summaryrefslogtreecommitdiffstats
path: root/include/2geom/ellipse.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/2geom/ellipse.h')
-rw-r--r--include/2geom/ellipse.h260
1 files changed, 260 insertions, 0 deletions
diff --git a/include/2geom/ellipse.h b/include/2geom/ellipse.h
new file mode 100644
index 0000000..0d1567a
--- /dev/null
+++ b/include/2geom/ellipse.h
@@ -0,0 +1,260 @@
+/** @file
+ * @brief Ellipse shape
+ *//*
+ * Authors:
+ * Marco Cecchetti <mrcekets at gmail.com>
+ * Krzysztof KosiƄski <tweenk.pl@gmail.com>
+ *
+ * Copyright 2008 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+
+#ifndef LIB2GEOM_SEEN_ELLIPSE_H
+#define LIB2GEOM_SEEN_ELLIPSE_H
+
+#include <vector>
+#include <2geom/angle.h>
+#include <2geom/bezier-curve.h>
+#include <2geom/exception.h>
+#include <2geom/forward.h>
+#include <2geom/line.h>
+#include <2geom/transforms.h>
+
+namespace Geom {
+
+class EllipticalArc;
+class Circle;
+
+/** @brief Set of points with a constant sum of distances from two foci.
+ *
+ * An ellipse can be specified in several ways. Internally, 2Geom uses
+ * the SVG style representation: center, rays and angle between the +X ray
+ * and the +X axis. Another popular way is to use an implicit equation,
+ * which is as follows:
+ * \f$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\f$
+ *
+ * @ingroup Shapes */
+class Ellipse
+ : boost::multipliable< Ellipse, Translate
+ , boost::multipliable< Ellipse, Scale
+ , boost::multipliable< Ellipse, Rotate
+ , boost::multipliable< Ellipse, Zoom
+ , boost::multipliable< Ellipse, Affine
+ , boost::equality_comparable< Ellipse
+ > > > > > >
+{
+ Point _center;
+ Point _rays;
+ Angle _angle;
+public:
+ Ellipse() {}
+ Ellipse(Point const &c, Point const &r, Coord angle)
+ : _center(c)
+ , _rays(r)
+ , _angle(angle)
+ {}
+ Ellipse(Coord cx, Coord cy, Coord rx, Coord ry, Coord angle)
+ : _center(cx, cy)
+ , _rays(rx, ry)
+ , _angle(angle)
+ {}
+ Ellipse(double A, double B, double C, double D, double E, double F) {
+ setCoefficients(A, B, C, D, E, F);
+ }
+ /// Construct ellipse from a circle.
+ Ellipse(Geom::Circle const &c);
+
+ /// Set center, rays and angle.
+ void set(Point const &c, Point const &r, Coord angle) {
+ _center = c;
+ _rays = r;
+ _angle = angle;
+ }
+ /// Set center, rays and angle as constituent values.
+ void set(Coord cx, Coord cy, Coord rx, Coord ry, Coord a) {
+ _center[X] = cx;
+ _center[Y] = cy;
+ _rays[X] = rx;
+ _rays[Y] = ry;
+ _angle = a;
+ }
+ /// Set an ellipse by solving its implicit equation.
+ void setCoefficients(double A, double B, double C, double D, double E, double F);
+ /// Set the center.
+ void setCenter(Point const &p) { _center = p; }
+ /// Set the center by coordinates.
+ void setCenter(Coord cx, Coord cy) { _center[X] = cx; _center[Y] = cy; }
+ /// Set both rays of the ellipse.
+ void setRays(Point const &p) { _rays = p; }
+ /// Set both rays of the ellipse as coordinates.
+ void setRays(Coord x, Coord y) { _rays[X] = x; _rays[Y] = y; }
+ /// Set one of the rays of the ellipse.
+ void setRay(Coord r, Dim2 d) { _rays[d] = r; }
+ /// Set the angle the X ray makes with the +X axis.
+ void setRotationAngle(Angle a) { _angle = a; }
+
+ Point center() const { return _center; }
+ Coord center(Dim2 d) const { return _center[d]; }
+ /// Get both rays as a point.
+ Point rays() const { return _rays; }
+ /// Get one ray of the ellipse.
+ Coord ray(Dim2 d) const { return _rays[d]; }
+ /// Get the angle the X ray makes with the +X axis.
+ Angle rotationAngle() const { return _angle; }
+ /// Get the point corresponding to the +X ray of the ellipse.
+ Point initialPoint() const;
+ /// Get the point corresponding to the +X ray of the ellipse.
+ Point finalPoint() const { return initialPoint(); }
+
+ /** @brief Create an ellipse passing through the specified points
+ * At least five points have to be specified. */
+ void fit(std::vector<Point> const& points);
+
+ /** @brief Create an elliptical arc from a section of the ellipse.
+ * This is mainly useful to determine the flags of the new arc.
+ * The passed points should lie on the ellipse, otherwise the results
+ * will be undefined.
+ * @param ip Initial point of the arc
+ * @param inner Point in the middle of the arc, used to pick one of two possibilities
+ * @param fp Final point of the arc
+ * @return Newly allocated arc, delete when no longer used */
+ EllipticalArc *arc(Point const &ip, Point const &inner, Point const &fp);
+
+ /** @brief Return an ellipse with less degrees of freedom.
+ * The canonical form always has the angle less than \f$\frac{\pi}{2}\f$,
+ * and zero if the rays are equal (i.e. the ellipse is a circle). */
+ Ellipse canonicalForm() const;
+ void makeCanonical();
+
+ /** @brief Compute the transform that maps the unit circle to this ellipse.
+ * Each ellipse can be interpreted as a translated, scaled and rotate unit circle.
+ * This function returns the transform that maps the unit circle to this ellipse.
+ * @return Transform from unit circle to the ellipse */
+ Affine unitCircleTransform() const;
+ /** @brief Compute the transform that maps this ellipse to the unit circle.
+ * This may be a little more precise and/or faster than simply using
+ * unitCircleTransform().inverse(). An exception will be thrown for
+ * degenerate ellipses. */
+ Affine inverseUnitCircleTransform() const;
+
+ LineSegment majorAxis() const { return ray(X) >= ray(Y) ? axis(X) : axis(Y); }
+ LineSegment minorAxis() const { return ray(X) < ray(Y) ? axis(X) : axis(Y); }
+ LineSegment semimajorAxis(int sign = 1) const {
+ return ray(X) >= ray(Y) ? semiaxis(X, sign) : semiaxis(Y, sign);
+ }
+ LineSegment semiminorAxis(int sign = 1) const {
+ return ray(X) < ray(Y) ? semiaxis(X, sign) : semiaxis(Y, sign);
+ }
+ LineSegment axis(Dim2 d) const;
+ LineSegment semiaxis(Dim2 d, int sign = 1) const;
+
+ /// Get the tight-fitting bounding box of the ellipse.
+ Rect boundsExact() const;
+
+ /** @brief Get a fast to compute bounding box which contains the ellipse.
+ *
+ * The returned rectangle engulfs the ellipse but it may not be the smallest
+ * axis-aligned rectangle with this property.
+ */
+ Rect boundsFast() const;
+
+ /// Get the coefficients of the ellipse's implicit equation.
+ std::vector<double> coefficients() const;
+ void coefficients(Coord &A, Coord &B, Coord &C, Coord &D, Coord &E, Coord &F) const;
+
+ /** @brief Evaluate a point on the ellipse.
+ * The parameter range is \f$[0, 2\pi)\f$; larger and smaller values
+ * wrap around. */
+ Point pointAt(Coord t) const;
+ /// Evaluate a single coordinate of a point on the ellipse.
+ Coord valueAt(Coord t, Dim2 d) const;
+
+ /** @brief Find the time value of a point on an ellipse.
+ * If the point is not on the ellipse, the returned time value will correspond
+ * to an intersection with a ray from the origin passing through the point
+ * with the ellipse. Note that this is NOT the nearest point on the ellipse. */
+ Coord timeAt(Point const &p) const;
+
+ /// Get the value of the derivative at time t normalized to unit length.
+ Point unitTangentAt(Coord t) const;
+
+ /// Check whether the ellipse contains the given point.
+ bool contains(Point const &p) const;
+
+ /// Compute intersections with an infinite line.
+ std::vector<ShapeIntersection> intersect(Line const &line) const;
+ /// Compute intersections with a line segment.
+ std::vector<ShapeIntersection> intersect(LineSegment const &seg) const;
+ /// Compute intersections with another ellipse.
+ std::vector<ShapeIntersection> intersect(Ellipse const &other) const;
+ /// Compute intersections with a 2D Bezier polynomial.
+ std::vector<ShapeIntersection> intersect(D2<Bezier> const &other) const;
+
+ Ellipse &operator*=(Translate const &t) {
+ _center *= t;
+ return *this;
+ }
+ Ellipse &operator*=(Scale const &s) {
+ _center *= s;
+ _rays *= s;
+ return *this;
+ }
+ Ellipse &operator*=(Zoom const &z) {
+ _center *= z;
+ _rays *= z.scale();
+ return *this;
+ }
+ Ellipse &operator*=(Rotate const &r);
+ Ellipse &operator*=(Affine const &m);
+
+ /// Compare ellipses for exact equality.
+ bool operator==(Ellipse const &other) const;
+};
+
+/** @brief Test whether two ellipses are approximately the same.
+ * This will check whether no point on ellipse a is further away from
+ * the corresponding point on ellipse b than precision.
+ * @relates Ellipse */
+bool are_near(Ellipse const &a, Ellipse const &b, Coord precision = EPSILON);
+
+/** @brief Outputs ellipse data, useful for debugging.
+ * @relates Ellipse */
+std::ostream &operator<<(std::ostream &out, Ellipse const &e);
+
+} // end namespace Geom
+
+#endif // LIB2GEOM_SEEN_ELLIPSE_H
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :