summaryrefslogtreecommitdiffstats
path: root/include/2geom/generic-rect.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--include/2geom/generic-rect.h547
1 files changed, 547 insertions, 0 deletions
diff --git a/include/2geom/generic-rect.h b/include/2geom/generic-rect.h
new file mode 100644
index 0000000..4524d43
--- /dev/null
+++ b/include/2geom/generic-rect.h
@@ -0,0 +1,547 @@
+/**
+ * \file
+ * \brief Axis-aligned rectangle
+ *//*
+ * Authors:
+ * Michael Sloan <mgsloan@gmail.com>
+ * Krzysztof KosiƄski <tweenk.pl@gmail.com>
+ * Copyright 2007-2011 Authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, output to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ *
+ * Authors of original rect class:
+ * Lauris Kaplinski <lauris@kaplinski.com>
+ * Nathan Hurst <njh@mail.csse.monash.edu.au>
+ * bulia byak <buliabyak@users.sf.net>
+ * MenTaLguY <mental@rydia.net>
+ */
+
+#ifndef LIB2GEOM_SEEN_GENERIC_RECT_H
+#define LIB2GEOM_SEEN_GENERIC_RECT_H
+
+#include <limits>
+#include <iostream>
+#include <optional>
+#include <2geom/coord.h>
+
+namespace Geom {
+
+template <typename C>
+class GenericOptRect;
+
+/**
+ * @brief Axis aligned, non-empty, generic rectangle.
+ * @ingroup Primitives
+ */
+template <typename C>
+class GenericRect
+ : CoordTraits<C>::RectOps
+{
+ typedef typename CoordTraits<C>::IntervalType CInterval;
+ typedef typename CoordTraits<C>::PointType CPoint;
+ typedef typename CoordTraits<C>::RectType CRect;
+ typedef typename CoordTraits<C>::OptRectType OptCRect;
+protected:
+ CInterval f[2];
+public:
+ typedef CInterval D1Value;
+ typedef CInterval &D1Reference;
+ typedef CInterval const &D1ConstReference;
+
+ /// @name Create rectangles.
+ /// @{
+ /** @brief Create a rectangle that contains only the point at (0,0). */
+ GenericRect() { f[X] = f[Y] = CInterval(); }
+ /** @brief Create a rectangle from X and Y intervals. */
+ GenericRect(CInterval const &a, CInterval const &b) {
+ f[X] = a;
+ f[Y] = b;
+ }
+ /** @brief Create a rectangle from two points. */
+ GenericRect(CPoint const &a, CPoint const &b) {
+ f[X] = CInterval(a[X], b[X]);
+ f[Y] = CInterval(a[Y], b[Y]);
+ }
+ /** @brief Create rectangle from coordinates of two points. */
+ GenericRect(C x0, C y0, C x1, C y1) {
+ f[X] = CInterval(x0, x1);
+ f[Y] = CInterval(y0, y1);
+ }
+ /** @brief Create a rectangle from a range of points.
+ * The resulting rectangle will contain all points from the range.
+ * The return type of iterators must be convertible to Point.
+ * The range must not be empty. For possibly empty ranges, see OptRect.
+ * @param start Beginning of the range
+ * @param end End of the range
+ * @return Rectangle that contains all points from [start, end). */
+ template <typename InputIterator>
+ static CRect from_range(InputIterator start, InputIterator end) {
+ assert(start != end);
+ CPoint p1 = *start++;
+ CRect result(p1, p1);
+ for (; start != end; ++start) {
+ result.expandTo(*start);
+ }
+ return result;
+ }
+ /** @brief Create a rectangle from a C-style array of points it should contain. */
+ static CRect from_array(CPoint const *c, unsigned n) {
+ CRect result = GenericRect<C>::from_range(c, c+n);
+ return result;
+ }
+ /** @brief Create rectangle from origin and dimensions. */
+ static CRect from_xywh(C x, C y, C w, C h) {
+ CPoint xy(x, y);
+ CPoint wh(w, h);
+ CRect result(xy, xy + wh);
+ return result;
+ }
+ /** @brief Create rectangle from origin and dimensions. */
+ static CRect from_xywh(CPoint const &xy, CPoint const &wh) {
+ CRect result(xy, xy + wh);
+ return result;
+ }
+ /// Create infinite rectangle.
+ static CRect infinite() {
+ CPoint p0(std::numeric_limits<C>::min(), std::numeric_limits<C>::min());
+ CPoint p1(std::numeric_limits<C>::max(), std::numeric_limits<C>::max());
+ CRect result(p0, p1);
+ return result;
+ }
+ /// @}
+
+ /// @name Inspect dimensions.
+ /// @{
+ CInterval &operator[](unsigned i) { return f[i]; }
+ CInterval const &operator[](unsigned i) const { return f[i]; }
+ CInterval &operator[](Dim2 d) { return f[d]; }
+ CInterval const &operator[](Dim2 d) const { return f[d]; }
+
+ /** @brief Get the corner of the rectangle with smallest coordinate values.
+ * In 2Geom standard coordinate system, this means upper left. */
+ CPoint min() const { CPoint p(f[X].min(), f[Y].min()); return p; }
+ /** @brief Get the corner of the rectangle with largest coordinate values.
+ * In 2Geom standard coordinate system, this means lower right. */
+ CPoint max() const { CPoint p(f[X].max(), f[Y].max()); return p; }
+ /** @brief Return the n-th corner of the rectangle.
+ * Returns corners in the direction of growing angles, starting from
+ * the one given by min(). For the standard coordinate system used
+ * in 2Geom (+Y downwards), this means clockwise starting from
+ * the upper left. */
+ CPoint corner(unsigned i) const {
+ switch(i % 4) {
+ case 0: return CPoint(f[X].min(), f[Y].min());
+ case 1: return CPoint(f[X].max(), f[Y].min());
+ case 2: return CPoint(f[X].max(), f[Y].max());
+ default: return CPoint(f[X].min(), f[Y].max());
+ }
+ }
+
+ //We should probably remove these - they're coord sys gnostic
+ /** @brief Return top coordinate of the rectangle (+Y is downwards). */
+ C top() const { return f[Y].min(); }
+ /** @brief Return bottom coordinate of the rectangle (+Y is downwards). */
+ C bottom() const { return f[Y].max(); }
+ /** @brief Return leftmost coordinate of the rectangle (+X is to the right). */
+ C left() const { return f[X].min(); }
+ /** @brief Return rightmost coordinate of the rectangle (+X is to the right). */
+ C right() const { return f[X].max(); }
+
+ /** @brief Get the horizontal extent of the rectangle. */
+ C width() const { return f[X].extent(); }
+ /** @brief Get the vertical extent of the rectangle. */
+ C height() const { return f[Y].extent(); }
+ /** @brief Get the ratio of width to height of the rectangle. */
+ Coord aspectRatio() const { return Coord(width()) / Coord(height()); }
+
+ /** @brief Get rectangle's width and height as a point.
+ * @return Point with X coordinate corresponding to the width and the Y coordinate
+ * corresponding to the height of the rectangle. */
+ CPoint dimensions() const { return CPoint(f[X].extent(), f[Y].extent()); }
+ /** @brief Get the point in the geometric center of the rectangle. */
+ CPoint midpoint() const { return CPoint(f[X].middle(), f[Y].middle()); }
+
+ /** @brief Compute rectangle's area. */
+ C area() const { return f[X].extent() * f[Y].extent(); }
+ /** @brief Check whether the rectangle has zero area. */
+ bool hasZeroArea() const { return f[X].isSingular() || f[Y].isSingular(); }
+
+ /** @brief Get the larger extent (width or height) of the rectangle. */
+ C maxExtent() const { return std::max(f[X].extent(), f[Y].extent()); }
+ /** @brief Get the smaller extent (width or height) of the rectangle. */
+ C minExtent() const { return std::min(f[X].extent(), f[Y].extent()); }
+
+ /** @brief Get rectangle's distance SQUARED away from the given point **/
+ C distanceSq(const CPoint pt) const {
+ auto v = clamp(pt) - pt;
+ return v.x() * v.x() + v.y() * v.y();
+ }
+
+ /** @brief Clamp point to the rectangle. */
+ CPoint clamp(CPoint const &p) const {
+ CPoint result(f[X].clamp(p[X]), f[Y].clamp(p[Y]));
+ return result;
+ }
+ /** @brief Get the nearest point on the edge of the rectangle. */
+ CPoint nearestEdgePoint(CPoint const &p) const {
+ CPoint result = p;
+ if (!contains(p)) {
+ result = clamp(p);
+ } else {
+ C cx = f[X].nearestEnd(p[X]);
+ C cy = f[Y].nearestEnd(p[Y]);
+ if (std::abs(cx - p[X]) <= std::abs(cy - p[Y])) {
+ result[X] = cx;
+ } else {
+ result[Y] = cy;
+ }
+ }
+ return result;
+ }
+ /// @}
+
+ /// @name Test other rectangles and points for inclusion.
+ /// @{
+ /** @brief Check whether the rectangles have any common points. */
+ bool intersects(GenericRect<C> const &r) const {
+ return f[X].intersects(r[X]) && f[Y].intersects(r[Y]);
+ }
+ /** @brief Check whether the rectangle includes all points in the given rectangle. */
+ bool contains(GenericRect<C> const &r) const {
+ return f[X].contains(r[X]) && f[Y].contains(r[Y]);
+ }
+
+ /** @brief Check whether the rectangles have any common points.
+ * Empty rectangles will not intersect with any other rectangle. */
+ inline bool intersects(OptCRect const &r) const;
+ /** @brief Check whether the rectangle includes all points in the given rectangle.
+ * Empty rectangles will be contained in any non-empty rectangle. */
+ inline bool contains(OptCRect const &r) const;
+
+ /** @brief Check whether the given point is within the rectangle. */
+ bool contains(CPoint const &p) const {
+ return f[X].contains(p[X]) && f[Y].contains(p[Y]);
+ }
+ /// @}
+
+ /// @name Modify the rectangle.
+ /// @{
+ /** @brief Set the minimum X coordinate of the rectangle. */
+ void setLeft(C val) {
+ f[X].setMin(val);
+ }
+ /** @brief Set the maximum X coordinate of the rectangle. */
+ void setRight(C val) {
+ f[X].setMax(val);
+ }
+ /** @brief Set the minimum Y coordinate of the rectangle. */
+ void setTop(C val) {
+ f[Y].setMin(val);
+ }
+ /** @brief Set the maximum Y coordinate of the rectangle. */
+ void setBottom(C val) {
+ f[Y].setMax(val);
+ }
+ /** @brief Set the upper left point of the rectangle. */
+ void setMin(CPoint const &p) {
+ f[X].setMin(p[X]);
+ f[Y].setMin(p[Y]);
+ }
+ /** @brief Set the lower right point of the rectangle. */
+ void setMax(CPoint const &p) {
+ f[X].setMax(p[X]);
+ f[Y].setMax(p[Y]);
+ }
+ /** @brief Enlarge the rectangle to contain the given point. */
+ void expandTo(CPoint const &p) {
+ f[X].expandTo(p[X]); f[Y].expandTo(p[Y]);
+ }
+ /** @brief Enlarge the rectangle to contain the argument. */
+ void unionWith(CRect const &b) {
+ f[X].unionWith(b[X]); f[Y].unionWith(b[Y]);
+ }
+ /** @brief Enlarge the rectangle to contain the argument.
+ * Unioning with an empty rectangle results in no changes. */
+ void unionWith(OptCRect const &b);
+
+ /** @brief Expand the rectangle in both directions by the specified amount.
+ * Note that this is different from scaling. Negative values will shrink the
+ * rectangle. If <code>-amount</code> is larger than
+ * half of the width, the X interval will contain only the X coordinate
+ * of the midpoint; same for height. */
+ void expandBy(C amount) {
+ expandBy(amount, amount);
+ }
+ /** @brief Expand the rectangle in both directions.
+ * Note that this is different from scaling. Negative values will shrink the
+ * rectangle. If <code>-x</code> is larger than
+ * half of the width, the X interval will contain only the X coordinate
+ * of the midpoint; same for height. */
+ void expandBy(C x, C y) {
+ f[X].expandBy(x); f[Y].expandBy(y);
+ }
+ /** @brief Expand the rectangle by the coordinates of the given point.
+ * This will expand the width by the X coordinate of the point in both directions
+ * and the height by Y coordinate of the point. Negative coordinate values will
+ * shrink the rectangle. If <code>-p[X]</code> is larger than half of the width,
+ * the X interval will contain only the X coordinate of the midpoint;
+ * same for height. */
+ void expandBy(CPoint const &p) {
+ expandBy(p[X], p[Y]);
+ }
+ /// @}
+
+ /// @name Operators
+ /// @{
+ /** @brief Offset the rectangle by a vector. */
+ GenericRect<C> &operator+=(CPoint const &p) {
+ f[X] += p[X];
+ f[Y] += p[Y];
+ return *this;
+ }
+ /** @brief Offset the rectangle by the negation of a vector. */
+ GenericRect<C> &operator-=(CPoint const &p) {
+ f[X] -= p[X];
+ f[Y] -= p[Y];
+ return *this;
+ }
+ /** @brief Union two rectangles. */
+ GenericRect<C> &operator|=(CRect const &o) {
+ unionWith(o);
+ return *this;
+ }
+ GenericRect<C> &operator|=(OptCRect const &o) {
+ unionWith(o);
+ return *this;
+ }
+ /** @brief Test for equality of rectangles. */
+ bool operator==(CRect const &o) const { return f[X] == o[X] && f[Y] == o[Y]; }
+ /// @}
+};
+
+/**
+ * @brief Axis-aligned generic rectangle that can be empty.
+ * @ingroup Primitives
+ */
+template <typename C>
+class GenericOptRect
+ : public std::optional<typename CoordTraits<C>::RectType>
+ , boost::equality_comparable< typename CoordTraits<C>::OptRectType
+ , boost::equality_comparable< typename CoordTraits<C>::OptRectType, typename CoordTraits<C>::RectType
+ , boost::orable< typename CoordTraits<C>::OptRectType
+ , boost::andable< typename CoordTraits<C>::OptRectType
+ , boost::andable< typename CoordTraits<C>::OptRectType, typename CoordTraits<C>::RectType
+ > > > > >
+{
+ typedef typename CoordTraits<C>::IntervalType CInterval;
+ typedef typename CoordTraits<C>::OptIntervalType OptCInterval;
+ typedef typename CoordTraits<C>::PointType CPoint;
+ typedef typename CoordTraits<C>::RectType CRect;
+ typedef typename CoordTraits<C>::OptRectType OptCRect;
+ typedef std::optional<CRect> Base;
+public:
+ typedef CInterval D1Value;
+ typedef CInterval &D1Reference;
+ typedef CInterval const &D1ConstReference;
+
+ /// @name Create potentially empty rectangles.
+ /// @{
+ GenericOptRect() : Base() {}
+ GenericOptRect(GenericRect<C> const &a) : Base(CRect(a)) {}
+ GenericOptRect(CPoint const &a, CPoint const &b) : Base(CRect(a, b)) {}
+ GenericOptRect(C x0, C y0, C x1, C y1) : Base(CRect(x0, y0, x1, y1)) {}
+ /// Creates an empty OptRect when one of the argument intervals is empty.
+ GenericOptRect(OptCInterval const &x_int, OptCInterval const &y_int) {
+ if (x_int && y_int) {
+ *this = CRect(*x_int, *y_int);
+ }
+ // else, stay empty.
+ }
+
+ /** @brief Create a rectangle from a range of points.
+ * The resulting rectangle will contain all points from the range.
+ * If the range contains no points, the result will be an empty rectangle.
+ * The return type of iterators must be convertible to the corresponding
+ * point type (Point or IntPoint).
+ * @param start Beginning of the range
+ * @param end End of the range
+ * @return Rectangle that contains all points from [start, end). */
+ template <typename InputIterator>
+ static OptCRect from_range(InputIterator start, InputIterator end) {
+ OptCRect result;
+ for (; start != end; ++start) {
+ result.expandTo(*start);
+ }
+ return result;
+ }
+ /// @}
+
+ /// @name Check other rectangles and points for inclusion.
+ /// @{
+ /** @brief Check for emptiness. */
+ inline bool empty() const { return !*this; };
+ /** @brief Check whether the rectangles have any common points.
+ * Empty rectangles will not intersect with any other rectangle. */
+ bool intersects(CRect const &r) const { return r.intersects(*this); }
+ /** @brief Check whether the rectangle includes all points in the given rectangle.
+ * Empty rectangles will be contained in any non-empty rectangle. */
+ bool contains(CRect const &r) const { return *this && (*this)->contains(r); }
+
+ /** @brief Check whether the rectangles have any common points.
+ * Empty rectangles will not intersect with any other rectangle.
+ * Two empty rectangles will not intersect each other. */
+ bool intersects(OptCRect const &r) const { return *this && (*this)->intersects(r); }
+ /** @brief Check whether the rectangle includes all points in the given rectangle.
+ * Empty rectangles will be contained in any non-empty rectangle.
+ * An empty rectangle will not contain other empty rectangles. */
+ bool contains(OptCRect const &r) const { return *this && (*this)->contains(r); }
+
+ /** @brief Check whether the given point is within the rectangle.
+ * An empty rectangle will not contain any points. */
+ bool contains(CPoint const &p) const { return *this && (*this)->contains(p); }
+ /// @}
+
+ /** @brief Returns an empty optional (testing false) if the rectangle has zero area. */
+ OptCRect regularized() const {
+ return *this && !(*this)->hasZeroArea() ? *this : OptCRect();
+ }
+
+ /// @name Modify the potentially empty rectangle.
+ /// @{
+ /** @brief Enlarge the rectangle to contain the argument.
+ * If this rectangle is empty, after callng this method it will
+ * be equal to the argument. */
+ void unionWith(CRect const &b) {
+ if (*this) {
+ (*this)->unionWith(b);
+ } else {
+ *this = b;
+ }
+ }
+ /** @brief Enlarge the rectangle to contain the argument.
+ * Unioning with an empty rectangle results in no changes.
+ * If this rectangle is empty, after calling this method it will
+ * be equal to the argument. */
+ void unionWith(OptCRect const &b) {
+ if (b) unionWith(*b);
+ }
+ /** @brief Leave only the area overlapping with the argument.
+ * If the rectangles do not have any points in common, after calling
+ * this method the rectangle will be empty. */
+ void intersectWith(CRect const &b) {
+ if (!*this) return;
+ OptCInterval x = (**this)[X] & b[X], y = (**this)[Y] & b[Y];
+ if (x && y) {
+ *this = CRect(*x, *y);
+ } else {
+ *(static_cast<Base*>(this)) = std::nullopt;
+ }
+ }
+ /** @brief Leave only the area overlapping with the argument.
+ * If the argument is empty or the rectangles do not have any points
+ * in common, after calling this method the rectangle will be empty. */
+ void intersectWith(OptCRect const &b) {
+ if (b) {
+ intersectWith(*b);
+ } else {
+ *(static_cast<Base*>(this)) = std::nullopt;
+ }
+ }
+ /** @brief Create or enlarge the rectangle to contain the given point.
+ * If the rectangle is empty, after calling this method it will be non-empty
+ * and it will contain only the given point. */
+ void expandTo(CPoint const &p) {
+ if (*this) {
+ (*this)->expandTo(p);
+ } else {
+ *this = CRect(p, p);
+ }
+ }
+ /// @}
+
+ /// @name Operators
+ /// @{
+ /** @brief Union with @a b */
+ GenericOptRect<C> &operator|=(OptCRect const &b) {
+ unionWith(b);
+ return *this;
+ }
+ /** @brief Intersect with @a b */
+ GenericOptRect<C> &operator&=(CRect const &b) {
+ intersectWith(b);
+ return *this;
+ }
+ /** @brief Intersect with @a b */
+ GenericOptRect<C> &operator&=(OptCRect const &b) {
+ intersectWith(b);
+ return *this;
+ }
+ /** @brief Test for equality.
+ * All empty rectangles are equal. */
+ bool operator==(OptCRect const &other) const {
+ if (!*this != !other) return false;
+ return *this ? (**this == *other) : true;
+ }
+ bool operator==(CRect const &other) const {
+ if (!*this) return false;
+ return **this == other;
+ }
+ /// @}
+};
+
+template <typename C>
+inline void GenericRect<C>::unionWith(OptCRect const &b) {
+ if (b) {
+ unionWith(*b);
+ }
+}
+template <typename C>
+inline bool GenericRect<C>::intersects(OptCRect const &r) const {
+ return r && intersects(*r);
+}
+template <typename C>
+inline bool GenericRect<C>::contains(OptCRect const &r) const {
+ return !r || contains(*r);
+}
+
+template <typename C>
+inline std::ostream &operator<<(std::ostream &out, GenericRect<C> const &r) {
+ out << "Rect " << r[X] << " x " << r[Y];
+ return out;
+}
+
+} // end namespace Geom
+
+#endif // LIB2GEOM_SEEN_RECT_H
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :