/ +Piecewise<SBasis> sqrt(SBasis const &f, double tol, int order){ + return sqrt(max(f,Linear(tol*tol)),tol,order); +} + +/** Compute the sqrt of a function. + \param f function +*/ +Piecewise<SBasis> sqrt(Piecewise<SBasis> const &f, double tol, int order){ + Piecewise<SBasis> result; + Piecewise<SBasis> zero = Piecewise<SBasis>(Linear(tol*tol)); + zero.setDomain(f.domain()); + Piecewise<SBasis> ff=max(f,zero); + + for (unsigned i=0; i<ff.size(); i++){ + Piecewise<SBasis> sqrtfi = sqrt_internal(ff.segs[i],tol,order); + sqrtfi.setDomain(Interval(ff.cuts[i],ff.cuts[i+1])); + result.concat(sqrtfi); + } + return result; +} + +//-Yet another sin/cos-------------------------------------------------------------- + +/** Compute the sine of a function. + \param f function + \param tol maximum error + \param order maximum degree polynomial to use +*/ +Piecewise<SBasis> sin( SBasis const &f, double tol, int order){return(cos(-f+M_PI/2,tol,order));} +/** Compute the sine of a function. + \param f function + \param tol maximum error + \param order maximum degree polynomial to use +*/ +Piecewise<SBasis> sin(Piecewise<SBasis> const &f, double tol, int order){return(cos(-f+M_PI/2,tol,order));} + +/** Compute the cosine of a function. + \param f function + \param tol maximum error + \param order maximum degree polynomial to use +*/ +Piecewise<SBasis> cos(Piecewise<SBasis> const &f, double tol, int order){ + Piecewise<SBasis> result; + for (unsigned i=0; i<f.size(); i++){ + Piecewise<SBasis> cosfi = cos(f.segs[i],tol,order); + cosfi.setDomain(Interval(f.cuts[i],f.cuts[i+1])); + result.concat(cosfi); + } + return result; +} + +/** Compute the cosine of a function. + \param f function + \param tol maximum error + \param order maximum degree polynomial to use +*/ +Piecewise<SBasis> cos( SBasis const &f, double tol, int order){ + double alpha = (f.at0()+f.at1())/2.; + SBasis x = f-alpha; + double d = x.tailError(0),err=1; + //estimate cos(x)-sum_0^order (-1)^k x^2k/2k! by the first neglicted term + for (int i=1; i<=2*order; i++) err*=d/i; + + if (err<tol){ + SBasis xk=Linear(1), c=Linear(1), s=Linear(0); + for (int k=1; k<=2*order; k+=2){ + xk*=x/k; + //take also truncature errors into account... + err+=xk.tailError(order); + xk.truncate(order); + s+=xk; + xk*=-x/(k+1); + //take also truncature errors into account... + err+=xk.tailError(order); + xk.truncate(order); + c+=xk; + } + if (err<tol){ + return Piecewise<SBasis>(std::cos(alpha)*c-std::sin(alpha)*s); + } + } + Piecewise<SBasis> c0,c1; + c0 = cos(compose(f,Linear(0.,.5)),tol,order); + c1 = cos(compose(f,Linear(.5,1.)),tol,order); + c0.setDomain(Interval(0.,.5)); + c1.setDomain(Interval(.5,1.)); + c0.concat(c1); + return c0; +} + +//--1/x------------------------------------------------------------ +//TODO: this implementation is just wrong. Remove or redo! + +void truncateResult(Piecewise<SBasis> &f, int order){ + if (order>=0){ + for (auto & seg : f.segs){ + seg.truncate(order); + } + } +} + +Piecewise<SBasis> reciprocalOnDomain(Interval range, double tol){ + Piecewise<SBasis> reciprocal_fn; + //TODO: deduce R from tol... + double R=2.; + SBasis reciprocal1_R=reciprocal(Linear(1,R),3); + double a=range.min(), b=range.max(); + if (a*b<0){ + b=std::max(fabs(a),fabs(b)); + a=0; + }else if (b<0){ + a=-range.max(); + b=-range.min(); + } + + if (a<=tol){ + reciprocal_fn.push_cut(0); + int i0=(int) floor(std::log(tol)/std::log(R)); + a = std::pow(R,i0); + reciprocal_fn.push(Linear(1/a),a); + }else{ + int i0=(int) floor(std::log(a)/std::log(R)); + a = std::pow(R,i0); + reciprocal_fn.cuts.push_back(a); + } + + while (a<b){ + reciprocal_fn.push(reciprocal1_R/a,R*a); + a*=R; + } + if (range.min()<0 || range.max()<0){ + Piecewise<SBasis>reciprocal_fn_neg; + //TODO: define reverse(pw<sb>); + reciprocal_fn_neg.cuts.push_back(-reciprocal_fn.cuts.back()); + for (unsigned i=0; i<reciprocal_fn.size(); i++){ + int idx=reciprocal_fn.segs.size()-1-i; + reciprocal_fn_neg.push_seg(-reverse(reciprocal_fn.segs.at(idx))); + reciprocal_fn_neg.push_cut(-reciprocal_fn.cuts.at(idx)); + } + if (range.max()>0){ + reciprocal_fn_neg.concat(reciprocal_fn); + } + reciprocal_fn=reciprocal_fn_neg; + } + + return(reciprocal_fn); +} + +Piecewise<SBasis> reciprocal(SBasis const &f, double tol, int order){ + Piecewise<SBasis> reciprocal_fn=reciprocalOnDomain(*bounds_fast(f), tol); + Piecewise<SBasis> result=compose(reciprocal_fn,f); + truncateResult(result,order); + return(result); +} +Piecewise<SBasis> reciprocal(Piecewise<SBasis> const &f, double tol, int order){ + Piecewise<SBasis> reciprocal_fn=reciprocalOnDomain(*bounds_fast(f), tol); + Piecewise<SBasis> result=compose(reciprocal_fn,f); + truncateResult(result,order); + return(result); +} + +/** + * \brief Returns a Piecewise SBasis with prescribed values at prescribed times. + * + * \param times: vector of times at which the values are given. Should be sorted in increasing order. + * \param values: vector of prescribed values. Should have the same size as times and be sorted accordingly. + * \param smoothness: (defaults to 1) regularity class of the result: 0=piecewise linear, 1=continuous derivative, etc... + */ +Piecewise<SBasis> interpolate(std::vector<double> times, std::vector<double> values, unsigned smoothness){ + assert ( values.size() == times.size() ); + if ( values.empty() ) return Piecewise<SBasis>(); + if ( values.size() == 1 ) return Piecewise<SBasis>(values[0]);//what about time?? + + SBasis sk = shift(Linear(1.),smoothness); + SBasis bump_in = integral(sk); + bump_in -= bump_in.at0(); + bump_in /= bump_in.at1(); + SBasis bump_out = reverse( bump_in ); + + Piecewise<SBasis> result; + result.cuts.push_back(times[0]); + for (unsigned i = 0; i<values.size()-1; i++){ + result.push(bump_out*values[i]+bump_in*values[i+1],times[i+1]); + } + return result; +} + +} + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |